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Abstract: In this paper, we present a distributed algorithm which allows a robot formation
to jointly improve a prior stochastic map of the environment where it has to accomplish a
commanded task. To reduce the computational cost of the global map updates we exploit the fact
that a robot formation work in the same map area allowing us to use conditional independence
properties over the state distribution. Each robot maintains its own local and global maps
which can be improved with the information received when communications among robots take
place. Besides, the robots also exchange their positions in order to maintain the structure of
the formation. Simulation experiments were conducted showing that, after the synchronization
steps, each robot will have exactly the same information about the map and about the location
of the robots at its disposal. Our results also demonstrate the achieved precision and efficiency
of the proposed distributed algorithm.
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1. INTRODUCTION

The fact that a team of robots could develop its tasks
autonomously could be of crucial importance in hostile
environments of hard access to humans. In some missions
such as rescue operations, these robots need to maintain
a formation structure, i.e. a geometrical configuration.
One of the main potential applications of formations in
emergency situations is to guide a group of people to a
safe exit while protecting them on their way out (Urcola
and Montano (2011)). Therefore, each robot must know
the position of the other members of the team, and
also understand the surrounding environment to avoid
dangerous situations. Decentralized calculations improve
the robustness of the system in case of communication
loss or member failures. When a prior map of the rescue
area is available the success of the mission increases since
the robots can plan routes and take decissions in advance.
In this case robots have to update the prior map to cope
with changes encountered during the mission.

According to the previous description, the main goal of this
paper is a novel and efficient algorithm to localize a robot
formation and improve a given prior stochastic map using
a distributed paradigm. Each robot updates its own copy
of the prior global map by sending/receiving local informa-
tion to/from the rest of the team. Our distributed estima-
tion algorithm is described in terms of a Gaussian Markov
Random Filed (GMRF) which allows us to analyze the
conditional independence (CI) properties of the problem
to achieve high efficiency (Bishop (2006)). The application
of the CI property in the algorithm is twofold. On the one
hand, the robots in the formation only need to constantly

⋆ This work was supported by the Spanish projects MICINN-
FEDER DPI2009-13710 and DPI2012-36070.

update the local region in which they move whereas global
updates can be postponed reducing computational cost
(Piniés and Tardós (2008)). On the other hand, robots do
not make observations of each other in our system but get
indirectly related by observing common map features. The
load in the communication channel is then reduced since
each robot just sends an information summary of features
observed since last communication. As a result, the algo-
rithm proposed does not rely on a central server improving
flexibility and robustness and reduces the computational
and communication requirements at each step. Moreover,
it is shown that, in a linear filtering context, the resulting
decoupled method produces the exact results than using
only one filter. In this paper, we use the Extended Informa-
tion Filter (EIF) as the core of the distributed algorithm
such that after all messages are sent/received each robot
estimate is equal to the centralized solution.

The problem of localizing a robot formation within a prior
map was previously treated in Lázaro and Castellanos
(2010). In that work, a centralized localization process at
the leader robot is proposed but the prior map remains
unmodified. In Bailey et al. (2011), a distributed EIF
algorithm to jointly localize a team of robots is presented.
In Roumeliotis and Bekey (2002) an Extended Kalman
Filter (EKF) is used whereas in Nerurkar et al. (2009)
the authors implement a Maximum a Posteriori (MAP)
estimator. Unlike these previous works, we do not use
inter-robot measurements to improve the location of the
team but a prior map that is mantained and improved.

In Grime and Durrant-Whyte (1994) the Channel Filter
(CF) is introduced for the solution of general distributed
problems. The CF prevents double-counting of information
by using a tree communication topology and by keeping a
record of the information transmitted over the communica-



tion channel. The transmission of information in our algo-
rithm is similar to this filter but we avoid double-counting
by synchronizing the transmission of messages. The main
difference with that work is that we implement in addition
an efficient algorithm to update the state vectors of the
robots by postponing global updates without introducing
approximations. In the same multi-robot context, recent
works also address the distributed Simultaneous Local-
ization and Mapping (SLAM) problem. In Leung et al.
(2011) each robot computes its own centralized-equivalent
estimate of the system using the odometry and measure-
ments that have been received from other robots. In Cun-
ningham et al. (2010), the authors formulate the problem
as a non linear least squares optimization where robots
asynchronously send condensed landmarks information.
The work presented in Nettleton et al. (2003), copes with
bandwidth communication requirements, in such a way
that each robot selects a set of features with the greatest
information gain to be sent. To avoid the double count-
ing information problem, they combine an EIF with the
Convariance Intersection algorithm, a sub-optimal filter
which guarantees consistency although yielding pessimistic
estimates. In contrast to these works, in our approach
the robots only communicate their positions and the new
local information gathered since last synchronization us-
ing small local matrices that reduce the communication
bandwidth.

The outline of the paper is as follows: Section 2 describes
the main steps and notation of our distributed localization
and mapping algorithm for robot formations with a prior
map. Section 3 brings a summarized description of the
conditional independence property of a Markov Random
Field. Section 4 makes use of the CI property to reduce the
computational cost for each robot when working on a local
region of the global map. Section 5 is devoted to explain
the message passing protocol which also takes into account
the CI property. The complete distributed localization and
mapping algorithm is described in section 6 together with
a computational and communication complexity analysis.
In section 7 the results of the testing experiments are pre-
sented and finally in section 8, we draw some conclusions
and future work is proposed.

2. PROBLEM STATEMENT

Given a previously built feature-based stochastic map xF ,
our goal is to localize a formation of nr robots in it while
improving the map estimate. The robot formation and the
map are given by [xT

R
xT
F ]

T , where xR = {xj
R|j = 1 . . . nr}

contains the location of the team of robots.

A naive approach to update the joint estimate is to use a
centralized method where a leader fuses all the odometry
and sensor measurements gathered by the rest of the team.
Instead, we implement a distributed algorithm in which
each robot j estimates its own pose xj

R and updates its own

estimate of the map x
j
F . Robots periodically broadcast

their position to maintain the shape of the formation while
navigating towards the goal. During the periods of lack of
communication, each robot predicts the position of the rest
of the team based on its knowledge about the formation
structure. The advantage of this distributed strategy over
the centralized one is that the system becomes more robust

since each robot keeps an estimate of its position and the
global map and does not depend on the availability of a
leader or constant communication with the rest of the team
to maintain the shape of the formation.

The efficiency of the algorithm proposed in terms of com-
putational cost and communication bandwidth is based on
the following two ideas:

(1) In order to reduce the computational cost, the prior
map xF is divided into local working areas. While
the formation traverses a local region xFl

each robot
updates the features in it using the measurements
gathered at each step whereas the rest of the map xFg

is not modified. When the formation moves to a new
local area all robots update the previous unmodified
features xFg

, assign the new set of local landmarks
to xFl

and repeats the same procedure. Since the
number of features in a local region is bounded, this
algorithm maintains a constant computational cost
O(1) when working in a local area. In addition, we
will show that the map estimate obtained is the same
as if we had been working with the whole map.

(2) When working in a local region, robots send messages
to each other at synchronization steps to improve
their own local estimates by using the information
gathered by other members of the team. During these
synchronization steps, we assume all-to-all communi-
cation availability. Instead of transmitting raw mea-
surements, robots send information matrices of the
features observed since last synchronization reducing
the amount of information on the communication
channel. After each synchornization step, each robot
has the same information such that the map estimates
coincide with the one obtained using a centralized
version, i.e. xj

F → xF |j = 1 . . . nr.

Previous ideas are based on the CI property of the vari-
ables involved in the estimation. Thus, in the next section
we give a brief and intuitive review of this property.

3. THE CONDITIONAL INDEPENDENCE
PROPERTY

We will refer to the example in Fig. 1 where a Markov
Random Field (MRF) is used to show the CI property of
a set of random variables xA, xB and xC . Suppose that we
want to search for a path connecting any node in xA to any
node in xB when the common node subset xC is removed
from the graph. Since no such a path exists, we can assert
that subsets xA and xB are conditionally independent if we
know the subset xC . Then, the CI property is determined
by simple graph separation (Bishop (2006)). Formally this
is expressed by any of the following equivalent expressions:

p(xA,xB|xC) = p(xA|xC)p(xB |xC) (1)

p(xA|xB,xC) = p(xA|xC) (2)

p(xB |xA,xC) = p(xB|xC) (3)

These equations will be applied in the explanation of the
two following sections. Along each description we will make
use of a MRF similar to Fig. 1 to help the reader recognize
the CI-property.



Fig. 2. GMRF of the individual robot estimation process. The local map corresponds to elements inside the shadowed
region. Since there is no link between robot xRk+p

and features Fg, the initial robot position at instant k and
the local features Fl = {F4 . . . F9} make the robot at instant k + p conditionally independent of map elements
Fg = {F1 . . . F3, F10 . . . F12}. To easily verify the CI-property node colors have been selected to match those in
Fig.1. Also, the common separator is surrounded by a dash line.

Fig. 1. This example shows a MRF with no direct links
from subset xA to subset xB . This means that the
conditional independence property p(xA,xB |xC) =
p(xA|xC)p(xB |xC) or any of its equivalents holds for
any probability distribution described by this graph.
Notice that we do not make any assumption about the
nature of the distribution. Common separator nodes
are surrounded by a dash dark line and depicted in
green; nodes in xA and xB sets are shown in red and
blue respectively.

4. LOCAL ESTIMATES AND GLOBAL UPDATES

In this section we focus on how each robot works in a local
region and is able to update the prior map. At instant
k, the state vector for a robot is given by [xT

Rk
xT
F ]

T , i.e
the current robot position and the estimate of the map.
During this explanation we will omit the robot super
index to simplify the notation. We assume a multivariable
Gaussian distribution on the state vector described by the
information vector ik and matrix Ik.

In order to work in local regions with a consistent pro-
cedure for global map updates, we distinguish three o-
perations: GlobalToLocal, Local EIF and LocalToGlobal.
We will use the Gaussian Markov Random Field in Fig.
2 to show the application of the conditional independence
property in these operations.

4.1 GlobalToLocal

The prior map of the example is composed by feature
elements xF = {xF1

. . .xF12
}. Instead of working with

the whole map xF we want to work in the local region
shadowed in the figure. At instant k, the robot xRk

is

about to enter to this local region from an already updated
global map whose information matrix and vector are given
by Ik and ik respectively. The new local state vector
will be xl = [xT

Rk
,xT

Fl
]T formed by the current robot

position and the feature subset Fl = {F4 . . . F9}. Features
that are not in the local region correspond to elements
Fg = {F1 . . . F3, F10 . . . F12}. To obtain the local region xl

we just marginalize it from the joint distribution as shown
in Eq. (4),

p(xRk
,xFl

) =

∫

p(xRk
,xFl

,xFg
)dxFg

(4)

For Gaussian distributions the marginal is given by the
Schur complement (Bishop (2006)), obtaining the local
marginal information iml,k, I

m
l,k from the global state ik, Ik

as it is shown in Algorithm 1. A copy of the marginal
at instant k is stored for future use in the distributed
algorithm.

Algorithm 1 (Iml,k, i
m
l,k) = GlobalToLocal (Ik, ik)

Ik =

(

Il Ilg
Igl Ig

)

, ik =

(

il
ig

)

(5)

{Marginalization of local submap elements from the
global state}

Iml,k = Il − IlgI
−1
g Igl (6)

iml,k = il − IlgI
−1
g ig

{Return Marginal distribution at instant k}

4.2 Local EIF

To operate in the local region xl the robot just carries out
a standard EIF algorithm (Walter et al. (2007)) in which
the initial robot pose is kept in the state vector (i.e. xRk

is not marginalized out). After p steps the distribution of
the global map can be factorized as follows:

p(xRk+p
,xRk

,xF |z1:k+p) = (7)

p(xFg
|xRk+p

,xRk
,xFl

, z1:k+p)

p(xRk+p
,xRk

,xFl
|z1:k+p)

The second factor p(xRk+p
,xRk

,xFp
|z1:k+p) corresponds

to the probability distribution of the local region. Notice



Algorithm 2 (Ik+p, ik+p) = LocalToGlobal
(Iml,k, i

m
l,k, I

m
l,k+p, i

m
l,k+p, Ik, ik)

{Information due to the measurements obtained during
last p steps}

inewl,k+1:k+p = iml,k+p − iml,k (9)

Inewl,k+1:k+p = Iml,k+p − Iml,k

{Global Update: adding new information}

Ik+p = Ik ⊞ Inewl,k+1:k+p (10)

ik+p = ik ⊞ inewl,k+1:k+p (11)

{Marginalize xRk
out, the oldest position}

(Ik+p, ik+p) = marginalizeOut(xRk
, Ik+p, ik+p)

{Return Global state vector at instant k + p}

that there is no direct link between xFg
and xRk+p

in Fig.
2 therefore the first factor can be simplified by using the
CI-property as follows:

p(xFg
|xRk+p

,xRk
,xFl

, z1:k+p) = p(xFg
|xRk

,xFl
, z1:k)

(8)

Consequently, when the robot performs the move-sense
local cycle, the global part xFg

remains conditionally
independent of the current local robot xRk+p

and the new
observations zk+1:k+p that have been gathered in the local
region and therefore does not require continous updates.

4.3 LocalToGlobal

When the robot is about to change to a new local region
at step k+ p, it first updates the elements of its total map
ik and Ik. We take advantage again of the fact that the
new local information acquired during last p steps only
affects the elements that correspond to the local region.
Therefore, features in xFg

are conditionally independent
of measurements zk+1:k+p (Eq. (8)). In terms of EIF, this
statement allows us to easily recover the new information
given by Inewl,k+1:k+p, i

new
l,k+1:k+p (Algorithm 2, Eq. (9)) from

the subtraction of the current local map at instant k + p
and the local map at instant k augmented with zeros at
the position of robot xRk+p to fit the dimensions. This
information is finally added to ik and Ik, the global state
at step k, to update the total estimate. Eq. (10) shows this
operation where ⊞ is the operator in charge of adjusting
the dimensions of the matrices and vectors for a coherent
addition of information to the common local elements.
Once the total estimate is updated, we marginalize out
the oldest robot position xRk

. Similarly to Eq. (6), we use
the Schur Complement to perform the marginalization.

5. PASSING MESSAGES BETWEEN THE ROBOT
FORMATION

We will make use of the CI-property to efficiently send
and receive update messages between the team of robots.
The key idea is that as the robots do not observe each
other they just get related by measurements of common
map features. This indirect relation means that the robot
formation is CI given the map. Formally this insight is
represented by the following equation:

p(x1
Rk

, . . .xnr

Rk
|xF ) = p(x1

Rk
|xF ) . . . p(x

nr

Rk
|xF ) (12)

In Fig. 3 we can see a small example that shows this
property. In the example (figure left) three robots use
information of their individual odometry to move from
instant k to k + 1. They also get connected to some map
features given the observations at both steps. Since we
are using a filtering paradigm, robot positions at k are
marginalized out creating a new clique (Eustice et al.
(2006)) with all the elements that were connected to them.
The result is a new graph (figure right) that links the
current positions with map features. Observe that there
are no direct links between robots, that is, the robot
formation is CI given the map. In subsequent steps this
property remains.

In order to obtain the same estimation as in a cen-
tralized system, robots are synchronized periodically and
broadcast the new information gathered since the last
synchronization. From the point of view of a robot, the
synchronization is based on two steps: first, the robot
broadcasts its own information to the rest of the team;
second, it receives messages from the other members of
the formation. We explain these steps in the following
subsections.

5.1 SendMessages

Algorithm 3 details the operations performed to send a
message from robot j to the formation. Suppose that
at time s a synchronization occurred and the estimate
kept by each robot is updated and coincides with the
one obtained in a centralized system. From this recently
updated estimate, robot j calculates the marginal of the
features Im,j

F,s and i
m,j
F,s .

When a new synchonization step takes place at s + p the
new map information gathered by the robot since last
synchronization is calculated. This new information will
be the difference between the feature marginals at s + p
and s. Eq. (13) in Algorithm 3 shows this operation. The
subtracted information is finally broadcasted from robot j
to the rest of the team.

5.2 ReceiveMessages

Algorithm 4 details the operations carried out when mes-
sages are received to update the map of robot j. As robots
are CI given the map, the information sent to robot j only
affects its feature elements in the information matrix and
vector and therefore can be directly added by using the
operator ⊞, as it was explained in subsection 4.3. After
these operations, all robots share the same information
about the map.



Fig. 3. GMRF of the robot formation. The example shows three robots that make observations of some map features
during two consecutive steps. Robots are only related through the features, i.e. they are conditionally independent
given the map (green nodes). Previous robot positions but the first one x

j
Rk

are marginalized out (left). Red, blue
and yellow nodes are separated by green nodes and therefore they are CI as in Fig. 1.

Algorithm 3 sendMessages(Ijs+p, i
j
s+p)

I
m,j
F,s ,i

m,j
F,s {Feature Marginal of robot j stored from last

synchronization at instant s}

(Im,j
F,s+p, i

m,j
F,s+p) = marginalizedOut(xRs+p

, I
j
s+p, i

j
s+p))

I
new,j
F,s+1:s+p = I

m,j
F,s+p − I

m,j
F,s (13)

i
new,j
F,s+1:s+p = i

m,j
F,s+p − i

m,j
F,s

broadcast(Inew,j
F,s+1:s+p, i

new,j
F,s+1:s+p)

Algorithm 4 receiveMessages()

for r 6= j do
I
r,m
F,s+p, i

r,m
F,s+p {Feature Marginal received from robot

r}

I
j
s+p = I

j
s+p ⊞ I

r,m
F,s+p

i
j
s+p = i

j
s+p ⊞ i

r,m
F,s+p

end for

6. DISTRIBUTED LOCALIZATION AND MAPPING
ALGORITHM FOR ROBOT FORMATIONS

In this section we combine for each robot the techniques
described in sections 4 and 5. On the one hand, the
formation works in a local region of the map to reduce the
computational cost. As the robots navigate relatively close
in the formation they are localized in the same submap. On
the other hand, each robot maintains its own estimation
and is in charge of its own observations to update the map.
From time to time, the robots get synchronized to obtain
the same map estimate. At these instants, each robot also
broadcasts its best estimated position to maintain the
formation structure. Notice that, after a synchronization,
the estimated pose of the formation and the map coincide
with that of a centralized version.

Our distributed method for each member of the robot
formation is presented in Algorithm 5. First, the robot is

localized in a local working region (GlobalToLocal). While
it remains in the same region (mapChange = false),
the standard EIF operations are carried out to estimate
its position and features location but without marginal-
izing out the initial position of the robot in the submap
(LocalEIF). Based on the knowledge about the formation
structure and using the spring-damper approach described
in Urcola et al. (2008) as navigation strategy, each robot is
able to predict the position of the rest so that the robots
do not stop navigating in formation towards their goal
in absence of communication. If a synchronization event
check sync is registered (e.g. after a determined period
of time, or when a robot makes a request, etc.), an ex-
change of messages takes place to update the states of the
team with the same information. Also, when the formation
changes to a new local region (mapChange = true), the
robots synchronize to update its total map and another
iteration of the main execution loop is realized. The new
information that each robot receives about the features
will affect its own position estimation. For this reason
and to update their knowledge about the formation, each
time there is an exchange of messages, each robot sends
its improved position to the rest of the robots (sendPosi-
tionToFormation) and receives the information from the
rest (receivePositionsFromFormation).

6.1 Computational and Communication Complexity

While each robot is working in its own local submap, it
performs the LocalEIF algorithm. The computational cost
of this filter depends on the number of features in the
submap. Since we are not adding new features to the map,
the number of features remains constant and the cost will
be (O(1)) while working in the local region.

When a change of submap is carried out, there are two
operations involved, LocalToGlobal, to update the global
map, and GlobalToLocal, to extract a new region of the
map. As it was explained in section 4, the operation Lo-
calToGlobal consists in adding the new information to the
global map, therefore, its cost is O(1). In GlobalToLocal,
we find the most costly operation of Algorithm 5, where we
have to invert almost the whole map, (Eq. 6), leading to a



Algorithm 5

mapChange = false

while (k < nsteps) do

(im
l,k

, Im
l,k

)=GlobalToLocal(ik , Ik)

while not mapChange and (k < nsteps) do

(im
l,k+1

, Im
l,k+1

, mapChange)=LocalEIF(im
l,k

, Im
l,k

)

if mapChange or checkSinc() then
sendMessages(im

l,k+1
, Im

l,k+1
)

receiveMessages()
sendPositionToFormation()
receivePositionsFromFormation()

end if

k = k + 1
end while

{After p local EIF steps, a global update takes place}

(Ik+p, ik+p)=LocalToGlobal(Im
l,k

, im
l,k

, Im
l,k+p

, im
l,k+p

, Ik, ik)

end while

cost of O(n3) in the worst case, being n the fixed number
of features of the prior map. Unlike other algorithms, this
operation only takes place at each map changing step. As it
was studied in Paz and Neira (2006), there exists a trade-
off between the size of the local maps and the frequency
with which the robots need to change of submaps. If the
submaps are small, global updates will be more frequent,
but, on the other hand, larger submaps will increase the
computational cost of local updates.

Concerning the communication, the total amount of infor-
mation to be sent to other robots is bounded to the number
of features in the local map. Since each robot broadcasts
the new information added to the submap to the rest,
the communication complexity scales with the number of
robots O(nr).

7. RESULTS

Through the following simulation results we want to show
the advantages of the distributed submapping algorithm
proposed in this paper. We have designed a simulation
environment of 30x30m where three robots set in a triangle
formation have to navigate along a 120m loop scenario
(Fig. 4). Each robot has a prior stochastic map of the na-
vigation area divided in submaps of 10x10m. The current
local region xFl

is common to all the robots and is selected
depending on which features are being observed by the
robots, thus, this local region can be composed of several
submaps.

One of the main advantages of this algorithm is the im-
provement of the given stochastic map where uncertainties
and errors of the map features decrease. This can be seen
in the zoomed area of Fig. 4, where the previous map and
the final map are depicted. This improvement not only
affects the covariances but also the error obtained in each
of the features as shown in Fig. 5.

As a direct consequence of the map improvement, the
robots are localized more accurately. Figure 6 shows the
Root Mean Squared Error obtained on each component of
the localization of the robot formation.

The next advantage concerns the computational cost.
Three different implementations have been compared.

Fig. 4. Stochastic map of the simulation environment and
initial setting of the formation, where the current local
region is depicted in red. Reduction of the covariances
(blue) with respect the a priori map (grey). Black dot
in the zoomed in area represents the ground truth of
the feature.
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Fig. 5. Comparison between the RMSE per feature in the
a priori map and in the final map. In the a priori
map, maximum errors are due to far features w.r.t.
the base reference while the minimum errors are due
to features involved during a loop closure event or
those that are near to the origin. After running the
distributed algorithm, the error is more balanced in
the whole final map.

First, the submapping and distributed technique proposed
in this paper (Dist+sub) where each robot updates its own
local and global maps based on its own observations and
synchronizes with the other robots to obtain a better es-
timation. Second, a centralized version of the submapping
technique (Cent+sub) based on Piniés and Tardós (2008),
where the robot leader is the one who updates the local
and global maps using the observations gathered by all the
robots. Finally, a centralized EKF-based version in which
the leader does not work with local maps but only with
the global map (Cent+glob).
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Fig. 6. RMSE error of all the robots of the formation. The
average error in the X and Y components is around
2cm, while the orientation error is around 0.4 degrees.

Figure 7 shows a comparison between the first (Dist+sub)
and second version (Cent+sub). We have supposed the
worst case time complexity for the first implementation in
which the formation synchronizes at each time step and
an additional time per step appears due to the execution
of the send-receive operations. However, the cost of the
map update in the distributed version (green line) is lower,
resulting in a less time complexity with respect to the
centralized implementation (red line). Peaks in the times
are due to global updates, where Algorithms 1 and 2 are
executed.
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Fig. 7. Times per step for the centralized and dis-
tributed submapping implementations. Worst case
where robots synchronize at each step is shown. For
that reason, synchronization time (blue), which a-
ffects to the distributed implementation, is never zero.

In Fig. 8, the computational cost of the first (Dist+sub)
and the third version (Cent+glob) is depicted. We can
see how even when a global update occurs, the times
of the distributed implementation are lower than the
global version. We can also observe that, since we are not
adding new features to the map, the cost of the global
EKF mapping remains approximately constant. In the
distributed implementation, the times are also constant

while working in the same submap, but these times change
depending on the number of features of the submaps (e.g.
time at instant 2250 and at instant 2500). Note that,
in a real experiment, an additional time would have to
be considered in both cases, due to the data association
process. In the global centralized EKF mapping, the leader
would perform this task by matching all the observations
from all robots, thus, this time would be proportional to
the number of robots and observations whereas in the
distributed version, this time would only depend on the
number of observations.
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Fig. 8. Time comparison between the global centralized
and the submapping distributed implementations.
Synchronization messages are transmitted at every
step.

Finally, we want to emphasize that the result obtained
with the distributed submapping method proposed in this
paper is equivalent to the result obtained in a centralized-
global mapping implementation. Each time the robots
perform a synchronization, they will obtain the optimal
solution (i.e. equivalent to the centralized). In Fig. 9
we show the consistency ratio NEES/χ2

r,1−α (Bar-Shalom
et al. (2001)), r = dim(xFl

) of the local map features when
robots synchronize every 10 time steps. We can see how,
while there is no synchronization, NEES for each robot’s
features is different, but when a synchronization occurs
the solution obtained is equal to the centralized. Besides,
the estimation of the map features is consistent, since the
ratio NEES/χ2

r,1−α ≤ 1.

8. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a distributed estimation
algorithm within the framework of robot formations for
long term performance. Unlike other distributed data fu-
sion systems, we use a prior map such that our method can
efficiently tackle the localization of the robot formation at
the same time the map is dynamically improved with new
observations. The algorithm proposed does not rely on a
central server improving flexibility and robustness. This is
achieved by describing the distributed estimation problem
as a GMRF, which allows us to take double advantage
of the CI properties to reduce the computational and
communication requirements: as first result the formation
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Fig. 9. Consistency ratio NEES/χ2
r,1−α of the features in

the centralized (black) and the distributed (the three
blue lines, one for each robot of the formation) imple-
mentations. In the zoomed area, red boxes correspond
to synchronization times (every 10 time steps) where
centralized and distributed results are exactly the
same. If synchronizations occurred at every time step,
the three blue lines would coincide with the black line.

only experience constant updates whereas global updates
are postponed until a new local region transition takes
place; a second cost reduction is achieved due to the
fact that robots only get indirectly related through the
observation of common map features. In consequence, the
load in the communication channel will only scale linearly
with the number of resources since each robot broadcasts
only an information summary of features observed from
the last robot formation communication.The algorithm
results show an accuracy improvement of the a priori map,
being the final result equivalent to the one obtained in
a centralized implementation with a lower computational
effort.

Our distributed algorithm could deal with asynchronous
communications between robots by adopting the same
strategy described in Grime and Durrant-Whyte (1994).
This will be part of a future implementation in real sce-
narios. In addition we will consider an adaptive feature
management policy to identify persistent elements and
cope with map structural changes encountered in the en-
vironment during long term performance. A further step
in the estimation process would be to extend the condi-
tional properties to a distributed non linear optimization
algorithm. This will be part of our immediate research.
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