
A lightweight navigation system for mobile
robots

M. T. Lázaro1, G. Grisetti1, L. Iocchi1, J. P. Fentanes2, and M. Hanheide2

1 DIAG, Sapienza University of Rome, Italy,
{mtlazaro, grisetti, iocchi}@dis.uniroma1.it,

2 LCAS, University of Lincoln, UK,
jpulidofentanes@lincoln.ac.uk, mhanheide@lincoln.ac.uk

Abstract. In this paper, we describe a navigation system requiring very
few computational resources, but still providing performance comparable
with commonly used tools in the ROS universe. This lightweight naviga-
tion system is thus suitable for robots with low computational resources
and provides interfaces for both ROS and NAOqi middlewares. We have
successfully evaluated the software on different robots and in different
situations, including SoftBank Pepper robot for RoboCup@Home SSPL
competitions and on small home-made robots for RoboCup@Home Ed-
ucation workshops. The developed software is well documented and easy
to understand. It is released open-source and as Debian package to facil-
itate ease of use, in particular for the young researchers participating in
robotic competitions and for educational activities.

Keywords: Navigation, Mobile Robots, Open Source, RoboCup

1 Introduction

Navigation is among the most important features of mobile robot applications
and is a primary functionality in many tasks. Navigation performance of mobile
robots is typically well established thanks to the availability of standard open-
source software (e.g., ROS amcl and move base) and many robotic platforms are
able to properly use such off-the-shelf tools after a reasonable configuration ef-
fort. However, such solutions have some limitations: they are strongly embedded
in the ROS framework, they require substantial computational power, they are
sometimes not easy to tune and configure for a particular setting (robot and en-
vironment). While ROS is a de-facto standard for many robotic platforms, there
are still cases in which ROS-based tools cannot be fully used. For example, Soft-
Bank Pepper robot has its own operating system and development environment
that does not support ROS on-board. Small home-made robots controlled by
Arduino and Raspberry boards have limited computational power with respect
to the requirements of typical ROS-based navigation modules.

In several robotic competitions, specially for young researchers, having a
lightweight open-source navigation system is very important to speed-up de-
ployment of mobile robot applications. For example, as part of the RoboCup

2 M. T. Lázaro et al.

competitions3, the RoboCup@Home Social Standard Platform, using SoftBank
Pepper robot, introduces a new challenge in navigation because of the need of
deploying a navigation system for RoboCup@Home tasks running with on-board
computational resources of the robot. Similarly, in the RoboCup@Home Educa-
tion initiative4 low-cost robots with limited computational resources are used to
keep the entry-level for new teams low.

Therefore, the release of a lightweight navigation system that can support
both ROS and other robotic development environments, achieving the same per-
formance of standard ROS-based tools, but requiring much less computational
resources, brings many benefits in mobile robot applications specially for involv-
ing many young researchers to robotic competitions and to the use of educational
robots.

In this paper, we describe the development and release of an open-source
lightweight navigation system that has been integrated in and evaluated on
three different robotic platforms of diverse profiles regarding their middleware
support and their available computational resources: 1) ROS-based robots with
good computational resources, 2) ROS-based robots with limited computational
resources, 3) NAOqi-based robots (in particular, SoftBank Pepper) with limited
computational resources. Notice that, while in the first case our system achieves
similar performance as standard ROS-based tools (i.e., amcl and move base),
in the other two cases these tools are not suitable either because of too limited
resources or non-availability of ROS middle-ware.

The proposed solution has been also been deployed in the context of the
RoboCup@Home Social Standard Platform League, within the team SPQReL
that is a joint research collaboration between Sapienza University of Rome, Italy
and University of Lincoln, UK. Within the context of RoboCup@Home Social
Standard Platform League, the navigation package described in this paper over-
comes current limitations of the navigation system of the Pepper robot since
because 1) it is open-source, 2) it runs on the Pepper on-board PC, 3) it pro-
vides navigation performance comparable with ROS standard tools.

2 Related work

Mobile robot navigation is one of the key competences a robot must have to
be fully autonomous. For this reason, it is usual to find at least one naviga-
tion component in most robot software frameworks. Although there are multiple
frameworks for mobile robot software development, in general, it is safe to say
that robotics navigation specific software can be divided in three main com-
ponents: localization, global path planning and local path planning or reactive
navigation.

Although localization has been probably the most researched field in mobile
robotics, most well known robotics frameworks like ROS or the Player project
include a standard localization component based on 2D laser and an AMCL [3]

3 www.robocup.org
4 www.robocupathomeedu.org

www.robocup.org
www.robocupathomeedu.org

A lightweight navigation system for mobile robots 3

localization filter. Usually this component can be replaced depending on the
robot set-up, using, for example, EKF and GPS information for outdoor robot
localization or the integration of vision based localization systems.

The integration of both global and local path planners however has had more
variety of options. For example, the Player project uses a standard wavefront
propagation planner [8] for generating global plans that drive the robot towards
its goal, while, to deal with unmapped obstacles, it provides three different meth-
ods that drive the robot away from obstacles and towards the goal using virtual
force fields [10] or decision trees [7].

More recently, the robot operating system (ROS) has proposed the use of a
very flexible navigation stack [6] that uses a global dynamic window approach [2]
that not only plans a global plan to the goal and then follows it blindly but also
re-plans the path if the robot deviates from it to avoid unmapped obstacles.
In addition to this, ROS uses a roll-out trajectory planner [5] to send velocity
commands to the robot base that follows the planned trajectory as close as
possible given the robot constrains and unmapped obstacles. Alternatively to
this planner, ROS also provides a dynamic window planner [4] that is more
efficient that the trajectory roll-out as it samples a smaller velocity space filtering
out unachievable trajectories using the robot’s acceleration limits.

Other authors propose having a planning library [9] that can easily be in-
tegrated in any system and provides multiple tools to create the best possible
planner, these proposals can create highly customizable navigation systems and
are not restricted to any specific software framework.

Our proposal is to provide an open source approach to navigation that can
be used both as an additional navigation system for ROS or as an open source
alternative for NAOqi-based robots that is lightweight and can be used directly
in robots with limited computational power.

The proposed robot navigation suite comprises a variant of Monte Carlo
Localization, a Dijkstra-based global path planner, and a policy-based dynamic
obstacle avoidance, all described in detail in the following. The suite is completed
by visualization and remote control tools.

3 Localization filter

The localization module implements an efficient version of the Monte Carlo
Localization. The idea is to track the robot position with a particle filter. The
state of the filter comprises the 2D robot pose and orientation xt = (xt; yt; θt)

T

and the belief space is represented as a set of pose samples x(i). The denser the
samples in a region of the environment, the more likely is that the robot will
be in that region. The state transition is governed by odometry measurements
ut = (∆xt;∆yt;∆θt)

T , that express the relative movement of the robot between
subsequent time steps.

4 M. T. Lázaro et al.

Each time a new odometry measurement is received, we generate a new set
of samples according to the following equation:

xi
t|t−1 = x

(i)
t−1 ⊕ (ut−1 + n

(i)
t−1) (1)

nt−1 ∼ N (0,Σt−1). (2)

Here nt−1 is a sample drawn from a zero mean Gaussian distribution with covari-
ance Σt−1 representing the additive noise affecting the odometry. The covariance
of this distribution is adapted based on the magnitude of the odometry motion.
If the robot does not move, then Σt−1 = 0 and no sampling is performed. If
one of the samples falls in the invalid space of the environment (e.g. unknown or
inside a wall), it is replaced by a new sample drawn at a random valid location.
This substantially enhances the performance during global localization.

When a sensor measurement zt becomes available, we refine our predicted be-

lief {x(i)
t|t−1} through conditioning. To this end we assign each predicted particle

a weight w(i), proportional to the likelihood of the measurement. The likelihood
l(zt,x) ∈ < is a function expressing how well the current measurement zt ap-
proximates a predicted measurement obtained from the known map if the robot
was at location x. Ideally, if the predicted measurement and the actual one are
the same, the likelihood is maximal. Once the likelihood is computed for each
predicted sample, we generate the posterior distribution by replicating or sup-
pressing samples depending on their weight. More formally, we draw a set of new
indices from the weight distributions, as follows:

it ∼ w(i) (3)

Eq. 3, means that the index it is obtained by sampling from the piecewise con-

stant distribution of the weights. The index i has probability w
(i)
t to be selected.

The fact that an index is selected from the sampling means that the correspond-
ing particle will appear in the update distribution. Samples having high weight
can be drawn more than once. The above procedure is called resampling and has
the effect of turning a weighted distribution in an unweighted one by replicating
likely samples and suppressing unlikely ones.

In our system, the sensor measurements zt are the laser endpoints. We use a
fast but robust procedure to calculate the likelihood. First, given a robot pose

hypothesis x
(i)
t and the current laser measurement, we compute the position of

the laser endpoints in the map as follows:

ẑ
(i)
k = x

(i)
t|t−1 ⊕ zk (4)

where the index k represents one specific beam within the laser measurement
zt. Subsequently, for each endpoint we compute minimal distance between the
endpoint and the closest obstacle in the map. This operation can be performed
in O(1), by using a precalculated grid that stores for each cell the minimal
distance to the obstacles: the distance map. To lessen the effects of dynamic
unpredicted obstacles, we clamp the reported distance to a maximum value. Let

A lightweight navigation system for mobile robots 5

d
(i)
k be the distance of the kth beam from the closest obstacle w.r.t. particle i.

If a measurement is perfectly explained, the distances will be zero. The final
likelihood of a particle computed as

w(i) = exp(−
∑

σd(i)), (5)

where σ is a scaling factor to account for different sensor accuracies. Before the
resampling step the weights are normalized so that their sum is 1.

4 Path planning and obstacle avoidance

The planner module implements a fast global path planner that adapts the com-
puted path to dynamic changes in the environment. The system takes advantage
of this efficient computation to consider planning only at a global level, in con-
trast to other planners that manage both local and global maps, which prevents
from having a unified view of the environment.

This is facilitated by an efficient implementation and management of the dis-
tance map, which, as mentioned in previous Section 3, stores in each pixel the
distance to the closest occupied cell. Figure 1(middle) shows an example of dis-
tance map associated to a portion of map shown if Fig. 1(left). Once the distance
map from the static map is obtained, is it possible to add the information from
the dynamic obstacles in the same structure which are managed as explained in
the next Section 4.1.

Using this final distance map that includes both static and dynamic infor-
mation, our system approaches planning by computing the minimal paths to the
goal on a 2D grid using the Dijkstra algorithm. Instead of reporting just a single
path, we compute a policy such that each cell of the grid points to the closest
cell to reach the goal. We assume that the robot can travel from a cell to its eight
neighbors, and that the cost of the transition decreases linearly with the distance
from the obstacles. Other parameters such as a safety distance from obstacles
or the robot radius influences the final cost of each cell, which is saturated to a
maximum value. Figure 1(right) shows an example of such grid, called cost map.
Computing the cost on a grid 1000× 1000 takes 20 ms on a Intel(R) Core(TM)
i7-6500U CPU @ 2.50GHz.

The final plan provided is executed by using the motion controller by [1] as
explained in Section 4.2.

4.1 Management of dynamic obstacles

The distance map is recomputed at each new measurement by incorporating the
detected obstacles. This operation can be performed efficiently in an additive
fashion by adding only the obstacles to the distance map representing the static
scene. In order to track dynamic obstacles we keep a list of unexplained laser
endpoints (or grid cells), that are those endpoints that fall far from an occupied
cell in the static map.

6 M. T. Lázaro et al.

Fig. 1. Left: Portion of an input map. Middle: Distance map. Right: Cost map.

Two different policies are considered to manage the dynamic obstacles. The
first policy is to suppress old obstacles when a new measurement confirms that
they have been removed. Intuitively, this situation occurs when the new measure-
ment “goes through” an existing obstacle. More concretely, obstacle points are
transformed into the robot’s reference frame. Those points that are in the field
of view of the robot are projected into a circular array of K bins that will store
the closest old and new obstacle falling in each bin together with their distance
w.r.t. the robot. Then, given an old po

k and new pn
k obstacle points falling in the

same bin k whose distances to the robot frame are dok and dnk respectively, po
k is

removed if the new point appears behind the old one or if it is in a Euclidean
distance lower than a threshold ε as

dnk > dok , |dnk − dok| < ε (6)

This procedure is illustrated in Fig. 2.
The second policy suppresses obstacles points after a certain time passes. This

is done by assigning each obstacle point a time stamp of the moment it has been
seen for the last time. This intuitive but effective policy allows to re-consider
paths that could have been discarded due to temporally-static obstacles.

4.2 Motion generation

Once a final path to the goal is provided, an intermediate waypoint is computed
in a short distance from the robot (e.g., 1m ahead from the current robot pose).
This waypoint is used to calculate an attractive virtual force F that is applied
to the robot to generate its movement. Then, using the motion controller de-
scribed in [1] it is possible to transform this force into the desired control input
u = (v ω)T , the linear and angular velocities of the robot using the following
differential equation:

u̇ = Au + BF (7)

where

A = −2b

[
1 0
0 ki

]
B =

[
1 0
0 kih

]
F =

[
Fcosθ
Fsinθ

]
(8)

Details on the controller parameters b (viscous friction coefficient), ki (in-
ertial coefficient) and h (moment arm) are explained in [1]. Notice that the

A lightweight navigation system for mobile robots 7

Fig. 2. Management of dynamic obstacle points. Current (red) and old (green, blue)
points in the robot’s field of view are projected on a circular array of fixed number of
bins. Old points are removed if a new point corresponding to the same bin appears
behind the old ones (blue points).

intermediate waypoint changes as the robot moves since it always refers to a
fixed point w.r.t the current position of the robot, providing a smooth execution
of the computed trajectory.

5 Software description

The software is released as a git repository at https://github.com/LCAS/spqrel
navigation/. Links and additional instructions are available from the repositories
Wiki (https://github.com/LCAS/spqrel navigation/wiki) and the SPQReL web
site5. The software is released as source code to be compiled with either ROS or
NAOqi, but also as Debian packages for Ubuntu 16.04LTS desktop development6.

Integration with other components of the robotic applications is performed
in different ways depending on the platform-dependent wrapper used. The ROS
wrappers are compatible with amcl and move base, thus they use the same name
for ROS topics and actions allowing for an easy replacement in already exist-
ing ROS applications. The main parameters also correspond to the equivalent
ones in standard ROS tools, although our navigation system has much less pa-
rameters and thus requires less configuration effort. The NAOqi wrappers use
instead a different mechanism that is based on the communication through the
NAOqi shared memory (ALMemory), either by means of writing and reading
data directly in memory or by raising/subscribing to memory events.

Both the wrappers use a map of the environment described in the same
YAML format used in standard ROS navigation applications. This map should
be generated beforehand with any available tool compatible with ROS standard
maps (e.g., gmapping).

5 http://tinyurl.com/spqrel
6 For installation of binary packages see https://github.com/LCAS/rosdistro/wiki and

install ros-kinetic-spqrel-navigation

https://github.com/LCAS/spqrel_navigation/
https://github.com/LCAS/spqrel_navigation/
https://github.com/LCAS/spqrel_navigation/wiki
http://tinyurl.com/spqrel
https://github.com/LCAS/rosdistro/wiki

8 M. T. Lázaro et al.

5.1 Visualization Tools

For ROS-based systems, RViz can be used to visualize the information relevant
to the task (localization particles, path planned, etc.) For non-ROS systems,
we have developed simple viewers to view the information processed by the
components and to tune the parameters. In particular, we will describe below
the localizer viewer and the planner viewer.

Fig. 3. Left: Localizer viewer. Red points represent the filter particles. Green points
are current laser points that can be explained by the map while blue points are laser
points not explained by the map (e.g., new obstacles not represented in the map).
Middle: Planner viewer. Right: Distance map.

Through the localizer viewer it is possible to see the outcome of the localiza-
tion system. As shown in Figure 3 (left), the viewer shows the map, the current
laser scans and the particles that are currently stored in the filter. The viewer
also allows for setting the initial pose of the robot in a specific pose of the en-
vironment or to call for a global localization phase if the pose is not known
accurately.

Similarly, the planner viewer allows to visualize the state of the navigation
system. As shown in Figure 3 (middle), the viewer shows the map, current pose
of the robot provided by the localization system, current goal (if given) and the
computed path if the goal is reachable from the current pose. From this viewer
it is also possible to visualize the current distance map computed from the given
map and the added dynamic obstacles (see Figure 3 (right)), cancel a goal or
restore the distance map to its original state (i.e., cancel the obstacles added
during the navigation task).

6 Experiments

In this section we present evaluation experiments of our navigation system. The
experiments aim at verifying that our navigation system achieves similar perfor-
mance of a typical ROS-based navigation system for mobile robots in office-like

A lightweight navigation system for mobile robots 9

environments, but with much less computational resources. The navigation soft-
ware has been validated on three different robots in an office-like environment
as described in the next sections.

6.1 Experimental Environment

The environment considered in the experiments reported in this paper is a typical
indoor environment in our Department, representative of other similar environ-
ments, including RoboCup@Home scenarios.

The total size of the environment is about 50mx50m for which a map was
acquired at a resolution of 5cm, generating a grid of 1010x1070 pixels (illustrated
in Figure 3) and given in input to the three robotic platforms.

6.2 Robots

Three different kinds of robots have been used in these experiments, illustrated
in Figure 4.

Fig. 4. Left: Robot Diago. Middle: Robot MARRtino. Right: SoftBank Robotics
Pepper.

Diago7 is a robot based on a Segway base and a home-made torso supporting
many sensors and mainly used for Human-Robot Interaction (HRI) tasks. It
includes a powerful laptop with Intel i7-6700 CPU @ 3.40GHz, 16GB RAM.

MARRtino8 is a low-cost home-made robot controlled with an Arduino
board and a Raspberry PI 3 Model B operated by a 1.2GHz Quad core ARMv8
CPU with 1GB RAM and running Ubuntu 16.04 and ROS Kinetic.

Pepper9 is a robot developed by SoftBank, specially designed for HRI and
social interaction. It has an omni-directional drive platform and carries an Intel
Atom E3845 @ 1.91GHz Quad core as processing unit with 4GB RAM. Its
development environment is NAOqi, while ROS is not supported on-board of
the robot.

7 https://sites.google.com/a/dis.uniroma1.it/diago/
8 https://sites.google.com/dis.uniroma1.it/marrtino
9 https://www.softbank.jp/en/robot/

https://sites.google.com/a/dis.uniroma1.it/diago/
https://sites.google.com/dis.uniroma1.it/marrtino
https://www.softbank.jp/en/robot/

10 M. T. Lázaro et al.

All the robots are equipped with a laser range finder for localization and ob-
stacle avoidance and a differential drive navigation mechanism. Although other
sensors are available on some of these robots and Pepper is an omni-directional
drive platform, these additional features are not used in the experiments reported
here, in order to compare the three platforms on a common set of sensor and
mobility features. It is worth to mention the challenge of approaching laser-based
navigation for Pepper robot due to its limited range (about 5m) and sparsity of
the provided laser data (45 points in a field of view of 240 degrees).

6.3 Experimental results

The experiments reported in this paper consist in the execution of a path in
the environment with static and dynamic obstacles. The overall length of the
path followed by the robots is about 30m. The robots start from a known initial
pose and they come back to the same position. During this path we measured
execution time and computational resources. Moreover, we qualitatively observed
that the path performed by the robots and the way in which obstacles were
avoided was adequate to the situation. This is demonstrated through videos of
the use of the system available at the SPQReL website10.

We have compared performance of our navigation system with respect to
the ROS standard navigation modules amcl and move base. We decided to use
the default parameters for both the ROS modules and our components. This
choice was motivated by our interest in evaluating these tools from a non-expert
user perspective. We want to point out that the resources consumption of our
software is minimal for the localization process when the robot is not moving,
or for the path planning process when a goal is not active. For these reasons,
measurements reported in this section consider the situation in which a goal is
active and the robot is moving towards it.

Tables 1 and 2 summarize the computational resources consumption by the
different software suites in terms of percentage of CPU and memory usage on
the three platforms. As shown by the results, our implementation for the lo-
calization and path planning processes is more efficient in terms percentage of
CPU usage with respect to the ROS standard modules while the differences on
percentage of memory usage are anecdotal. It is worth to notice that the current
implementation is single-thread for each component (one thread for the localizer
and one thread for the planner), so other processes of the application can use
other available cores.

We would like to point out that the values reported in Table 2 for the robot
MARRtino running move base are a best-case performance. We experienced
several issues and warnings when running move base on the Raspberry which,
in general, were due to missed rates in control loops, robot pose requests or map
updates. These issues make the experience of using move base on the Raspberry
difficult and confusing for students or other non-expert users.

10 http://tinyurl.com/spqrel/photo-video

http://tinyurl.com/spqrel/photo-video

A lightweight navigation system for mobile robots 11

Table 1. Average computational resources required for the localization process on
the different platforms with the ROS standard tools and our proposed software. Data
obtained using the Linux command top.

Localization

Robot Software %CPU %Mem

Diago
ROS - amcl 5.65 0.2
ROS - SPQReL 3.12 0.4

MARRtino
ROS - amcl 7.14 3.2
ROS - SPQReL 9.06 5.6

Pepper NAOqi - SPQReL 2.15 1.8

Table 2. Average computational resources required for the path planning process on
the different platforms with the ROS standard tools and our proposed software. Data
obtained using the linux command top.

Path planning

Robot Software %CPU %Mem

Diago
ROS - move base 41.2 0.3
ROS - SPQReL 25.72 0.8

MARRtino
ROS - move base 103.72∗ 2.1
ROS - SPQReL 98.07 11.15

Pepper NAOqi - SPQReL 38.46 2.8

Furthermore, we have measured execution times of each cycle of our localiza-
tion and path planning processes. Times are sumarized in Table 3. As shown in
the table, if laser and odometry data are acquired at 10 Hz (typical case), only
one core will be used at 100 %.

Table 3. Average execution times of each cycle of the localization and path planning
processes on the different platforms.

Cycle times

Robot Localization Path Planning

Diago 2.55 ms 36.1 ms

MARRtino 15 ms 320 ms

Pepper 7 ms 104.25 ms

7 Conclusions

The open-source lightweight navigation system described in this paper and re-
leased as open-source and Debian package can improve and speed up develop-
ment of many mobile robot applications, specially when low-cost robots or robots
with limited computational resources are used. This feature is very important
to spread the use of mobile robot applications and for educational purposes.

12 M. T. Lázaro et al.

The system described in this paper can thus be very useful to young re-
searchers that are willing to build robotic applications with limited resources.
Some examples in which our software have been successfully applied is within
RoboCup@Home SSPL and RoboCup@Home Education competitions in which
standard navigation systems (e.g., ROS amcl and move base) cannot run. More-
over, the open-source distribution allows the research community to improve the
system (e.g., adding more features) and to increase its scope (e.g., porting it
to other robotic platforms). Finally, we believe this software provides a didac-
tic contribution when teaching subjects like autonomous robots or probabilistic
robotics, since the code was actually developed in such a context.

Acknowledgements

The work is partially supported by the European Community’s funded project
732773 ‘ILIAD’, and the RoboCup Federation’s Collaboration funds.

References

1. J.R. Asensio and L. Montano. A kinematic and dynamic model-based motion con-
troller for mobile robots. In The 15th IFAC Triennial World Congress, Barcelona,
Spain, July 21-26 2002.

2. Oliver Brock and Oussama Khatib. High-speed navigation using the global dy-
namic window approach. In Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, volume 1, pages 341–346. IEEE, 1999.

3. Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. Monte carlo
localization: Efficient position estimation for mobile robots. AAAI/IAAI, 1999(343-
349):2–2, 1999.

4. Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window ap-
proach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33,
1997.

5. Brian P Gerkey and Kurt Konolige. Planning and control in unstructured terrain.
In ICRA Workshop on Path Planning on Costmaps, 2008.

6. Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Kono-
lige. The office marathon: Robust navigation in an indoor office environment. In
International Conference on Robotics and Automation, 2010.

7. Javier Minguez and Luis Montano. Nearness diagram (nd) navigation: collision
avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automa-
tion, 20(1):45–59, 2004.

8. Robin R Murphy, Ken Hughes, and Eva Noll. An explicit path planner to facili-
tate reactive control and terrain preferences. In Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on, volume 3, pages 2067–2072.
IEEE, 1996.

9. Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012.
http://ompl.kavrakilab.org.

10. I. Ulrich and J. Borenstein. Vfh+: Reliable obstacle avoidance for fast mobile
robots. In IEEE International Conference on Robotics and Automation(ICRA
’98), pages 1572–1577, 1998.

http://ompl.kavrakilab.org

	A lightweight navigation system for mobile robots

