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Abstract— This paper presents an EKF-based approach to
the problem of robot formation pose tracking in SLAM when
a previously built feature-based stochastic map of a navigation
area is available. We show how a direct implementation of
the EKF algorithm leads to inconsistency in the estimated
localization. We justify the origin of the anomalous behaviour
of the filter in the time-correlated nature of the measurement
noise sequence. A novel solution based on the measurement
differencing technique is proposed to drive the solution of the
EKF towards consistency. Both simulation and real experiments
with a 3-robot triangular-shaped formation are reported.

I. I NTRODUCTION

Nowadays a big part of the robotics community is focused
on the Simultaneous Localization and Mapping (SLAM)
problem. We know how to build maps more and more
accurately, efficiently and without requiring a big computa-
tional effort. A variety of representations for mapping indoor
environments have been proposed throughout recent years
including feature-based maps, grid-based maps and fuzzy
maps.

The use of previously built maps to localize individual
vehicles has been reported in [9] and [7] from a feature-based
perspective, in [15] by using grid-based maps and [16] by
combining grid-based and topological maps. Regarding to
multi-robot cooperative localization, the works in [6] and
[10] divided the team of robots into two groups: while
one group moved, the other group remained stationary and
acted as landmark. This strategy is useful in the absence
of landmarks or in uncharted environments but the robots
must maintain visual contact which constraints the robot
displacements. Additionally in [14] inter-robot positionmea-
surements are used within an EKF framework to improve the
estimates of the group and in [13] a distributed algorithm is
proposed to localize a team of vehicles. However, and to the
best of our knowledge, any reported work has considered the
use of feature-based stochastic maps for solving the robot
formation localization problem.

Additionally, and from a state estimation perspective, con-
sistency issues are of paramount importance to assure conver-
gence of the solution provided by the estimation algorithm.
In [5] the consistency of multi-robot cooperative localization
was investigated from an observability perspective. Also,the
effect of using repeated measurements on the consistency
of the algorithm has been reported in [8] by taking into
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account the correlations between consecutive relative-state
measurements, and in [1] by keeping track of the origins of
measurements and preventing them from being used more
than once.

In the work reported in this paper, aligned with the general
objectives of the European project URUS [18], we turn
our attention towards using a previously built feature-based
stochastic map to localize a team of autonomous vehicles
while they navigate coordinately. We propose an algorithm to
localize a team of robots within a stochastic map where each
robot cooperates to obtain a more accurate and consistent
position while navigating and avoiding obstacles.

Our contributions are two-fold. First, the work emphasizes
the inherent difficulties of using stochastic maps to localize a
robot formation due to the existence of time-correlated mea-
surement sequences. Whenever these statistical dependencies
are not properly considered we show that the algorithms lead
to inconsistent estimation of the robot formation localiza-
tion. Second, we originally formulate the problem of robot
formation localization in SLAM within the EKF framework
by using themeasurement differencing technique [4], [2],
[11] which allows the elimination of colored measurement
sequences within the update step of the filtering algorithm.

This article is organized as follows: section II defines
the probabilistic representation of the robot formation and
presents the EKF formulation of the robot formation localiza-
tion by assuming white noise measurement sequences. Sim-
ulation results illustrates the inconsistency of the approach.
Then, section III proposes a modified EKF algorithm based
on measurement differencing which correctly interprets the
inherent time-correlated nature of the measurement sequence
and it provides a consistent solution for the estimated robot
formation localization. Section IV reports both simulation
experiments within a rapid prototyping environment and real
experiments with a 3-robot triangular-shaped formation of
Pioneer 3-AT vehicles. Finally, section V summarizes the
work and proposes future research directions.

II. EKF-BASED LOCALIZATION OF THE ROBOT

FORMATION

Let a robot formation be composed ofr+1 heterogeneous
vehicles{R0, R1, ..., Rr}, whereR0 is the robot leader and
Rj , j = {1, ..., r} are the robot slaves. A certain geometric
shape, e.g. equilateral triangle, regular pentagon, etc, is
imposed to the team depending on the number of vehicles
and the task commanded to the formation.



From a probabilistic view-point, the location of the robot
formation can be represented by a discrete-time state vector
xR formed by the location of the robot leaderR0 with
respect to (wrt) a base reference frameB and the location
of each robot slaveRj wrt the robot leaderR0, and by its
associated covariance matrixPR which stores the statistical
dependencies between those estimated locations. Following
the Gaussinity assumption,xR ∼ N (x̂R,PR) with,
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This leader-centric representation reduces the volume of
uncertainty, i.e. the determinant of the covariance matrix
PR, in comparison with an absolute representation wrt the
base frameB of each robot location vector and, therefore,
linearization errors due to large uncertainty values are min-
imized.

From a Bayesian view-point the pose of the robot for-
mation is given by the recursively estimated conditional
probability density functionp(xRk

|yE0:k
,yM) whereyE0:k

represent the set of sensor readings gathered by the sensors
mounted on the robots from environmental features from
time step 0 up to time stepk, and yM represents the
stochastic map of the previously mapped navigation area.
In the sequel, the EKF algorithm [2] is used as the core
estimation technique.

A. EKF Prediction Step

The EKF-prediction step propagates the state of the robot
formation from time stepk−1 to time stepk by using dead-
reckoning measurements:

xRk
≃ Fk−1xRk−1

+ vk−1 (2)

where the block-diagonal matrixFk−1 represents the ja-
cobian matrix of the linearized motion equations of the
robot team andvk−1 represents a zero-mean white noise
sequence with a block-diagonal covariance matrixQk−1. Eq.
(2) provides estimates for the state vectorx̂Rk|k−1

and its
associated covariance matrixPRk|k−1

.

B. EKF Update Step

At time stepk, robust data association provides the algo-
rithm with a set of jointly consistent pairs(Ek,Fk) formed by
sensor observations and map features respectively. Due to the
inherent nonlinearities, a linearized measurement equation is
used within the EKF-update step:

zk ≃ HkxRk
+ Gkyk (3)

whereHk andGk = (GEk
GFk

) are the Jacobian matrices
of the linearized measurement equations with respect to the
state vectorxRk

and with respect to the matched sensor
observationsyk respectively, with:

yk =

(

yEk

yFk

)

∼ N

((

ŷEk

ŷFk

)

,

(

PEk
0

0 PFk

))

(4)

and yFk
⊂ yM a subset of map features from the a priori

stochastic map.
The classical EKF update equations provide estimates for

the state vector̂xRk|k
and its associated covariance matrix

PRk|k
using the filter gain given by:

Kk = PRk|k−1
HT

k (HkPRk|k−1
HT

k + Rk)−1 (5)

with,
Rk = GEk

PEk
GT

Ek
+ GFk

PFk
GT

Fk
(6)

The estimated state vector and its associated covariance
matrix are given by,

x̂Rk|k
= x̂Rk|k−1

+ Kk(zk − ẑk)

PRk|k
= (I − KkHk)PRk|k−1

(7)

C. Simulation Results: Inconsistency

A simulation experiment was conducted to analyze the
consistency of a direct implementation of the EKF algorithm
based on the aforementioned problem formulation. A 3-robot
formation was commanded to navigate through a 200-m
loop-trajectory within a previously mapped (2D point-based
stochastic map) navigation area. Each vehicle was equipped
with a range-bearing sensor capable of observing the avail-
able environmental features. As a measure of consistency [2]
a statistical test based on the Normalized Estimation Error
Squared (NEES) was used,

NEES = (xRk
− x̂Rk

)T P−1

R
(xRk

− x̂Rk
) ≤ χ2

r,1−α (8)

whereχ2

r,1−α is a threshold obtained from theχ2 distribution
with r = dim(xRk

) degrees of freedom, andα the desired
significance level (usually 0.05).
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Fig. 1. Inconsistency of the estimated robot formation localization with
a direct implementation of the EKF algorithm. The consistency ratio
NEES/χ2

r,1−α
should be less than one. The average of 10 Monte Carlo

runs is depicted.

Figure 1 plots the consistency ratio (NEES/χ2

r,1−α) for
the sequence of time steps of the experiment illustrating a
problem of inconsistency in the estimated solution of this
direct implementation of the EKF algorithm. In the following
section we take a closer view of the results and a modified
EKF formulation is proposed to drive the robot formation
estimated localization towards consistency.



III. M EASUREMENT-DIFFERENCINGEKF-BASED

LOCALIZATION OF THE ROBOT FORMATION

A close view of the robot formation localization problem
within an a priori stochastic map, supported by the simula-
tion results obtained in the previous section, suggest a re-
formulation of the EKF algorithm taking into account the
statistical dependencies between the observationsyFk−1

and
yFk

(both subsets ofyM) used within the EKF update step
in two consecutive time stepsk − 1 andk.

Given the set of matched map features of two consecutive
time instantsyFk−1

and yFk
, their statistical dependencies

are expressed by a linear transformation,

yFk
= FCk

yFk−1
+ wωk

(9)

where FCk
is row-selection matrix andwωk

is a white
noise measurement sequence with covariance matrixPwωk

.
Equation (9) defines a colored measurement noise sequence,
which together with eqs. (2) and (3) completely reformulates
the problem at hand.

The first approach reported in the literature which consid-
ers the existence of a colored measurement noise sequence
within the EKF framework dates back to the works of
Bryson et al. [4] where the state vector was augmented with
the colored error terms. Later work pointed out relevant
numerical problems of this approach mainly due to null-
uncertainty observations and ill-conditioned transitionma-
trices. Current practical approaches [2], [11] concern theso-
called measurement differencing technique, which provides
an efficient and mathematically sound method to remove
the time-correlated portion of the measurement errors. We
extend previous work by others in the field of filtering theory
by formulating the robot formation localization problem in
SLAM as a measurement differencing based EKF algorithm
to whiten the originally colored measurement noise sequence
defined in eq. (9).

A. Whitening the Measurement Equation

Let rk represent the measurement considered within the
EKF-update step at timek, derived from the real measure-
mentszk−1 andzk obtained at two consecutive time instants
as,

rk , zk − Λkzk−1 (10)

where matrixΛk is chosen such that{rk, 0 ≤ k < ∞}
approaches a discrete-time white-noise driven stochasticpro-
cess [2], [11].

Following the derivation of the appendix measurementrk

can be rewritten as,

rk ≃ H∗

kxRk
+ wk (11)

where,
H∗

k = Hk − ΛkHk−1F
−1

k−1
(12)

and the white noise sequencewk, with covariance matrix
Pwk

, is given by,

wk = GEk
yEk

− ΛkGEk−1
yEk−1

+ GFk
wωk

+ ΛkHk−1F
−1

k−1
vk−1 (13)

Matrix Λk is computed (see appendix) such that the time-
correlated components of the measurementrk are removed,

Λk ≃ GFk
FCk

GT
Fk−1

(GFk−1
GT

Fk−1
)−1 (14)

Note that previous works [2], [11], under the linearity
assumption both in the motion and measurement equations,
reported thatΛk = FCk

, being a particular case of the
more general result provided in this paper. In our case, the
existence of matrixΛk has been verified for the cases of
2D-point and 2D-segment based stochastic maps.

Finally, eq. (13) introduce a cross-correlation term be-
tweenwk andvk−1, namely,

Ck = E[vk−1w
T
k ] = Qk−1(ΛkHk−1F

−1

k−1
)T (15)

which is introduced in the EKF algorithm following [3] using
the filter gain,

Kk = (PRk|k−1
H∗T

k + Ck) ·

(H∗
kPRk|k−1

H∗T
k + Pwk

+ H∗
kCk + CT

k H∗T
k )−1

(16)

and the update of the estimated covariance matrix given by,

PRk|k
= PRk|k−1

− Kk(H∗
kPRk|k−1

H∗T
k + Pwk

+H∗
kCk + CT

k H∗T
k )KT

k (17)

The computational cost of the modified EKF algorithm
does not appreciably increase over the direct implementation
because the dimensions of the matrices involved are the
same.
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Fig. 2. Improvement in the consistency of the estimated robot formation
localization with a measurement-differencing based EKF algorithm. The
average of 10 Monte Carlo runs is depicted.

Figure 2 plots the consistency ratio (NEES/χ2

r,1−α) for
the sequence of time steps of the experiment for the im-
plementation of the measurement differencing algorithm
proposed in this section. In this case, the modified EKF algo-
rithm provides a consistent solution for the robot formation
estimated localization.



IV. EXPERIMENTAL RESULTS

The measurement differencing EKF-based localization al-
gorithm has been tested both in the multi-robot simulation
platform Player/Stage [12] and in real experiments with a
3-robot Pioneer 3-AT team in a triangular-shaped formation
scheme.

A. Experiments in Player/Stage
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Fig. 3. Consistency of the estimated robot formation localization with a
measurement-differencing based EKF algorithm in the Player/Stage exper-
iments. The average of 10 Monte Carlo runs is depicted.

A first set of experiments have been conducted within the
rapid prototyping tool Player/Stage [12] which allows code
development and testing in similar conditions as to those
subsequently faced in the real scenario but constraint to the
information provided by simulated motion control and data
acquisition.

The formation was commanded a 100-m loop trajectory
within a previously available segment-based stochastic map.
Thanks to the availability of ground-truth, the consistency
of the proposed algorithm in this quasi-real scenario was
verified as the consistency ratio plot of fig. (3) highlights.
Also, in figs. 4 the frontal, lateral and angular errors for
each robot in the formation are displayed together with
their associated 2-σ uncertainty bounds. In all the cases the
estimated errors are within the computed bounds.

B. Experiments with the Pioneer 3-AT Robots

Real experiments have been conducted by using a 3-robot
triangular-shaped formation of Pioneer 3-AT vehicles. Fig.
(5) depicts the initial localization of the vehicles within
an indoor environment. The formation was commanded to
reach a distant goal location (about 40-m from the starting
location) while avoiding obstacles and adapting its shape to
the environment. The robot leader plans a safe path to the
goal destination and the robot slaves follow the leader while
maintaining the desired formation topology. Communication
among the vehicles of the formation is provided by a real-
time wireless multihop protocol implemented in a centralized
mode where robot slaves sent both the sensors observations
and the commanded velocities to the robot leader. The robot
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Fig. 4. Experimental results obtained in the Player/Stage setting. Frontal,
lateral and angular errors for each vehicle in the 3-robot triangular-shaped
formation and their associated 2-σ uncertainty bounds are shown: Robot
leader (top) and robot slaves (middle and bottom)

leader executes the localization algorithm and it commu-
nicates the estimated poses to each robot slave ([17] and
reference therein).

Initially, a segment-based stochastic map of the navigation
area (fig. 5, middle) is obtained by using the information
provided by the 2-D laser scanned mounted in one of the
vehicle (in our case, and without lose of generality, the
robot leader) which previously had explored the environment.
Then, the global localization of the vehicles (fig. 5, bottom)
is computed by the algorithms reported in [7].

Figure (6) shows the estimated localization of each of the
vehicles of the formation at four different time steps along
the planned trajectory towards the goal destination. Even
though ground-truth was not available during the execution



Fig. 5. Initial setting of the robot formation in a real experiment: 3-
robot triangular-shaped formation (top), segment-based stochastic map of
the navigation area (middle), and EIF-based initial localization of the robot
formation within the map(bottom, with location uncertainty magnified x5).

of the real experiments, the figure highlights the compatibil-
ity between the previously available stochastic map and the
segmented sensor readings plotted wrt the estimated vehicles
localization.

V. CONCLUSIONS

The work described in this paper concerned the utiliza-
tion of feature-based stochastic maps for robot formation
localization. From the Bayesian perspective, the classical
EKF algorithm was initially formulated by considering the
motion models of each vehicle within the formation and
the environmental observations gathered by the exteroceptive
sensors mounted on the vehicles. The inconsistency of the
direct implementation of the EKF prediction and update
equations for the problem at hand is reported. A closer view

to the algorithm hypotheses is conducted suggesting the time-
correlated nature of the sequence of measurements consid-
ered in the previous, direct implementation. A solution, based
on the measurement differencing technique, already reported
in the filtering literature is adapted to the robot forma-
tion localization problem in SLAM and its implementation
shows how the modified EKF estimation is driven towards
consistency. Simulated and real experiments with a 3-robot
triangular-shaped formation are reported to demonstrate the
applicability of the adoptive filtering approach.

Future work moves towards decentralized schemes, both
in terms of localization and control of the members of
the formation. An intense cooperation among localization,
planning, obstacle avoidance and SLAM is also being in-
vestigated. Finally, more general nonlinear, non-Gaussian
Bayesian approaches are being analyzed within the general
framework of robot formations.
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APPENDIX

Let rk be expressed as,

rk , zk − Λkzk−1

Substituting the observationszk andzk−1 by their linearized
expressions given by eq. (3),

rk ≃ HkxRk
+ Gkyk

−Λk(Hk−1xRk−1
+ Gk−1yk−1)

Considering the form of the observations given by eq. (4)
we have,

rk ≃ HkxRk
+ GEk

yEk
+ GFk

yFk

−Λk(Hk−1xRk−1
+ GEk−1

yEk−1
+ GFk−1

yFk−1
)

Rearranging the system equation given by eq. (2) following
the approach described in [11] to avoid time-latency leads
to,

xRk−1
≃ F−1

k−1
xRk

− F−1

k−1
vk−1

therefore,

rk ≃ (Hk − ΛkHk−1F
−1

k−1
)xRk

+ ΛkHk−1F
−1

k−1
vk−1

+GEk
yEk

− ΛkGEk−1
yEk−1

+GFk
yFk

− ΛkGFk−1
yFk−1

Substituting the linear relation betweenyFk
andyFk−1

given
by eq. (9) results in,

rk ≃ (Hk − ΛkHk−1F
−1

k−1
)xRk

+ ΛkHk−1F
−1

k−1
vk−1

+GEk
yEk

− ΛkGEk−1
yEk−1

+ GFk
wωk

+(GFk
FCk

− ΛkGFk−1
)yFk−1

which can finally be expressed as,

rk ≃ H∗
kxRk

+ wk

with,
H∗

k = Hk − ΛkHk−1F
−1

k−1



and,

wk = GEk
yEk

− ΛkGEk−1
yEk−1

+ GFk
wωk

+ ΛkHk−1F
−1

k−1
vk−1

and, matrixΛk is computed such that the time-correlated
components from the evolution of the measurementrk are
removed, thus is,

GFk
FCk

− ΛkGFk−1
≃ 0

thus,

Λk ≃ GFk
FCk

GT
Fk−1

(GFk−1
GT

Fk−1
)−1
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