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Abstract—This paper presents an EKF-based approach to account the correlations between consecutive relatate-st
the problem of robot formation pose tracking in SLAM when  measurements, and in [1] by keeping track of the origins of

a previously built feature-based stochastic map of a navigation measurements and preventing them from being used more
area is available. We show how a direct implementation of than once

the EKF algorithm leads to inconsistency in the estimated ) . . )
localization. We justify the origin of the anomalous behaviour In the work reported in this paper, aligned with the general
of the filter in the time-correlated nature of the measurement objectives of the European project URUS [18], we turn
noise sequence. A novel solution based on the measurementoyr attention towards using a previously built featuredohs
differencing technique is proposed to drive the solution of the = gi4cnastic map to localize a team of autonomous vehicles
EKF towards consistency. Both simulation and real experiments hile th iqat dinatelv. Wi lqorithm t
with a 3-robot triangular-shaped formation are reported. w 'e. €y navigate coor m?‘ ? y- Ve PTOPQSe an algoritom
localize a team of robots within a stochastic map where each

. INTRODUCTION robot cooperates to obtain a more accurate and consistent

Nowadays a big part of the robotics community is focuseHOSItlon while navigating and avoiding obstacles.

on he Sinulncous Loalzaton and Napping (SLAV 01t 0O e ol it e workepaes
problem. We know how to build maps more and more 9 P

accurately, efficiently and without requiring a big Computarobot formation due to the existence of tlm_e-(_:orrelated-mea_
. . ; L surement sequences. Whenever these statistical depegslenci
tional effort. A variety of representations for mapping dod

environments have been proposed throughout recent ye%rrg. not pr_operly c0|j3|d(_ared we show that the algonthms_ lead
0 inconsistent estimation of the robot formation localiza

L?](;Iuglng feature-based maps, grid-based maps and fuzggn. Second, we originally formulate the problem of robot
bs. formation localization in SLAM within the EKF framework

The use of previously built maps to localize individual : X . .
vehicles has been reported in [9] and [7] from afeature{lhasiy using themeasurement differencing technique [4], [2],

erspective, in [15] by using grid-based maps and [16] b 11] which allows the elimination of colored measurement
Perspective, y 99 . P . equences within the update step of the filtering algorithm.
combining grid-based and topological maps. Regarding

0 . . . i . ,
. : L . This article is organized as follows: section Il defines
multi-robot cooperative localization, the works in [6] and o . .
. . X .. _the probabilistic representation of the robot formatior an
[10] divided the team of robots into two groups: while . . .
: : resents the EKF formulation of the robot formation localiz
one group moved, the other group remained stationary arnd . : ) :
. . : tion by assuming white noise measurement sequences. Sim-
acted as landmark. This strategy is useful in the absenc

. . ?|nr Its illustr he inconsisten f th
of landmarks or in uncharted environments but the robo atio esu ts Illustrates the co__sste cy of t c appho
ST . : hen, section Ill proposes a modified EKF algorithm based
must maintain visual contact which constraints the robo ) . ) .
. .. . : . on measurement differencing which correctly interprets th
displacements. Additionally in [14] inter-robot positiomea- . :
o . inherent time-correlated nature of the measurement sequen
surements are used within an EKF framework to improve the "~ . . . :
.and it provides a consistent solution for the estimated trobo
§8rmat|on localization. Section IV reports both simulatio

proposed to localize a team of vehicles. However, and to th = periments within a rapid prototvping environment and rea
best of our knowledge, any reported work has considered tapen . pid prototyping .
) . experiments with a 3-robot triangular-shaped formation of
use of feature-based stochastic maps for solving the robgt . . . .
. o Ioneer 3-AT vehicles. Finally, section V summarizes the
formation localization problem.

Additionally, and from a state estimation pers:pective,—conWork and proposes future research directions.

sistency issues are of paramount importance to assurereonve  ||. EKF-BASED LOCALIZATION OF THE ROBOT
gence of the solution provided by the estimation algorithm. FORMATION

In [5] the consistency of multi-robot cooperative locatina bot f ion b d h
was investigated from an observability perspective. Alke Lgt a robot formation be compose ot 1 heterogeneous
) ' _vehicles{Ry, Ry, ..., R}, whereRy is the robot leader and

effect of using repeated measurements on the consistengy .

. : o 5.7 =A{1,...,r} are the robot slaves. A certain geometric
of the algorithm has been reported in [8] by taking mtoshape, e.g. equilateral triangle, regular pentagon, etc, i

This work was partially supported by the European projett1845062- |mposed to the team dependlng on th? number of vehicles
URUS-STP and the Spanish projects DPI2006-13758 and DP{28810. and the task commanded to the formation.



From a probabilistic view-point, the location of the robotandy, C ya a subset of map features from the a priori
formation can be represented by a discrete-time state vecgiochastic map.
xr formed by the location of the robot leadé?, with The classical EKF update equations provide estimates for
respect to (wrt) a base reference frafieand the location the state vectokr,, and its associated covariance matrix
of each robot slave?; wrt the robot leaderrzy, and by its Pg, , using the filter gain given by:
associated covariance matilx; which stores the statistical

— T T —1
dependencies between those estimated locations. Fotjowin Ky = Pry, Hi (HiPr, ), Hi + Ry) ®)
the Gaussinity assumptiosz ~ N (X, Pr) with, with
A T T
XEO Pgr -+ Pryr Rk:ngPSngkJrG]'—kakG]'—k (6)
<0 0 0y
%o — XRy P — @ The estimated state vector and its associated covariance
R : R matrix are given by,
)’\(Ro PRTRO e PRT " N .
Rr XRipe = XRpr-1 + Kk(zk - Zk)
This leader-centric representation reduces the volume of Pr,, = (I-KiHy)Pg,, )

uncertainty, i.e. the determinant of the covariance matrix

P, in comparison with an absolute representation wrt the- Smulation Results: Inconsistency

base frameB of each robot location vector and, therefore, A simulation experiment was conducted to analyze the

linearization errors due to large uncertainty values ane-mi consistency of a direct implementation of the EKF algorithm

imized. based on the aforementioned problem formulation. A 3-robot
From a Bayesian view-point the pose of the robot forformation was commanded to navigate through a 200-m

mation is given by the recursively estimated conditionaloop-trajectory within a previously mapped (2D point-béise

probability density functiomn(xr, |yr,...yMm) Whereyg, . stochastic map) navigation area. Each vehicle was equipped

represent the set of sensor readings gathered by the senseith a range-bearing sensor capable of observing the avail-

mounted on the robots from environmental features fromble environmental features. As a measure of consistefcy [2

time step0 up to time stepk, and y ., represents the a statistical test based on the Normalized Estimation Error

stochastic map of the previously mapped navigation are8quared (NEES) was used,

In the sequel, the EKF algorithm [2] is used as the core T 1 ) 5

estimation technique. NEES = (xr, — Xr.)" Pr (xR, = XR\) < Xp1-a (8)

A. EKF Prediction Sep wherex?2 ,_, is a threshold obtained from th¢ distribution

The EKF-prediction step propagates the state of the rob\évtIth r = dim(xg, ) degrees of freedom, and the desired

. . . ; ignificance level (usually 0.05).
formation from time step — 1 to time stepk by using dead- g ( y )
reckoning measurements:

20
XR, Fk*lka_l + Vi1 (2) 18

16

where the block-diagonal matri¥,_; represents the ja-
cobian matrix of the linearized motion equations of the
robot team andv,_; represents a zero-mean white noise
sequence with a block-diagonal covariance maf)jx ;. Eq.

(2) provides estimates for the state vecios and its
associated covariance matixz, , _, -

B. EKF Update Sep

At time stepk, robust data association provides the algo-
rithm with a set of jointly consistent paitg., 75 ) formed by
sensor observations and map features respectively. Dhe to £ig- 1. Inconsistency of the estimated robot formation lawdion with
inherent nonlinearities, a linearized measurement egi a direct implementation of the EKF algorithm. The consistenagior

o NEES/x2,_,, should be less than one. The average of 10 Monte Carlo
used within the EKF-update step: runs is depicted.
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: . Figure 1 plots the consistency ratiovViEES /2 for
whereH,, andGj, = (G¢, Gy, ) are the Jacobian matrices th g P y ES /X -0)

f the li ed A i ith 1o t e sequence of time steps of the experiment illustrating a
or the finearized measurement equations with respect 1o e, 1oy of inconsistency in the estimated solution of this
state vectorxr, and with respect to the matched senso

b ; velv. with: irect implementation of the EKF algorithm. In the followin
observationgy; respectively, with: section we take a closer view of the results and a modified

| veu N Ve, Pg, O @) EKF formulation is proposed to drive the robot formation
YE= N\ yr 7. )\ 0 Pg estimated localization towards consistency.



I1l. M EASUREMENTFDIFFERENCINGEKF-BASED Matrix Ay is computed (see appendix) such that the time-

LOCALIZATION OF THE ROBOT FORMATION correlated components of the measuremgnare removed,
A close view of the robot formation localization problem )
within an a priori stochastic map, supported by the simula- Ay~ GrFo, Gy (Gr, ,GF, )" (14)

tion results obtained in the previous section, suggest a re-
formulation of the EKF algorithm taking into account theNote that previous works [2], [11], under the linearity
statistical dependencies between the observagons, and assumption both in the motion and measurement equations,
y7, (both subsets of r() used within the EKF update step reported thatA, = Fc,, being a particular case of the
in two consecutive time stepgs— 1 and k. more general result provided in this paper. In our case, the

Given the set of matched map features of two consecuti@xistence of matrixA, has been verified for the cases of
time instantsy#,_, andy,, their statistical dependencies2D-point and 2D-segment based stochastic maps.
are expressed by a linear transformation, Finally, eq. (13) introduce a cross-correlation term be-
tweenw;, andv,_1, hamely,

yr. =Foyr._, + W, 9)

where F¢, is row-selection matrix andw,, is a white Ci = Evi_1wi] = Qr1 (A Hy 1 F ' )T (15)
noise measurement sequence with covariance mRigix .
Equation (9) defines a colored measurement noise sequenabich is introduced in the EKF algorithm following [3] using
which together with egs. (2) and (3) completely reformwdatethe filter gain,
the problem at hand.

The first approach reported in the literature which considK, = (PRM,C,IHZT + Cy) -
ers the existence of a colored measurement noise sequence (H;Pg,, H;" + Py, +H;C, + CIH;")!
within the EKF framework dates back to the works of (16)
Bryson et al. [4] where the state vector was augmented with
the colored error terms. Later work pointed out relevant
numerical problems of this approach mainly due to null?
uncertainty observations and ill-conditioned transitioia- . .
trices. Current practical approaches [2], [11] concernsire Pry. = Pryy, — Ke(HiPr,, Hi" + P,
called measurement differencing technique, which pravide +H;C; + CIH;")K{ 17)
an efficient and mathematically sound method to remove
the time-correlated portion of the measurement errors. Wehe computational cost of the modified EKF algorithm
extend previous work by others in the field of filtering theorydoes not appreciably increase over the direct implememtati
by formulating the robot formation localization problem inbecause the dimensions of the matrices involved are the
SLAM as a measurement differencing based EKF algorithigame.
to whiten the originally colored measurement noise segeienc
defined in eq. (9).

and the update of the estimated covariance matrix given by,

A. Whitening the Measurement Equation

Let r; represent the measurement considered within the
EKF-update step at timg, derived from the real measure-
mentsz;_; andz; obtained at two consecutive time instants
as,

Consistency Ratio (NEES / Chi2)

v £ z), — Apzi_y (10)

where matrixAj is chosen such thafr;,0 < k < oo}
approaches a discrete-time white-noise driven stochpiiic

CeSS [2] [11] o 1(‘)0 260 360 4!;0 5560 [k]GI‘JO 7&0 860 9(‘]0 1000
y . Time Step
Following the derivation of the appendix measurement
can be rewritten as, Fig. 2. Improvement in the consistency of the estimated robwhdtion
localization with a measurement-differencing based EKEF ritlyn. The
rp ~ Hixg, +wyg (11) average of 10 Monte Carlo runs is depicted.
where,
* o —1 . i i
Hp =Hy — ApHp Fy 2y (12) Figure 2 plots the consistency raﬂN](JES/X%J,a) for

and the white noise sequenee,, with covariance matrix the sequence of time steps of the experiment for the im-

P, , is given by, plementation of the measurement differencing algorithm
proposed in this section. In this case, the modified EKF algo-
wi = Geye, — MGe,_ye,, + Gr Wy, rithm provides a consistent solution for the robot formatio

+ AH F' v (13) estimated localization.



IV. EXPERIMENTAL RESULTS e

~

The measurement differencing EKF-based localization al- ”J:%;\c
gorithm has been tested both in the multi-robot simulation ‘

platform Player/Stage [12] and in real experiments with a
3-robot Pioneer 3-AT team in a triangular-shaped formation

scheme.
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Fig. 3. Consistency of the estimated robot formation loctiimawith a
measurement-differencing based EKF algorithm in the Pl&y&ge exper-

iments. The average of 10 Monte Carlo runs is depicted. ) : [ obats
£ /] ,

A first set of experiments have been conducted within the 5 4
rapid prototyping tool Player/Stage [12] which allows code o D 100 50 2000 2500
development and testing in similar conditions as to those c I ‘ ‘
subsequently faced in the real scenario but constrainteo th g °@‘%VM
information provided by simulated motion control and data >,n.50 . . . . .
acquisition. 10

The formation was commanded a 100-m loop trajectory
within a previously available segment-based stochastic. ma
Thanks to the availability of ground-truth, the consisienc o 500 w‘““nms‘ep[kf"" Z0 2500
of the proposed algorithm in this quasi-real scenario was
verified as the consistency ratio plot of fig. (3) highlights.

Also, in figs. 4 the frontal, lateral and angular errors fOIFig' 4. Experimental results obtained in the Player/Stagiinge Frontal,

. . . . #gteral and angular errors for each vehicle in the 3-rokiahgiular-shaped
each robot in the formation are displayed together witkhrmation and their associateds2uncertainty bounds are shown: Robot

their associated 2-uncertainty bounds. In all the cases thdeader (top) and robot slaves (middle and bottom)
estimated errors are within the computed bounds.

Theta Error [deg]
o

B. Experiments with the Pioneer 3-AT Robots leader executes the localization algorithm and it commu-
Real experiments have been conducted by using a 3-roddg¢ates the estimated poses to each robot slave ([17] and
triangular-shaped formation of Pioneer 3-AT vehicles.. Figreference therein).
(5) depicts the initial localization of the vehicles within Initially, a segment-based stochastic map of the navigatio
an indoor environment. The formation was commanded tarea (fig. 5, middle) is obtained by using the information
reach a distant goal location (about 40-m from the startingrovided by the 2-D laser scanned mounted in one of the
location) while avoiding obstacles and adapting its shape wehicle (in our case, and without lose of generality, the
the environment. The robot leader plans a safe path to tihebot leader) which previously had explored the environimen
goal destination and the robot slaves follow the leaderavhilThen, the global localization of the vehicles (fig. 5, botjom
maintaining the desired formation topology. Communigatiois computed by the algorithms reported in [7].
among the vehicles of the formation is provided by a real- Figure (6) shows the estimated localization of each of the
time wireless multihop protocol implemented in a centediz vehicles of the formation at four different time steps along
mode where robot slaves sent both the sensors observatiding planned trajectory towards the goal destination. Even
and the commanded velocities to the robot leader. The robiftough ground-truth was not available during the execution



to the algorithm hypotheses is conducted suggesting thee tim
correlated nature of the sequence of measurements consid-
ered in the previous, direct implementation. A solutiorsdzh
on the measurement differencing technique, already regort
in the filtering literature is adapted to the robot forma-
tion localization problem in SLAM and its implementation
shows how the modified EKF estimation is driven towards
consistency. Simulated and real experiments with a 3-robot
triangular-shaped formation are reported to demonsttete t
Ada Byron Corridor applicability of the adoptive filtering approach.

Future work moves towards decentralized schemes, both
in terms of localization and control of the members of
the formation. An intense cooperation among localization,

J planning, obstacle avoidance and SLAM is also being in-
_ vestigated. Finally, more general nonlinear, non-Gaussia

of gl e T T . . L

|_‘ Tt ““"’Z Bayesian approaches are being analyzed within the general

Yim]

4 o framework of robot formations.
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6 : m s 20 = e 3 m APPENDIX
Xm]
7 Let r; be expressed as,
04 J: ; ~‘=‘_ﬁ__1—| ry = Zp — Aka_l
A Substituting the observatiog andz,_, by their linearized
E expressions given by eq. (3),
£ <
T D rr, ~ Hpxg, +Gryr
S k ! i — _Ak(kalka_l + kalyk,l)
T Considering the form of the observations given by eq. (4)
ey we have,
ok = = 0 - w w0 )2 r, ~ Hkak + ngygk + G]_-ky]_—k

_Ak(kalka—l + ng—lygkfl + G}_k—ly}-k—l)

Fig. 5. Initial setting of the robot formation in a real expeeint: 3-  Rearranging the system equation given by eg. (2) following

robot triangular-shaped formation (top), segment-basechastic map of . . sy }
the navigation area (middle), and EIF-based initial loedlan of the robot the approach described in [11] to avoid time-latency leads

formation within the map(bottom, with location uncertainty miigd x5). 1O,

XRp_1 = inﬁ‘m - FI:1V1€71
of the real experiments, the figure highlights the complatibitherefore’
ity between the previously available stochastic map and the, =~ (Hj — AyHi 1F.'))xg, + AcHr 1 F ' vy
segmented sensor readings plotted wrt the estimated gshicl +Ge ye, — AGe, Ve,
localization. +Gryr — AMGr_ YF

Substituting the linear relation betwegn, andy r, _, given

by eq. (9) results in,

The work described in this paper concerned the utiliza- —1 -1

. ) ) H, — A H, | F AH, 4 F _

tion of feature-based stochastic maps for robot formauonrk (H RHi 1By )X, 4 ArHy 1By v
; ; : : : +G5ky5k - Angk—lygk—l + Gfkwwk

localization. From the Bayesian perspective, the claksica Gy Fe, — ALG )

EKF algorithm was initially formulated by considering the _ Tt C T2 )Y P

motion models of each vehicle within the formation andvhich can finally be expressed as,

the environmental observations gathered by the exteriveept

sensors mounted on the vehicles. The inconsistency of the

direct implementation of the EKF prediction and updatevith,

equations for the problem at hand is reported. A closer view H; =H; — Aka,lF,;ll

V. CONCLUSIONS

ri, ~ Hixg, +wg



and,

Wi = Gfkyfk - ‘[xlngk—lygk—l + G]:kwwk,
+ AH  F v

and, matrix Ay is computed such that the time-correlated it
components from the evolution of the measuremgntre o l _ 4,_._t—v—I—k
removed, thus is, S
e
GkoCk — AkG}-k71 ~0 1 e
—3p C%-;
thus, o L
—
~ T T -1 -sf
Ak' - G}—kFCk G]:k_l (G}—k—lG]‘-k_l) .
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