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Abstract. Robot localization inside tunnels is a challenging task due to
the hostile conditions of the environment. The GPS-denied nature of the
scenario together with the low visibility, slippery surfaces, and the lack
of distinguishable features, make traditional robotics methods based on
cameras or laser unreliable. In this paper, we address the robot local-
ization problem with an alternative graph-based localization approach,
taking advantage of the periodic nature of the RF signal fadings that ap-
pears inside tunnels under certain transmitter-receiver settings. Experi-
mental results in a real scenario demonstrate the validity of the proposed
method for inspection applications.
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1 Introduction

Inspection tasks in tunnel-like environments are crucial in order to detect and
identify critical characteristics during the construction of the tunnel, rescue mis-
sions or regular service routines. In recent years, robots seem to be the best
candidates to perform these tasks mainly due to their flexibility and the harsh
and even dangerous conditions of the environment that makes the human inter-
vention risky.

However, accurate robot localization in tunnel-like scenarios represents a
challenge due to the darkness and absence of distinguishable features in their
longitudinal direction that makes traditional methods, based on cameras or laser
sensors, inefficient. Moreover, GPS sensors cannot be used in underground envi-
ronments. [1] presents an autonomous platform for exploration and navigation in
mines where the localization is based on the detection and matching of natural
landmarks over a 2D survey map using a laser sensor. In the case of tunnels,
these natural features are almost non-existent.
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Recent promising works explore the use of Radio Frequency (RF) signal for
indoor localization. In [2] the authors propose the use of an Ultra Wide-Band
(UWB) ranging sensor in combination with a LIDAR to obtain the localization
in a tunnel fusing the information with a Gaussian Particle Filter (GPF). Never-
theless, the use of RF-based indoor localization implies a previous commissioning
step to place at least three anchor nodes with high precision in the infrastructure
to calculate the position by trilateration algorithms.

In [3,4] the authors present several intensive studies about the RF signal
propagation inside tunnels. Those works show that, on the one hand, tunnel-
like environments behave as waveguides extending the communication range,
but on the other hand, the signal suffers from strong attenuation (fadings). The
authors also demonstrate that it is possible, under certain transmitter-receiver
setups, to obtain predictable periodic fadings. The periodic nature of the RF
signal is exploited in [5] to design a discrete robot localization system based on
the identification of the RF signal minima and matching them with the known
signal propagation model acting as an RF map.

Recent advances in the field of graph-SLAM result in new localization ap-
proaches that model the localization problem as a pose-graph optimization [6]
with the advantage of easily incorporating measurements from different sources
of information to the graph, not only local (wheel odometry) but also global
measurements (GPS, IMU).

Taking into account the aforementioned works, in this paper we address the
robot localization problem in tunnels as an online pose-graph localization prob-
lem, where we originally introduce the results of our RF signal minima detection
method into the graph optimization taking advantage of the periodic nature of
the RF signal inside tunnels.

Our approach consists of identifying the minima of the signal which are
related to a global position provided by a previously obtained RF map (corre-
sponding to the signal propagation model). The absolute position of each min-
imum is added as a constraint to the pose-graph that is being generated with
the information provided by the odometry during the displacement of the robot.
Each time new information is incorporated into the graph, it is optimized and
the position of the robot is corrected allowing to locate the main characteris-
tics to be inspected more accurately. The main advantages of approaching the
robot localization problem using a graph-based representation are twofold: it
allows to easily incorporate delayed measurements into the estimation process,
and to recover (undo) from wrong decisions such as the inclusion of incorrect
measurements.

The paper is structured as follows. The next section describes the related
work about the fundamental aspects of the electromagnetic propagation in tunnel-
like scenarios. The proposed method to identify the RF minima signal is pre-
sented in Section 3. The formulation of the graph-based localization problem
together with a detailed description of the strategy followed to incorporate the
minima to the graph is explained in Section 4. Section 5 presents the results
obtained in the real scenario. Finally, the conclusions are set out in Section 6.
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2 Related work: Fundamentals of electromagnetic
propagation in tunnels

As stated before, previous works [3,4, 7] demonstrate two different behaviors
of the RF signal in tunnels: on the one hand, the tunnel acts as an oversized
waveguide, extending the communication range if the wavelength of the signal
is much smaller than the tunnel cross-section dimensions. On the other hand,
strong fadings appear due to the interaction between the propagation modes
present in the waveguide. It is important to highlight that we refer to fadings in a
spatial domain, as a consequence of the constructive and destructive interference
between propagating modes (using a modal theory approach) or propagating rays
(using a raytracing approach), unlike the well-known small-scale fadings, which
are understood as temporal variations of the channel.

Depending on the distance from the transmitter, due to the different atten-
uation rate of the propagation modes, two regions can be distinguished in the
signal. In the near sector, all the propagation nodes are present provoking fast
fluctuation on the signal (fast-fadings). Once the higher order modes (which
have higher attenuation rate) are mitigated with the distance the lower modes
survive, giving rise to the far sector, where the slow-fadings dominate [8]. A
specific periodic signal is obtained under the most adequate transmitter-receiver
configuration (Fig. 1(a)). These studies also demonstrate that the period of the
fadings depends on the operating frequency and the tunnel dimensions.

Lastly, the authors adopt the Modal Theory approach, modeling the tunnel
as a rectangular dielectric waveguide. We encourage the reader to see [9] for a
complete 3-D fadings structure analysis in tunnels. With this approximation, the
obtained theoretical propagation model matches closely the experimental data.
The similarity between both signals (Fig. 1(b)) are enough to make us consider
them useful for localization purposes, using the propagation model as a position
reference.

3 RF Signal minima detection

As stated before, the agreement between the signal propagation model and the
real RF signal let us consider the first one as an RF map, which relates the RSSI
values to the distance along the tunnel. Due to the noisy nature of the RF signal,
the most distinguishable features of the RF waveform are the valleys (fadings).
The goal of the presented method is to identify the minima of the real signal
during the robot displacement and to extract the reference position associated to
each valley from the RF Map. The information provided by the virtual minima
detector will be added to the pose-graph as it will be explained in Section 4.
The first step of the proposed method consists of extracting a discrete model
representing the theoretical minimum model from the RF Map. Using the prop-
agation model described in Chapters 2.1 and 3.2 of [10], it is possible to know
the position of each valley along the tunnel and then, the theoretical minimum



4 Teresa Seco et al.

50 propagation model
—> Far sector real signal
E 3
g 3 60
2 %]
1%}
= 2 70
FAR
o SECTORI SECTOR 0 : ‘ :
B 500 1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000
Distance from Transmitter (m) Distance from transmitter (m)
(a) Periodic Fadings (b) Propagation model vs real data

Fig. 1. Measured Received Power at 2.4 GHz inside the Somport tunnel, from [4].
The transmitter was kept fixed and the receiver was displaced along 4 km from the
transmitter. The signals were sampled with a spatial period of 0.1 m. In (b), the red
line represent the modal theory simulations, and the blue the experimental results for
the far sector.

model can be obtained in advance. During the displacement of the vehicle, the al-
gorithm tries to match the discrete real model, generated during the movement,
with the theoretical model. When the two models match, a minimum is found
and the information about the estimated position of the minimum together with
its corresponding position in the map is available.

Fig. 2 shows the steps of the proposed strategy. The discrete theoretical model
is extracted from the RF signal model in advance (Fig. 2(a)). The theoretical
model consists of a set of points (x,y) where z is the position corresponding to
each theoretical RSSI value y. Both values are provided by the RF map. The real
model is obtained by accumulating points (z¢, y;) during a certain period of time
T corresponding to a fixed distance D (Fig. 2(b)). z; is the position estimated
by the odometry and y; corresponds to the actual RSSI value provided by an RF
sensor. Once the real model is available, the matching process starts using the
previously recorded theoretical model. The points enclosed in the B blue area
represent the real model used to describe the matching procedure that involves
the following steps:

— Relate the theoretical model to the reference system of the real model (Fig.
2(c)). Both models have in common the minimum value.

— For each real point, calculate the Mahalanobis distance d,, between the real
point and the closest neighbors from the theoretical model. Fig. 2(d).

— Classify each point as inlier or outlier based on the Mahalanobis distance.

— If the number of inliers is greater than a certain threshold and the ratio
between left and right inliers is balanced, we can conclude that a minimum
has been found. Fig. 2(e).

— The Mahalanobis distance is again calculated between the real minimum
detected and the minimums of the theoretical model, selecting the theoretical
one with the least distance. Fig. 2(f).
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Fig. 2. RF signal minima detection steps:(a) Theoretical model (green points inside
the dashed green square A) extracted from the RF signal model (red). (b) Real model
generation during the displacement of the vehicle from the real RF signal. (c¢) Both
models referenced to the same system coordinates. (d) Point classification depending
on the Mahalanobis distance between the real data and the closest neighbors from
the theoretical model (e) Minimum detection if the number and proportion of inliers
satisfy the threshold. (f) Estimated position by the odometry (black point) and position
reference from the RF Map (green point) of the detected minimum
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The resulting data are the estimated position provided by the odometry
(xr—r) and the position reference of the RF map (z;), both corresponding to
a minimum of the RF signal. The uncertainty of the position reference (J) is a
measure of the RF signal model fidelity with respect to the ground truth. This
process is repeated iteratively using a sliding window to generate the discrete real
model (dashed blue area in Fig. 2(b)). It is worthy to notice that the information
provided by the virtual sensor corresponds to delayed measurements, i.e., the
position of the minimum is detected at a timestamp after its appearance. The
strategy followed to add these measurements to the pose-graph is explained in
the following section.

4 Graph-based localization using RF Fadings

In our approach we model the robot localization problem as a graph-based pose
optimization problem. The trajectory of the robot xo.r = {xo,...,x7} is rep-
resented as a graph where nodes symbolize discrete robot positions x; at time
step t. Nodes in the graph are related by binary measurements encoding rela-
tive position constraints between two nodes (x;,x;) characterized by a mean z;;
and information matrix £2;;. These relative measurements are typically obtained
through odometry or scan matching. Furthermore, it is possible to incorporate
into the graph global or prior information associated only to one robot position
X; by means of unary measurements z; with information matrix €2;. These unary
measurements typically come from sensors providing direct absolute information
about the robot pose such as GPS or IMU. Let z; = h(x;) and z;; = h(x;,x;)
be the expected unary and binary measurements given the current estimation of
the nodes. The errors committed in the estimation can be obtained as:

€ =2z — Zj, € = Zjj — Zjj (1)

The goal of a graph-based approach is to find the configuration of nodes that
minimizes the sum of the errors introduced by the measurements, formulated as:

x* = argmin Z egﬂijeij + Z e/ Qe; (2)

1,J 7

The above Eq. 2 poses a non-linear least-squares problem that can be solved
iteratively using the Gauss-Newton algorithm.

Our approach for localization inside tunnels considers measurements coming
from two sources of information: odometry data and RF signal minima detection
using the procedure described in previous Section 3. Odometry measurements
are straightforwardly introduced into the graph as binary constraints encoding
relative displacement between consecutive nodes (x;_1,x;). Additionally, the
output provided by the minima detection mechanism can be considered as an
absolute positioning system inside the tunnel which can be used as a unary
measurement during the graph optimization process.
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As previously mentioned, RF signal minima detection is obtained on a poste-
rior time 7" in which it actually occurred. This implies incorporating in the esti-
mation process information referred to a past position x7_g. This can be handled
thanks to the use of a graph representation, having an impact on the current
pose estimation after the optimization process. Next subsection 4.1 describes the
proposed mechanism to incorporate the RF signal minima measurements into

the graph.
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Fig. 3. Pose-graph creation steps: (a) Minimum identification at time T. (b) Insertion
of the node and the unary constraint corresponding to the detected minimum. (c) False
positive case detail, deactivation of the previous unary edge. (d) Resulting pose-graph
after three minimums.

4.1 Management of RF fadings minima detection in the pose-graph

As introduced in the previous section, the graph based localization approach
consists in the representation of a set of discretized robot poses from the robot
trajectory as nodes in the graph. Once the constraints derived from the mea-
surements are introduced into the graph the error minimization process takes
place, where the optimization time depends directly on the number of nodes.
Graph-based localization and mapping systems usually perform a rich dis-
cretization of the robot trajectory, where the separation between nodes ranges



8 Teresa Seco et al.

from few centimeters to few meters. This type of dense discretization would be
intractable in a tunnel-like environment with few distinguishable features where
the length of the robot trajectory is measured in the order of magnitude of kilo-
meters. It is therefore necessary to maintain a greater distance between nodes
to manage a sparser and more efficient graph.

Under an RF signal minimum detection event we need to associate a unary
constraint to the past robot position where the minimum occurred. In view of the
need to maintain a sparse graph, it can happen that the referred robot position
is not represented in the graph as a node, having to modify the current graph
structure to include it.

The procedure to include the unary measurement corresponding to a past
robot position xp_g, is illustrated in Fig. 3 and described in the following:

— At timestamp 7', a RF signal minimum corresponding to timestamp 7" —
k is identified. Since robot position x7_j is not present in the graph, we
determine between which two nodes x; and x; it should be included, based
on the timestamps stored in each node. We also maintain a buffer containing
the odometry information associated to each timestamp (Fig. 3(a)).

— Once the two nodes are identified, the new node x7_j is inserted into the
graph connected to nodes x; and x; by taking into account their original
relative odometry information and the unary edge is associated to the node
X7_k. Previous odometry measurement connecting x; and x; is removed to
prevent double-counting of information (Fig. 3(b)).

— In the event of detecting another minimum corresponding to the same min-
imum in the RF map, the unary constraint of the previous minimum is
deactivated and same procedure is followed (Fig. 3(c)). This can be the case
of false positives or improved detections after the accumulation of more data.

5 Experimental results

In order to validate the proposed graph-based localization approach, all the
algorithms involved in the process were implemented in M AT LABTM and tested
with real data collected during an experiment developed in the Somport tunnel.

5.1 Scenario and Experimental Setup

The old out-of-service Somport railway tunnel was selected to carry out the
experiments. It is a 7.7 km long tunnel connecting Spain with France with a
change in slope at approximately 4 km from the Spanish entrance. It has a
horseshoe-shape cross section, around 5 m high and 4.65 m wide.

An all-terrain vehicle was used as the mobile platform simulating a service
routine. It was equipped with two SICK DSF60 0.036 deg resolution encoders
and a SICK LMS200 LIDAR. Due to the specific characteristics of this tunnel,
with lateral galleries and emergency shelters, it is possible to obtain the real
localization of the platform (ground truth) along the tunnel fusing all the data
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Fig. 4. Experimental setup

sensor using the algorithm described in [11] with a previously built map. Without
these landmarks, it would not be feasible to apply this method because of the
lack of relevant features along the tunnel. The ground truth is only used for
comparison purposes.

The platform was also equipped with two RF Alpha receivers placed at 2.25
m in height from the ground and with the antennas spaced 1.40 m apart. The
transmitter, a TPLINK tl-wn7200md wireless adapter with Ralink chipset, was
placed at approximately 850 m from the entrance of the tunnel, 3.50 m above
the ground and 1.50 m from the right wall. Using a 2.412 GHz working frequency
and under this receiver-transmitter setup, the expected fadings period is around
512 m. Fig. 4 shows the experimental setup.

The mobile platform moved up to about 3000 meters from the transmit-
ter position along the center of the tunnel in straight line with almost negli-
gible heading variations. This behaviour during the experiment makes feasible
the simplification of the general formulation of our approach, where x refers to
(x,y,0), to a one dimension problem where x corresponds to the longitudinal
distance from the transmitter. During the displacement of the vehicle, the data
provided by the sensors were streaming and logging with a laptop running Robot
Operating System (ROS) [12] on Ubuntu.

The RF data used to validate the proposed method are the RSSI values
provided by the rightmost antenna. It should be noted that the proposed graph-
based approach is intended to solve the localization problem in the area of the
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tunnel where the periodic fadings are observable (far sector). For this reason,
the data corresponding to the near sector have been removed from the data set.

5.2 Algorithm implementation

As stated before, the nodes are added to the graph each time the platform travels
a certain distance, which in this case is 40 meters. The selected value provides
sufficient discretization of the total distance travelled avoiding the complexity
of a more dense graph guaranteeing enough resolution between minima. The
binary edges e;; model the constraints between two consecutive nodes (x;,x;)
with the relative position between them calculated using the odometry data:
zij = (x§%™ — z9%m™), Q;; = [¢] 7, where 2°9°™ is the position estimated by
the odometry and e represents the uncertainty of the odometry with a value of
0.02.

If a minimum is detected at time 7', the estimated position x,, of this min-

imum provided by the odometry (229°™) is added as a new node in the pose-

graph. The position reference of the minimum (ac,llem“p) provided by the RF map
is considered as the measurement z,, and it is included as a global information
with a unary edge e,, associated to this new minimum node, being €, = [6]~!
the information matrix. d corresponds to the uncertainty of the measurement
and, due to the fact that the positions provided by the RF map closely represent
the ground truth, it has a very low value (107%).

The strategy explained in Section 4.1 is used to introduce this delayed mea-
surement into the graph. Each time a new node or measurement is added to the
graph, the optimization process takes place. Even if nodes separation is large in
the graph, our approach guarantees continuous robot localization by accumulat-
ing the odometry data to the last estimated robot position in the graph.

5.3 Results

Minima detection Fig. 5 shows the results of the minima detection method.
The number of points accumulated to create the real model corresponds to a
distance D of 80 m. This value is selected based on the distance corresponding
to the theoretical minimum model. The RSSI data provided by the RF receiver is
represented related to the position estimated by the odometry and the RF signal
model related to the ground truth (Fig. 5(a)). The results shows the ability of
the proposed algorithm to identify the minima of the signal although the real
signal waveform does not exactly match with the RF signal model due to the
noisy nature of the real signal and the odometry errors. As can be seen in Fig.
5(b), two different values have been identified corresponding to the same RF
map minimum (second and third). The mechanism explained in Section 4.1 is
used to handle this situation.

Graph-based localization results Although the pose-graph generation and
optimization take place online during the displacement of the vehicle, the results
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Fig. 5. Results of the mimima detection process

presented in this section correspond not only to the vehicle localization along
the tunnel but also to the position correction after the service routine.

Fig. 6(a) shows the initial graph with the odometry and the minimum nodes,
and the resultant graph after the optimization process. It is clearly seen how the
vehicle positions represented by the nodes are corrected after the optimization.

The position error during the movement of the robot is shown in Fig. 6(b).
Each time a minimum is detected, the position of the vehicle is corrected and
therefore, the error is reset. As previously mentioned, the detection of the mini-
mum is delayed with respect to the instant at which the minimum appears. The
effect in the position correction can also be observed in Fig. 6(c) and in Fig. 6(d)
in detail.

As stated before, one of the main benefits of the proposed approach is the
ability to modify the location of some features observed during the route of the
vehicle. Fig. 7 shows the results when the position and the error are calculated
once the tunnel has been traversed. The position error along the tunnel remains
limited under acceptable values in comparison with the error using only the
odometry which increases along the time as shown (Fig. 7(a)). The estimated
position obtained through our proposed method follows closely the real position
of the vehicle as can be seen in Fig. 7(b).

6 Conclusions

This paper have presented a graph-based localization approach for tunnel-like
environments using two main sources of information: the odometry data and
the absolute positions provided by an RF signal minima detector based on a
theoretical fadings model that acts as an RF map. The feasibility of the pro-
posed approach has been validated with the data collected during experiments
developed in a real tunnel scenario.

The empirical results demonstrate the validity of the proposed minima de-
tection method even when the RF actual signal and the RF signal model differs
due mainly to odometry uncertainty and amplitude differences in the RSSI signal
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values. Additionaly we prove the robustness of the method against scale differ-
ences in the signal. The results also show that the localization error is greatly
reduced after the graph optimization. As a consequence, it is possible to locate
features of interest observed during the inspection task more accurately.

Future work will be aimed at improving the continuous localization in the
tunnel by incorporating into the graph additional sources of information such as
galleries detection or the results of a scan matching process.
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