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Abstract: This paper presents a complete working system for robot formations, where path
planning and localization tasks are integrated in such a way that environment uncertainty is
considered in each of the tasks. Feature-based and grid-based mapping strategies are combined in
a probabilistic way to compute an obstacle-free and of minimum-risk plan towards the goal. The
formation benefits from the cooperative perception to obtain a joint vision of the environment,
represented in a leadercentric way to minimize the effects of the uncertainty. The system has
been tested and validated by means of a set of simulations as well as in real experiments.
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1. INTRODUCTION

Robot formations are a specific case of multi-robot system
where robots coordinate and cooperate to accomplish a
misssion, following a predefined leader -follower structure.
The wide variety of real applications, such as exploration,
surveillance, transport and rescue, require an effort to con-
sistently integrate the information shared by each robot.
Many works have been developed related to formations,
although most of them work in deterministic and pre-
dictable scenarios. However, the need to consider sensor
uncertainties and unexpected changes of the environment
lead us to propose a whole system that deals with the
uncertainties when localization, mapping, global and local
planning tasks of the formation are integrated to achieve
a mission.

Usually, the formation is provided with a previous map of
the environment where it has to carry out the commanded
mission, to compute a global path towards the goal. In our
case, this map is available to the formation as a feature-
based stochastic map which is mapped into a grid map
where each cell represents the risk level for traversing
a certain area of the environment. While the formation
executes the global minimum risk plan towards the goal,
unexpected obstacles not considered in the previous map
may appear. A local planner computes then a local risk-
based path by using the uncertain sensorial information
shared by the robots. It is executed by the formation
motion control by using a spring-damper analogy to drive
the robots, which adapt the formation structure to the
shape and dynamism of the environment. During the
execution of the path, the localization system minimizes
the robots uncertainty location using the new information
captured and the previous stochastic map.
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The problem of planning under uncertainty is treated in
different ways in the literature. Some works take into
account the uncertainty of the environment, like Missiuro
and Roy (2006) who search the trajectory that mini-
mizes the expected cost of collision by using probabilis-
tic roadmaps under the assumption of independence in
the probability distribution of the obstacles. Nakhaei and
Lamiraux (2008) propose a framework about planning mo-
tions for humanoid robots in changing environments using
occupancy-grids based maps where the cells are labeled
as occupied, unknown or free. Other kind of works focus
on the uncertainty of the path, like Censi et al. (2008)
who seek the path which minimizes the uncertainty at
the goal, leading to paths that are no optimal in terms
of Euclidean distance to the goal. Berg et al. (2010) try to
obtain prior probability distributions of the states and the
control inputs of the robot for a previously computed path
taking into account the motion and sensing uncertainties.
These techniques lead to local variations from the path
that may not be able to deal with big deviations needed
in some scenarios.

Regarding formation control, many papers have been pub-
lished using leader-followers approaches like in Gustavi
and Hu (2008); Loizou and Kyriakopoulos (2008). In Ur-
cola and Montano (2009) we developed cooperative for-
mation motion planning techniques that allows adapting
the formation configuration to changes of the environment.
In this work we extend those techniques focusing on the
aspects of cooperatively building a common uncertain map
of the environment from all the robots of the team for
localization and planning.

Regarding to multi-robot localization, some works like
Roumeliotis and Bekey (2002) make use of inter-robot
measurements to localize a team of robots. When an a
priori map is available to the team, the localization process
depends on the kind of map used, usually features or
grids (Schultz and Adams (1998)). The use of feature-
based stochastic maps to localize a robot formation was



addressed in Lázaro and Castellanos (2010) where incon-
sistency problems due to the existence of time-correlated
measurement sequences were reported and the use of the
Measurement Differencing technique was proposed to ef-
ficiently improve consistency. In this paper, we propose
an extension of that localization algorithm (MD-EKF) to
also improve the observations gathered by the robots and
to obtain a more coherent vision of the environment.

This paper is organized as follows: section 2 defines the
probabilistic model of the robot formation localization
with its uncertainty. In section 3 the motion planning tech-
niques are presented in the framework of the probabilistic
model. In section 4, simulations and a real experiment are
reported. Finally, we conclude in section 5.

2. PROBABILISTIC ROBOT FORMATIONS

Let a robot formation be composed of r+1 heterogeneous
vehicles {R0, R1, ..., Rr}, where R0 is the robot leader and
Rj , j = {1, ..., r} are the robot followers. A certain geo-
metric shape, e.g. equilateral triangle, regular pentagon,
etc, is imposed to the team depending on the number of
vehicles and the task commanded to the formation.

From a probabilistic geometrical view-point, the location
of the robot formation can be represented by a discrete-
time stochastic state vector xR formed by the location of
the robot leader R0 with respect to (wrt) a base reference
frame B and the location of each robot follower Rj wrt
the robot leader R0, and by its associated covariance
matrix PR, which stores the statistical dependencies be-
tween those estimated locations. Following the Gaussinity
assumption, xR ∼ N (x̂R,PR) with,
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This leader-centric representation reduces the volume of
uncertainty, i.e. the determinant of the covariance matrix
PR, in comparison with an absolute representation wrt the
base frame B of each robot location vector and, therefore,
linearization errors due to large uncertainty values are
minimized (Castellanos et al. (2007)).

2.1 Pose Tracking of the Robot Formation

Using the dynamical model of the robot formation based
on a virtual spring-damper analogy (Urcola and Montano
(2009), figure 1) the state of the robot formation is
propagated from time step k − 1 to time step k using the
motion model

xRk
≃ Fk−1xRk−1

+ vk−1 (2)

where the block-diagonal matrix Fk−1 represents the Ja-
cobian matrix of the linearized motion equations of the
robot team and vk−1 represents a zero-mean white noise
sequence with a block-diagonal covariance matrix Qk−1.

Let xk be an augmented state vector defined as,

xk =

(

xRk

yEk

)

(3)
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Fig. 1. Spring-damper analogy for a pentagon-shaped
robot formation. Linear and torsional springs and
dampers are combinded to induce virtual forces be-
tween the linked robots.

where xRk
is the discrete-time stochastic state vector of

the robot formation localization and yEk
relates to the

relative localization vector of the gathered observations.
Also, let Pk = blkdiag(PRk

,PEk
) be its joint covariance

matrix.

At time step k, cooperative perception of the environment
by the team of heterogeneous robots together with ro-
bust data association techniques, provide a set of jointly
consistent pairings (yEk

,yFk
) between the current sen-

sor observations yEk
and map features yFk

derived from
an a priori known stochastic map of the environment,
MB

F =
{

ŷB
M,PB

M

}

, where ŷB
M = {ŷB

F1
, ŷB

F2
, ..., ŷB

Fn
} is

a vector containing the estimated location of the map
features F = {F1, F2, ..., Fn} wrt to a base reference frame
B and PB

M its associated covariance matrix, all related by
a measurement equation of the form of

fk(xR,yB
M,yE) = 0 (4)

Due to the inherent nonlinearities, a linearized measure-
ment equation is used within the EKF-update step:

zk ≃ Hkxk +GFk
yFk

(5)

where Hk = (HRk
HEk

) and GFk
are the Jacobian

matrices of the linearized measurement equations with
respect to the state vector xk and the matched features
yFk

respectively.

Colored Measurement Equation As reported in Lázaro
and Castellanos (2010), the use of subsets of map features
Fk−1 and Fk in consecutive time steps related within the
stochastic map by a cross-correlation term PFk−1Fk

makes
necessary the consideration of a colored measurement noise
scheme, otherwise, the estimation would lead to inconsis-
tency. Following the seminal work of Bryson and Johansen
(1968) and recent practical approaches Petovello et al.
(2009) and Lázaro and Castellanos (2010), a measurement
differencing technique is considered to efficiently remove
the time-correlated portion of the measurement errors.

The nature of the colored noise driving eq. (5) could be
modeled by the linear transformation relating the two
matched map features at time instants k − 1 and k
formulated as,

yFk
= FCk

yFk−1
+ nk (6)

where,
FCk

= PFkFk−1
P−1

Fk−1
(7)



and nk is assumed to be a zero-mean white noise measure-
ment sequence with covariance matrix,

Pnk
= PFk

−PFkFk−1
P−1

Fk−1
PFk−1Fk

(8)

Whitened Measurement Equation The measurement dif-
ferencing technique provides a whitened measurement
equation from the weighted difference of colored measure-
ment equations (of the form of eq. 5) at two consecutive
time instants,

rk , zk −Λkzk−1 (9)

where matrix Λk is chosen such that the discrete-time
stochastic process {rk, 0 ≤ k < ∞} is driven by white-
noise only.

Following a similar derivation given in Lázaro and Castel-
lanos (2010), eq. (9) can be rewritten as,

rk ≃ H∗
kxk +wk (10)

where
H∗

k ≃
(

HRk
−ΛkHRk−1

F−1

k−1
HEk

)

(11)

and the white noise sequence wk, with covariance matrix
Pwk

, is given by,

wk ≃ ΛkHRk−1
F−1

k−1
vk−1 +GFk

nk (12)

and,
Λk ≃GkFCk

GT
Fk−1

(GFk−1
GT

Fk−1
)−1 (13)

Finally, the classical EKF update equations provide esti-
mates for the state vector xk and its associated covariance
matrix Pk using the filter gain given by,

Kk = (Pk|k−1H
∗T
k +Ck) ·

(H∗
kPk|k−1H

∗T
k +Pwk

+H∗
kCk +CT

k H
∗T
k )−1

(14)

with,

Pk|k−1 = blkdiag
(

Fk−1PRk−1
FT

k−1
+Qk−1,PEk

)

andCk, the correlation term between vk−1 andwk derived
from eq (12),

Ck = E[vk−1w
T
k ] = Qk−1(ΛkHRk−1

F−1

k−1
)T

3. PATH PLANNING UNDER UNCERTAINTY

Path planning task has been divided in two different levels:
A global plan that computes a safe path from the starting
point to the goal based on a previously computed risk
map and a local plan that incorporates the information
gathered from the sensors during the execution. Both path
planners use risk maps to model the environment where
the formation is moving.

3.1 Risk Maps

A risk map could be defined as the probabilistic projection
of the feature-based stochastic map into a grid-based
representation of the environment. The risk level of a cell
represents the probability of the presence features in the
cell and, as a consequence, the probability of being a non-
traversable cell.

Computing for each cell in the grid the exact risk level is
too expensive in time to accomplish it during the execution
of the mission. That is the reason why we have adopted

an approximate solution that consists in sampling the
probability distribution of the features in the map. The
samples are then represented into the grid and the number
of samples that are projected at each cell is used as
an approximation of the risk level, after a normalization
process.

3.2 Global minimum risk paths

Using the a priori stochastic map of the environment
MB

F , a traversable path could be computed using the
A* algorithm adapted for risk maps. The optimal path,
computed at the beginning of the mission, will be the one
that minimizes the risk, so that the robots are more likely
to reach their goal safely.

In order to minimize the risk of the global path, we
threshold the risk map obtained from the a priori map of
the environment. Cells are labeled as traversable if their
risk level is lower than the threshold and non-traversable
otherwise. A* algorithm is used to find the shortest path
to the goal using only traversable cells. If the goal is not
reachable at a certain risk level, the threshold is increased,
and thus the risk level, and the A* algorithm is used
again. At the end, π the path with the minimum risk
level required to reach the goal is obtained. Note that
this computation is preformed before the navigation starts
using only the a priori map of the environment.

3.3 Local minimum risk paths

Using the global path π, the formation obtain a list
of waypoints to navigate through in order to reach the
final goal. However, in dynamic environments, the global
path may become unfeasible because of new obstacles not
present in the previous map. Also, the risk of traversing
some zones in the environment may have changed.

The local planner computes the optimal path, in terms of
distance and risk, to the next waypoint in the global path
that may be reached. Only the leader of the formation
computes the local path using the information yEk

gath-
ered from the sensors of all the robots. Using a common
local map for all the formation improves the perception
of the environment by augmenting the individual views.
Moreover, in order to reduce the uncertainty due to the
global localization of the robots, and thus the risk, a robo-
centric grid map is adopted for the local path planning.
However, as we are considering a multi-robot system, the
uncertainty of the relative localization of the robots is
taken into account.

Instead of thresholding the risk map to define the
traversability of the cells, as proposed in the global path
planning, we define in equation (16) a traversability cost
function that increases with the risk. The path planning
algorithm finds the path to the next waypoint that mini-
mizes the total cost (15). We have adopted this approach
for local path planning to smooth the changes that may
happen in the environment.

totalcost =

goal
∑

k=1

dist((ck−1

ij , ckij)cost(c
k
ij) (15)



cost(cij) =

{

∞, if (i, j) ∈ yEk

1/(1− risk(i, j)), otherwise
(16)

The local map is updated as the sensors gather newer
information from the environment. The changes in the map
are only considered if they are in the field of view of the
formation. Due to the uncertainty in the measurements
and in the relative localization of the robots, the field of
view is also considered in a probabilistic manner. Using an
analogue algorithm as the one used to compute the risk
maps, we compute for each cell the probability of being
perceived by the formation and, as a consequence, only
those cells that have a high probability of being observed
are considered for updating the local map.

To conclude, Figure 2 shows an schema of the relationships
among the components of the system presented above
and the pseudo-code for the leader and the followers are
presented in Algorithms 1 and 2.
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Fig. 2. System overview including the components, their
relationships, the data they interchange and where
they are executed.

Algorithm 1 Leader algorithm

{Algorithm for the Leader}
Require: xstart,xgoal,MB

F

π ← computeGlobalPath(xstart,xgoal,MB
F)

while last waypoint of π not reached do
E ← gatherObservationsFromRobots()
〈xR,yE〉 ←MD − EKF (E)
yE ← fuseFeatures(yE)
R← buildLocalRiskmap(yE)
sendInfoToFollowers(xR)
πlocal ← computeLocalPath(R, π)
Sleader ← LeaderNavigationStrategy(xR, πlocal)
moveLeader(Sleader)

end while

Algorithm 2 Followers algorithm

{Algorithm for Follower i}
while leader keeps moving do
Ei ← gatherObservationsFromSensors()
sendObservationsToLeader(Ei)
xR ← getInfoFromLeader()
Sfolloweri ← decideFollowerStrategy(xR, Ei)
moveFollower(Sfolloweri)

end while

4. EXPERIMENTAL RESULTS

Throughout this section, we want to illustrate the benefits
of the integration scheme developed in this paper. In the
simulation experiments, we describe the computation of
global and local minimum risk plans and show the benefits
of cooperative perception in re-planning tasks. Then, in
a real setting, the integration scheme would be analyzed
in a hybrid, centralized-decentralized, architecture with
wireless communication capabilities where real-time con-
straints are a fundamental issue.

4.1 Global and Local Minimum Risk Plans

Figure 3a displays a previously built stochastic map (note
sharp edges at the top left part of the figure and blurred
edges at the bottom right due to the higher distance to the
base reference frame) of an office-like environment. Two
possible global paths connect the initial location of the
robot formation (labeled as Start) and its commanded final
destination (labeled as Goal): (i) a path through a long
curved corridor, or (ii) a path traversing a door (labeled
in the figure) unobservable from the initial location.

Figures 3c and 3d show the sensitivity of the algorithm
that dramatically changes the path planned for two difer-
ents risk levels (0.1 and 0.05 respectively). By setting the
risk level to 0.1 the path planner selects a shorter but more
risky path (figure 3c) traversing the door, unobservable
from the initial location and with a significant location
uncertainty computed during the prior mapping stage.
Conversely, setting the risk level to 0.05 results in a more
conservative strategy, that avoids traversing the uncertain
door, with a longer but safer path (figure 3d) to the goal
destination.

Planning a risky path from a global perspective (figure
3e red line traversing the uncertain door) may lead to re-
planning during the execution, and therefore longer than
expected paths to the goal destination, suggested by the
local planner due to the observations gathered by on-board
sensors: Once the leader of the formation has reached the
top right entrance of figure 3f (a zoomed view of figure
3e) the suggested path turns into a dead-end forcing re-
planning to be conducted.

Finally, it is worth mentioning that, given two different
stochastic maps (figures 3a and 3b) a closely related
risk map (figure 3d) could be computed from the correct
selection of risk levels. Therefore, in a real setting, it would
be difficult to differentiate between highly uncertain open
spaces and close spaces.

4.2 Feature fusion and replanning

The aim of the next simulation is to show the fusion of the
robots’ maps into a unique map managed by the leader,
and a local replanning derived from the new fused map.

In the scenario depicted in figure 4(e), the formation
is navigating towards the goal, and, suddenly, a change
appears in the environment when a door is opened. This
change is out of the field of view of the leader and thus is
not represented in its individual view in figure 4(a). The
followers, however, perceive the change in the environment
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Fig. 4. The small images are the individual views of the
robots in the formation. Figure 4(d) shows the result
of fusing the view of all the robots and how the leader
(in green) takes advantage to compute a new local
path (in red) to a different waypoint of the global
path (in green).

(see figures 4(b) and 4(c)) and transmit their observations
through the network. So the fused map is updated, as
shown in figure 4(d)). In this situation, the local planner
finds a path to another waypoint of the global plan that
is shorter than going to the next waypoint.

Concerning the performance of the localization algorithm,
we have measured the consistency and error (figure 5) of
the robot formation localization along the trajectory the
experiment. It can be seen that the estimations remain
consistent along all the simulation (figure 5(a)). Figure
5(b) depicts the error obtained in each component of the
position estimation for one robot which is bounded by the
limits of the covariance.

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

NEES Robot Formation

step

(a)

0 500 1000 1500
−1

0

1

X
 E

rr
or

 [m
]

Robot 1

0 500 1000 1500
−0.5

0

0.5

Y
 E

rr
or

 [m
]

0 500 1000 1500
−5

0

5

T
he

ta
 E

rr
or

 [d
eg

]

Time Step [s]

(b)

Fig. 5. Consistency ratio of the robot formation (5(a))
and errors (5(b))in the position (x, y) and orientation
(theta) of one of the robots. 2σ uncertainty bounds
are depicted in red.

−10 0 10 20 30 40 50 60 70

−50

−40

−30

−20

−10

0

X [m]

Y
 [
m

]

I+D building. Universidad de Zaragoza

Start

(a)

(b) (c)

(d) (e)

Fig. 6. Real scenario where the experiments have taken
place. The trajectory of the formation (a) and other
captures during the experiment are shown.

4.3 Experiments in a real scenario

A formation of two Pioneer 3-AT robots equipped with
SICK LMS-200 laser rangefinders and, in the case of
the follower, also with a Hokuyo URG-04LX laser, is
commanded to navigate around a 250 m loop trajectory
inside the building shown in figure 6. A segment-based
stochastic map of the environment (fig. 6(a)) is available
by the formation which is used to compute the global path
to reach the goal.

During the experiment, the widest zone of the building,
shown in figure 6(b), is also the most populated. The
presence of people required the robots to avoid them,
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Fig. 7. Two different path are obtained in a slightly
changed scenario. The zoom shows a representation
of the traversability depending on the risk level con-
sidered.

which prevents the robots from recovering the predefined
initial configuration, showing the adaptability to static and
moving objects in the scenario.

Figure 7, shows the probabilistic projection of the a priori
feature-based stochastic map into a risk map. It can be
observed a higher uncertainty in the farthest areas from
the initial location (top left). The shortest global path
planned in this map and the executed one, the same, are
shown in figure 6(a). But if a small change is produced
in the scenario, for example a box like the one in picture
6(d) is placed in the corridor, the global plan changes, as
shown in figure 7. The uncertainty of the box is big in
relation with the space for avoiding it when navigating
along the corridor and thus the risk of traversing this
stretch is higher. This leads to differences between the
shortest path and the safest one, because, depending on
the risk level, the corridor is considered traversable or not.

Regarding implementation, a high synchronization level is
necessary because the leader would need the observations
from the follower before computing the localization. Com-
munications among robots have been carried out over a
real time wireless multi-hop protocol Tardioli and Villar-
roel (2007). On the one hand, the team localization and
path planning are implemented on the integrated map
in a centralized way in the leader. On the other hand,
the navigation of the robots is a decentralized process, in
which each robot plans and navigates using its own map
but using the robot localizations improved by the leader
centralized process. Among all these tasks, path planning,
executed in the leader, requires most of the computational
cost. Anyway, most of the time, the total computational
cost per execution cycle is bounded by the 250ms SICK
laser refresh time.

5. CONCLUSION

This paper contributes in the field of multi-robot systems,
integrating the different techniques involved in such a
kind of systems: cooperative perception, mapping and
planning, managing several sources of uncertainty through
a stochastic model which is jointly exploited by all the
mentioned techniques in the same stochastic framework.

Still there are several open issues. The improved uncertain
localization of the leader, transmitted to the followers

could be reduced if the robots detect and identify each
other, and so the relative localization would reduce the
global uncertainty of the formation. In some maneuvers,
mainly when a replanning is achieved, the automatic
change of the role for leader and followers would avoid
enforced movements for the followers, detected in the
experiments. A more distributed scheme would permit the
extension of these techniques to multi-robot systems not
in formation.
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