
A Practical Framework for Robust Decision-Theoretic Planning and Execution for
Service Robots

L. Iocchi1, L. Jeanpierre2, M. T. Lázaro1, A.-I. Mouaddib2

1 DIAG, Sapienza University of Rome, Italy
E-mail: {iocchi,mtlazaro}@dis.uniroma1.it
2 GREYC, University of Caen Lower-Normandy, France

E-mail: {laurent.jeanpierre,abdel-illah.mouaddib}@unicaen.fr

Abstract

The deployment of robots in populated environments is re-
cently gaining more interest because of increased maturity
and capability of this technology. In this context, sophisti-
cated planning techniques are required because there is a need
of increasing the complexity of the tasks that the robot can
accomplish. In particular, there is a large emphasis on service
robots, i.e., robots that can satisfy several user needs.
In this paper, we present a practical framework based on a
decision-theoretic formalism for generation and execution of
robust plans for service robots. The proposed framework has
been implemented and succesfully tested on service robots in-
teracting with non-expert users in public environments, fac-
ing many sources of uncertainty and failures in task execu-
tion.

Introduction
There are many different types of robotic applications hav-
ing different characteristics in terms of the kinds of robots
used, the kinds of environments in which they operate, and
the kinds of interactions they have with environments and
people. Each type of applications has thus different charac-
teristics that drive the difficulty of the task to be solved. In
order to devise suitable and effective planning techniques
for robotics applications, it is necessary to analyze the char-
acteristics of such applications and to choose the planning
technique that is the most adequate to each kind of tasks.

In this paper, we focus our attention on Service Robotics1.
The difficulty of the tasks of a service robot mostly derives
from the interaction with non-expert users. In this context,
there is a high variability of complex tasks to be executed
and high level of uncertainty, given that tasks must be exe-
cuted upon requests of the users that are not known in ad-
vance.

Planning under uncertainty, execution monitoring and in-
terleaving planning and execution are thus crucial features
for an autonomous robot acting in a real environment, spe-
cially when human interaction is involved. Although many

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Service robots are expected to “perform services useful to
the well-being of humans” in Robotics 2020. Strategic Research
Agenda for Robotics in Europe.

Figure 1: COACHES robot in shopping mall in Caen.

existing systems have been developed and successfully ap-
plied in some application domains, their application to ser-
vice robotics is still limited.

We consider in this paper the application environment of
the COACHES project2: a service robot operating in a pub-
lic environment (in particular, a shopping mall) for assisting
customers in many tasks (Figure 1). The robot is equipped
with several sensors, including two laser range finders, two
RGBD cameras, microphone, touchscreen interface, audio
speakers, speech recognition and synthesis for multi-modal
interaction with customers. This equipment allows the robot
to perform several tasks, such as assistance to provide infor-
mation and instructions to customers or displaying the path
towards a chosen point of interest, personalized and context-
based advertisement depending on the profile and location of
the customers, escorting a customer in the mall, securing an
area when some specific landmarks are detected, such as wet
floor, etc.

The problem considered in this paper is the generation
and execution of robust plans for service robot tasks, that
are characterized by several sources of uncertainty. In par-
ticular, in the COACHES application domain, this uncer-
tainty is mainly due to unexpected behaviors of customers
of the shopping mall. To overcome such uncertainties, clas-
sical and probabilistic planning and re-planning approaches
(Ghallab, Nau, and Traverso 2004) could be considered, but

2https://coaches.greyc.fr/

the frequent changes in the environments make them un-
suitable when a re-planning procedure should be executed
at each change. However, decision-theoretic planning tech-
niques, such as Markov Decision Processes (MDP) (Puter-
man 2014), offer a robust mathematical tool to represent un-
certainty. This standard way of approaching such problems
allows us to drive more reactive policy behaviors dictating
to the robot what to do for any state.

In this paper, we describe a framework that exploits and
extends two formalisms: Progressive Reasoning Units and
Petri Net Plans.

Progressive Reasoning Units (PRU) (Mouaddib, Zilber-
stein, and Danilchenko 1998) are a family of models de-
signed for achieving anytime computation. As used in this
paper, a PRU allows to define several task levels and each
level includes several alternative modules with specific du-
rations, qualities, and resource consumption. PRU planning
and execution relate to decide which module must be exe-
cuted at any time according to the PRU structure and to a re-
ward function to optimize. In order to represent uncertainty
in tasks involving human-robot interaction, in this paper we
provide an extended version of PRU (that we call PRU+).

The execution layer of the proposed framework is based
on Petri Net Plans (PNP) (Ziparo et al. 2011) formalism and
on a set of Execution Rules (ER). PNP allows to specify a
plan and to execute it according to Petri-Net semantics. PNP
is an open-source project that has been successfully used in
many different robotic applications3.

As explained in the next sections, the robot programmer
can describe the tasks to be executed and the execution rules
in a declarative way, by using the PRU+ formal language
and the ER specifications, respectively. The developed soft-
ware described in this paper then guarantees planning and
execution according to these specifications. In particular, we
provide the algorithms for: 1) transforming the PRU+ de-
scription in an MDP, 2) solving the MDP and computing
an optimal policy, 3) transforming the optimal policy into a
PNP, 4) applying execution rules to generate a new PNP for
robust execution, 5) executing the PNP on the robot.

In addition to the novel integration of these techniques in a
fully working system for planning and execution on service
robots, this paper contains the following additional novel
contributions with respect to the state-of-the-art: 1) gener-
ation of an MDP from the PRU; 2) transformation of a pol-
icy into a PNP; 3) application of ER to generate a final PNP
containing a robust plan for the robot.

Experiments with different robots executing different
tasks (including a first set of tasks in the shopping mall in
Caen for the COACHES project) have demonstrated the ef-
fectiveness of the proposed approach. The developed soft-
ware is available from the COACHES web site for use in
other relevant applications of service robotics.

The paper is organized as follows. After discussion on re-
lated work, we provide three motivating examples. Then, an
overview of the proposed framework is described, followed
by the description of the formalisms used to model the tasks
and of the algorithms used to generate the plan. Implementa-

3http://pnp.dis.uniroma1.it

tion details include a discussion about the performed exper-
iments and computational complexity. Finally, conclusions
and future work are discussed in the last section.

Related work
Many approaches have been proposed in the literature for
human-aware planning, for reasoning in service robots, and
for interleaving planning and execution for complex robotic
tasks. Most of these works however do not allow for an
explicitly model of the uncertainty derived from user in-
teractions. In this paper, we focus the literature analysis to
those techniques that allows for explicit modeling of the un-
certainty in human-robot interaction with decision-theoretic
formalisms.

A standard way of modeling robot domains with uncer-
tainty is to use a Markov Decision Processes (MDP), ap-
ply a solver to produce the policy (what to do and when)
and then execute the policy, monitoring its success (Ghal-
lab, Nau, and Traverso 2004). However, the execution of a
policy generated from standard MDP techniques requires the
full evaluation of the current state to determine the actions
to be performed. When the state is composed of several in-
dependent variables, all of them must be evaluated in order
to properly choose the next action. In order to overcome this
difficulty, some recent approaches proposed the use of dif-
ferent levels of planning. For example, integration of clas-
sical planning with Partially Observable Markov Decision
Processes (POMDP) is described in (Hanheide and others
2015). However, continuous switching planning can still be
impractical in a dynamic world with frequent human-robot
interactions.

In decision-theoretic planning, many techniques have
been considered for compact representation of MDPs, states,
actions and policies. For the state space, factored representa-
tions using a feature-based representation have been consid-
ered, leading to factored dynamic programming techniques
using different representations, such as Dynamic Bayesian
Networks, Decision Trees or Algebraic Decision Diagrams
(Cheuk and Boutilier 1997). Bayesian Networks have also
been considered for representing actions and transitions giv-
ing a graphical and structured model of representation for
the transition functions. In factored (feature-based) repre-
sentation, reward, value and policy tree representations have
been proposed. Based on such representations, decision-
theoretic and dynamic programming regression have been
developed by removing redundant nodes and aggregating
nodes using different properties on features, actions or value
functions (Boutilier and Poole 1996).

Factored Markov Decision Processes (Boutilier, Dearden,
and Goldszmidt 2000) are special MDPs where the state
space is made of several state variables. The transition func-
tion describes the effect of any action upon each state vari-
able. The main interest of this representation is that indepen-
dent variables may be split and dealt with separately.

When compact representations of the value function and
of the policy in Factored MDPs are used (e.g., (Hoey et al.
1999; Koller and Parr 2000)), the variables to be determined
at any execution step are limited by the structure of the com-
pact representation (e.g., decision trees). But it is necessary

to traverse all the decision tree or the decision list, in order
to determine the action to be executed. This may imply the
evaluation of all the variables in the worst case. One way
of handling this problem without flattening the whole state
space is to use Acyclic Decision Diagrams (ADD), as for ex-
ample in SPUDD (Hoey et al. 1999). In this formalism, the
function is represented as a decision tree, taking into account
one variable at each level of the tree. But each variable may
be present or not in any branch of the diagram. This allows
for factoring whole branches as single leaves. For example,
if the robot is low on energy, it has to recharge, whatever
could be the value of the other variables.

The framework we propose in this paper is in the spirit of
compact, structured and feature-based (state variables) rep-
resentation by aggregating states using state variables and
ignoring the other variables not relevant for the considered
actions. Such a structured representation leads to some kind
of hierarchy of levels: at each level there are different nodes
representing various options of execution. An originality of
this work is that the representation has not only led to an
efficient planning method but also to a robust execution pro-
cedure, based on Petri Net semantics. This contributes in a
tractable but expressive representation and leads to a scal-
able and robust approach.

More specifically, our approach proposes a rich frame-
work with the following features: 1) it uses a compact,
structured and incremental description of the problem, while
standard decision models use a flat monolithic description
and Factored MDPs offer compact representation but of-
ten not structured; 2) as (PO)MDP models, our approach is
based on MDP and derives a policy to guide the behavior of
the agent with no need of re-planning as opposed to classical
planning techniques; 3) incomplete state description is sup-
ported by our approach using state variables as in Factored
(PO)MDPs. Partial observability is not explicitly expressed
in our approach (as opposed to POMDPs) but a kind of par-
tial observability is adopted by allowing observation of only
some variables.

Motivating examples
In this section, we describe three examples to motivate our
work. The first example is a basic service robot application,
that is used to illustrate the concepts of the proposed frame-
work. The other two examples have been actually imple-
mented with real robots interacting with non-expert users in
public environments. These tasks are admittedly very chal-
lenging and have been realized in the framework of our
project by combining several techniques from Robotics and
Computer Vision.

Example 1: Basic Service Robot. A robot is able to exe-
cute two activities A and B upon request of the user, but the
user does not know about these robot abilities. The robot is
normally in a waiting state. Whenever a user is detected in
front of the robot (for example, with a simple face detector
procedure), the robot can decide whether to start an interac-
tion (for example, through a spoken dialogue) and, if so, it
describes the activities that it can do A and B. The user can

now select one of them or answer that s/he is not interested
(for example by selecting an option on a user interface or by
a speech command). If a goal is selected, the robot executes
a task for achieving it. Each goal can be achieved with two
alternatives tasks TaskA1 and TaskA2 for A and TaskB1
and TaskB2 forB. After the execution of the task, the robot
comes back to the wait state, waiting for a next user. Dur-
ing the execution, the following inconveniences may occur:
the user does not complete the interaction (for example, s/he
does not answer the robot question), any task may fail for
reasons not modeled in the task description, and any task
may be aborted according to some external command or
condition.

Example 2: Service Robot assisting customers of a shop-
ping mall. A robot operates in the corridor of a shopping
mall including several shops. Each shop-keeper can define
a set of advertisements that the robot is asked to commu-
nicate to customers of the mall and each advertisement has
an associated reward for the shopping mall. The robot can
execute the following actions in the environment: move to
any location (i.e., in front of any shop), approach a specific
person or a group of people, perform advertisement actions,
perform other assistive actions upon request, bring a person
to any location in the mall.

The problem we want to solve is the following: given the
current position of the robot, the information about shops
and advertisements and an initial probability distribution of
the presence of people in the shopping mall (for example,
provided by an external system of video-cameras), plan and
execute the behavior that maximizes the global actual re-
ward, also recovering from possible failures due to unpre-
dicted or erroneous interactions with people.

Example 3: Service Robot assisting visitors of an office.
A mobile robot is used to help people in an office-like en-
vironment. The robot is able to stand in its home position,
greet users when they get close to the robot, start an inter-
action with users asking if they need more info about some
subject, bring people to an office, and come back to its ini-
tial position. The goal of the robot in this scenario is to de-
tect people operating in the environment, interact with them
and offer help if needed. Also in this case, many inconve-
niences may occur due to unpredicted behavior of the non-
expert users.

Overview of the proposed framework
In classical on-line planning, execution monitoring is used
to determine the correct execution of the planned actions.
When some action fails, the execution monitor is able to de-
termine a new initial state and activate re-planning from this
new initial state. In general, this mechanism does not change
the model of the domain (i.e., the domain description), there-
fore this approach is suitable as soon as the cause of the fail-
ure is somewhat modeled in the domain description, in such
a way that a new re-planning will avoid this situation.

However, very often, it is not possible to anticipate and
model all the possible causes of failures for the actions. In

these cases, the planner may not be able to find alternative
solutions with respect to the ones that just failed. For exam-
ple, in a domain in which a robot can open doors with its arm
and in which the fact that doors may be locked is not mod-
eled in the domain description, a plan can be generated con-
taining an action to open a door. When this action fails, the
planner would re-plan to open this door again, since the fact
that it may be locked (thus it must be unlocked, before open-
ing) is not modeled in the preconditions of this action. In
this case, it would need to upgrade the model adding a rep-
resentation of the property of a door to be locked or not. A
similar situation arises if we want to avoid having the robot
to move in the environment when the battery level is low.
Again, without an explicit representation of this condition
in the planning domain, it would not be possible to gener-
ate behaviors that depend on it. On the other hand, adding
additional state variables to the plan domain increases the
complexity of the planning procedures and, although there
exist many efficient planners, it may prevent the use of this
technique on-line for complex applications. Moreover, it in-
creases the difficulty of writing the planning domain by the
planning expert.

In this paper, we propose an alternative solution to this
problem that consists in separating the set of state variables
that are needed for planning and execution monitoring in
two groups: 1) variables that are used both at planning and
at execution time; 2) variables that are used only at execu-
tion time. State variables that will be used only at execution
time do not affect the complexity of the planning procedure.
Moreover, the MDP states are defined only on the set of state
variables used at planning time and we do not require them
to be observable.

The overall process that is performed in a fully automated
way is the following:
• Input: a PRU (defined on state variables X and observ-

able properties O) and a set of ER (defined on state vari-
ables Y)

• Output: execution of a PNP p generated from the opti-
mal policy π according to the PRU and augmented with
ER (p requires the observation of the variables O, Y and
possibly a subset of variables in X if they are expliclty
indicated in the PRU).

• Procedure:
1. From the PRU, an MDP µ is generated
2. From µ, the optimal policy π is computed through a

Value-iteration algorithm
3. The optimal policy π is transformed into a PNP p0
4. ER are applied to the PNP p0 to generate a final PNP p

containing the implementation of the rules.
5. The final PNP p is executed on the robot.
As already mentioned, the novelty of the above process

with respect to the state-of-the-art is twofold: from one side,
this process properly integrates different formalisms and
components in an effective complete planning and execu-
tion system; from the other side, the following components
are original: 1) definition of an extended formalism for PRUs
(called PRU+) and generation of an MDP from the PRUs; 2)

transformation of a policy into a PNP; 3) definition of ER
and their application to generate a final PNP containing a
robust plan for the robot.

An important feature of the proposed framework is that
state variables Y that are used in the ER do not need to be
necessarily the same as the variablesX used in the PRU+ de-
scription. In general, X 6= Y and thus we can use additional
variables in the ER for increasing the complexity of the final
plan without affecting the complexity of the domain descrip-
tion and hence of the generation of the policy. Moreover, as
explained later, while variables in O and Y must be always
observable, a variable in X must be observable only if it is
explictly used in some execution condition of the PRU+.

In the next sections, we first describe the formalisms used
to represent the information about the tasks to be executed
(i.e., PRU and ER) and then the algorithms used in the above
described process (i.e., generation and solving of the MDP
and generation of the PNP).

Task description formalism
The formalism used for describing the robot tasks is com-
posed of two languages: 1) Extended Progressive Reasoning
Units (PRU+) for describing the task and the planning do-
main, 2) Execution Rules (ER) for representing execution
conditions and recovery procedures.

Extended Progressive Reasoning Units (PRU+)
PRU+ is a formalism to describe resource-bounded tasks
using an acyclic-graph representing modules to execute
for accomplishing the task, the execution context variables
(needed resource and variable state instances), the prob-
abilistic execution outputs (outcomes) and the reward for
executing modules. From this structure, we derive a Rela-
tional Dynamic Influence Diagram Language (RDDL) like
description of states, actions, observations and stochastic
transitions. Similarly to RDDL, PRU+ is a simple descrip-
tion of factored (PO)MDPs.

Formally, a PRU+ is composed of a sequence of process-
ing levels L = (l1, l2, . . . , l|L|), a set of state variables
X = {X1, . . . , X|X|}, and a set of observable boolean
properties of the environment O = {o1, . . . , o|O|}. Each
state variableXi can be assigned a value within a set of finite
values, i.e., Xi ∈ Hi = {⊥, h1i , . . . , h

|Hi|
i }, with |Hi| finite,

and ⊥ denoting a special null value. State variables do not
need to be observable at execution time. On the other hand,
each observable property oi must be evaluated at execution
time by an external function that is always able to return a
truth value for it. Notice that O can contain properties to
observe some of the state variables and the special case in
which any state in X can be evaluated from observations in
O correspond to classical MDP with full observability.

Each processing level li is composed of a set of mod-
ules Mi = {m1

i , . . . ,m
|Mi|
i } and it is associated to a set

of active state variables Vi ⊆ X . We denote with M =⋃
i=1,...,|L|Mi the set of all the modules in all levels.

Each module mj
i is defined by a non-empty set of options

{αj
i , β

j
i , . . .}, representing possible outcomes of its execu-

Layer Act

Bye
(d=1, q=0)

TaskA1
(d=1, q=10)

TaskA2
(d=10, q=10)

TaskB1
(d=1, q=10)

TaskB2
(d=10, q=10)

Greet
(d=1, q=3)

Ask
(d=1, q=0)

A BNone

Wait
(d=1, q=0)

person

Layer Init

Layer Interact

Layer Final

Figure 2: PRU+ for Example1.

tion. The symbols used to denote an option (e.g., αj
i) are

assumed to be unique identifiers in all the PRU+.
Each option αj

i contains the following information:

• execution condition αj
i .φ: a logical formula over atoms

in O and equality checks of values in state variables; this
formula denotes an observable condition used at execu-
tion time to recognize this outcome; we assume that all
the conditions for the options of a given module are mu-
tually exclusive;

• probability αj
i .p: probability of occurrence of this out-

come; the sum of all the probability values for all the op-
tions in a module is 1;

• quality αj
i .q: estimated quality for achieving this outcome

(q can be expressed either as a constant value or as a func-
tion of state variables);

• duration αj
i .d: estimated time for achieving this outcome

(d can be expressed either as a constant value or as a func-
tion of state variables);

• successor modules αj
i .SM : a set of successor modules

that are enabled after this outcome; for each m∗k ∈
αj
i .SM , we have k ≥ j, so successor modules should

be either at the same level or at a next level with respect
to the current one;

• state variable updates αj
i .SV U : a set of state variable as-

signments that must be considered after this outcome; for
each (Xk ← h′k) ∈ α

j
i .SV U , Xi ∈ Vi (only state vari-

ables active for the current level are allowed) and h′i ∈ Hi.

It is important to observe that the definition of some pa-
rameters (in particular, the quality) is not trivial, while it
affects the generation of the optimal policy. In this paper,
we assume that the designer is able to determine these pa-
rameters according to his/her experience or from external
sources. Learning techniques for determining their values
may also be considered, but they are outside the scope of
this paper.

Example 1 is modeled with the following PRU+ (also

module (name) option exec.cond prob. succ.
m1

1 (Wait) α1
1 person 1.0 m1

2, m2
2

m1
2 (Greet) α1

2 1.0 m1
4

m2
2 (Ask) α2

2 A 0.4 m1
3,m2

3

m2
2 (Ask) β2

2 B 0.4 m3
3,m4

3

m2
2 (Ask) γ22 none 0.2 m1

4

m1
3 (TaskA1) α1

3 1.0 m1
4

m2
3 (TaskA2) α2

3 1.0 m1
4

m3
3 (TaskB1) α3

3 1.0 m1
4

m4
3 (TaskB2) α4

3 1.0 m1
4

m1
4 (Bye) α1

4 1.0 m1
4

Table 1: PRU+ modules for Example1.

shown in a graphical form in Figure 2): L = (l1 =
Init, l2 = Interact, l3 = Act, l4 = Final), X is empty,
O = {person,A,B, none}. The set of modules M are in-
dicated also in Table 1. Specific values for duration (d) and
quality (q) are indicated only in Figure 2, while probability
of the outcomes are in Table 1.

Execution Rules (ER)
Execution rules define execution conditions and recovery
procedures associated with possible failures of the actions.

Execution rules have the following form:

if (φ) during a do {σ; ρ}
where φ is a boolean expression over a set of observable
state variables Y , a is an action, σ is a (possibly empty) pro-
gram (i.e., an action, a sequence of actions, a PNP, a remote
procedure, etc.), and ρ is a statement used to determine how
to continue the execution of the plan, as explained below.

The semantics of such a rule is the following. During the
execution of the action a the condition φ is continuously
monitored. If ¬φ remains true for the entire duration of the
action, then the action terminates normally and the execution
rule has no effect. Otherwise, as soon as φ becomes true, the
following operations are performed in sequence: 1) the ac-
tion a is interrupted, 2) the program σ is executed, 3) the
plan is recovered according to the statement ρ.

The statement ρ can be one of the following values
{restart action, skip action, restart plan, fail plan}
that are interpreted as follows.

• restart action : the action a is restarted;

• skip action : the action a is skipped and the next one is
executed;

• restart plan : the entire current plan is restarted;

• fail plan: the current plan is terminated with a failure
state;

Three remarks about these execution rules are important.
First, the condition φ is a boolean formula over a set of

variables, which in general are not included in the planning
domain description. This feature allows for increasing the
overall complexity of the plan execution mechanism, with-
out affecting the complexity of the planning component. In

other words, adding execution variables in ERs would not af-
fect the efficiency of the planning procedure. Variables that
are used only in the ERs represent conditions that in general
cannot be controlled by the robot and that we assume to be
usually “adequate” for the execution of the action.

Second, σ is a recovery procedure that can be imple-
mented in many ways. In this paper, we assume it is an ac-
tion or a PNP. Again, it is not necessary that the actions used
in σ are described in the planning domain descriptions. The
goal of this procedure is to ensure that the robot goes back
to a suitable state for continuing the execution of the plan.
If this is not possible, a failure notice is reported and a new
planning task can be activated. Therefore, a rule with empty
σ and ρ = fail plan corresponds to classical monitoring to
detect action failures and activate replanning.

Third, execution rules are associated to actions, but may
depend on the actual planning problem (goal, initial situa-
tion, etc.) and thus on the generated plan. It is thus possible
to have different sets of execution rules for different plan-
ning problems.

Example 1 is augmented with the following ER for the ac-
tion ask:

if (¬person) during ask do {restart plan}

and with a set of ER for any of the tasks taskδi (δ ∈ {A,B},
i ∈ {1, 2}). provided that an observable execution condition
validδ is available to detect the correct execution of the cor-
responding task:

if (¬validδ) during taskδi do {restart action}

Finally, we assume that it is always possible to abort any
task upon a specific user command or external condition la-
belled abort, in these cases the robot has to stop any activity
and return to its home position (i.e., executing the home ac-
tion). So the following rules are added for any action taskδi:

if (abort) during taskδi do {home; fail plan}

Algorithms
Generating the MDP from the PRU
To compute the optimal behaviour of the robot, we first need
to transform the various PRUs describing each active task
into a large MDP. Merging PRUs simply consists in con-
catenating while merging the initial state. This will allow
the planner to select the best task to achieve.

Given a PRU+ as described above, it is possible to trans-
form it into an MDP to compute an optimal policy. An MDP
is defined as in (Bellman 1957) as (S,A, T,R), with S a
finite set of states, A a finite set of actions, T (s, a, s′) a tran-
sition function denoting the probability for going from state
s to state s′ using action a, and R(s, a, s′) a reward function
expressing the expected gain for using action a in state s and
arriving in state s′.

State space representation: Each state s ∈ S is defined
by [αj

i , X1, . . . , X|X|], where Xk = ⊥ for all the nonactive
state variables for this level, i.e., Xk /∈ Vi. An initial state

s0 = [α0
0,⊥, . . . ,⊥] is also defined in the set of states S,

with α0
0 being a special symbol used only in the representa-

tion of the initial state. This state describes the modules that
can be used in the beginning. Finally, states that are marked
as final by a module’s outcome are grouped in a set of final
states G ⊂ S. When the execution reaches one of these, the
plan is considered terminated and the robot will wait for a
next goal. Notice that in the proposed framework, the states
do not have to be fully observable at any time, since at exe-
cution time only the observable properties and the state vari-
ables used in the execution conditions are required to de-
termine the state of the execution of the policy. However,
each transition must be fully observable since the execution
module needs to know which option has been activated at
runtime.

Actions: Actions in MDP correspond to the modules in
the PRU+. More formally A = {mj

i |1 ≤ i ≤ |L|, 1 ≤ j ≤
|Mi|}

Transition Function: The transition function T of the
MDP is defined according to the probabilities and the set
of successor modules defined in the PRU. Thus we can de-
fine the transition function for the initial state s0 as fol-
lows: T (s0,m

j
1, succ(s0, α

j
1)) = αj

1.p, where succ(s0, α
j
1)

denotes a function returning the successor state of the
corresponding outcome αj

1 of mj
1. More formally, for

a state s′ with a possible outcome αj
l , succ(s′, αj

l) =

[αj
l , e

j,(1)
l , . . . , e

j,(|X|)
l], with

e
j,(k)
l =

⊥ if Xk /∈ Vl, (i.e., non active state variables)
h′k if (Xk ← h′k) ∈ α

j
l .SV U , (just updated)

hk otherwise (i.e., the value hk is unchanged)

This process can be repeated at any level to fully define
the transition function.

Reward function: Estimated quality and estimated time
duration of an option of a module can be represented either
as a constant value or as a function of the state variables.
In the latter case, we define the following standard function
prototype: f : S × A × S × P × < → < for both the
quality and the duration function. More precisely, the 5 ar-
guments of the function prototype have the following mean-
ing: 1) current state s, 2) current action a, 3) successor state
s′, 4) function type, 5) constant parameter. Notice that these
functions are called at planning time to estimate the quality
and the duration of an action executed from a state to its suc-
cessor. These functions (being obviously domain dependent)
are implemented by the developer of the action and should
return an estimate of quality and duration in the conditions
set as arguments. The function type and the constant param-
eter are arguments used to define general functions that can
be used in a parametric way by different modules. For ex-
ample, the time needed for moving the robot from location
A to location B can be computed by path-planning and can
include a constant value depending on the context (e.g., say
goodbye before leaving).

state s action a successor states SS
s0 Wait {(s1, person)}
s1 Ask {(s2, B), (s3, A), (s4, none)}
s2 TaskB1 {(s7, true)}
s3 TaskA1 {(s6, true)}
s4 Bye {(s5, true)}
s5 Bye {(s5, true)}
s6 Bye {(s5, true)}
s7 Bye {(s5, true)}

Table 2: Optimal policy for Example1.

Dealing with durative actions: Action duration can be
implemented as a linear sequence of states with a determin-
istic transition. Thus, the action will take as many time steps
as there are states in the sequence, with no possibility of
choice nor failure in between. Please note that in case of fail-
ure or interruption, the execution rules added to the policy
later will account for it, with no effect on the computation
complexity.

Overall algorithm: The generation of the MDP can be
thus summarized as follows:

1. Select PRUs for solving current active goals.
2. Expand state variables, evaluate qualities and durations.
3. Build the MDP equivalent to each PRU.
4. Expand durative actions.
5. Merge the MDPs.
6. Solve the large MDP.

Computing the optimal policy
Computing the optimal policy simply consists of solving the
MDP model. Classical algorithms like Value Iteration (Bell-
man 1957) or Policy Iteration (Howard 1960) are able to
compute an optimal policy efficiently. More precisely, the
output of the MDP planner is 〈s0, G, {〈si, ai, SSi〉}〉, where
s0 is the initial state, G is a set of final states, and in each tu-
ple 〈si, ai, SSi〉, si is a state, ai is the action to be executed
in this state, SSi is a set of pairs (ski , φ

k
i), with ski being a

successor state and φki is the execution condition declared
in the PRU+ and associated to the corresponding outcome.
Since execution conditions are explicitly added in the output
policy, the PNP executor can determine the successor state
ski of an action by only observing the condition φki .

As a final note, the policy can be computed with a finite
horizon, when there is a maximal number of allowed actions,
or with an infinite horizon, when the system is expected to
work forever. In the finite case, the policy may change with
time. This implies that the generated PNP will be replicated
as many times as there are decision steps, each replication
being based on a specific time setting. In the infinite case,
the policy is said stationary. It does not depend on time and
the PNP can be generated only once.

The optimal policy for Example1 is shown in Table 2, with

s0 being the initial state and G = {s5} the set of goal states.
This optimal policy is obtained when the quality values of
the actions are set in such a way that the robot prefers to
start interactions with users and that Taskδ1 has a higher
reward than Taskδ2 (δ ∈ {A,B}), as in Figure 2.

Policy to PNP transformation
The optimal policy computed by the MDP planner is trans-
formed into a PNP by an algorithm that applies the PNP op-
erators. The output of the MDP planner contains the initial
and final states, the optimal policy, and the possible succes-
sor states for each execution of an action in the policy. In
other words, this output corresponds to the optimal policy
and to a portion of the MDP model: initial and final states
and a subset of the transition function of the MDP containing
information only for the pairs (state, action) that are consid-
ered in the returned policy and the corresponding execution
conditions.

Algorithm 1: Policy to PNP transformation
Input: π = 〈s0, G, {〈si, ai, SSi〉}〉: policy to execute
Data: Q: a queue of instances of actions
V : set of visited states
Output: p: PNP implementing π

1 push(Q, s0);
2 p = empty PNP;
3 V = ∅ ;
4 while Q 6= ∅ do
5 s = pop(Q);
6 select 〈s, a, SS〉 ∈ π ;
7 p = PNP add(p, 〈s, a, SS〉) ;
8 foreach s′ ∈ SS do
9 if s′ /∈ V then

10 V = V ∪ {s′} ;
11 push(Q, s′) ;

12 return p ;

The PNP is built by navigating the policy from the ini-
tial state to the goal states, as depicted in Algorithm 1. A
standard approach to build a graph using a queue of states
and a set of visited states is used. The queue Q is initial-
ized with the initial state s0 which is also added as the initial
place in the PNP. While the queue is not empty, the PNP add
function applies the sequence operator to add the action a to
the current state s, followed by a set of transitions that will
check the conditions φki bringing to any of the states ski , as
defined in SS. If a state in SS has not been visited yet, then
this state is added to the queue and it will be processed later.
The process thus continues until the queue is empty. When
encountering final states in G the corresponding places are
labeled as ‘goal’, indicating to the PNP executor to terminate
the execution of the plan and return “success”.

It is important to observe that the descriptions of the suc-
cessor states in the output returned by the MDP planner are
generated according to the specification of the PRU, as de-
scribed in the previous section. Thus, they contain the condi-
tions φki over observable properties of the environment that

Figure 3: Portion of PNP for Example1 before ERs.

can be actually checked at run time to determine the current
outcome of actions and thus the correct successor state from
which the execution should continue. Consequently, it is not
necessary to explicitly observe the MDP states s0, . . . , s7
during the execution of the PNP.

Figure 3 shows a portion of the PNP generated for the opti-
mal policy of Example1, before the application of the Ex-
ecution Rules. This PNP is formed by 25 places, 27 transi-
tions and 54 edges.

Generating the final PNP including ER
Execution rules are implemented by automatically adding
interrupts in the PNP generated from the optimal policy. For
each rule if (φ) during a do {σ; ρ}, the following
steps are performed.

For every occurrence of the action a in the current PNP,
an interrupt (i.e., a transition) labeled with the condition φ
is added. The sequence of actions contained in σ are added
to the interrupt transitions according to the PNP action for-
malism. Finally, one of the following operations is executed
depending on the value of ρ:

• restart action : the sequence of actions σ is connected to
the initial place of action a (i.e., the action a is restarted);

• skip action : the sequence of actions σ is connected to the
final place of action a (i.e., the action a is skipped);

• restart plan : the sequence of actions σ is connected to
the initial place of the plan (i.e., the entire current plan is
restarted);

• fail plan: the sequence of actions σ is connected to a final
place labeled with ‘fail’ (i.e., the current plan is termi-
nated with a failure state)

Figure 4 shows a portion of the PNP for Example1 aug-
mented with the application of the Execution Rules. This
PNP is formed by 34 places, 39 transitions and 78 edges.

In this very simple example, the size of the PNP is still
limited and in principle this plan can be manually written
by an expert user with small effort. However, in the other
examples in which the formalism has been tested, the size
of the PNP is significantly bigger and manual writing and
management becomes impractical even for expert users. The
final PNP generated by this process that is then executed by
the PNP executor, as described in (Ziparo et al. 2011).

Figure 4: Portion of PNP for Example1 after ERs.

Implementation
The proposed framework has been fully implemented and
tested both on simulated robots and on real robots. The de-
veloped software is fully available as open source in the al-
ready mentioned PNP and COACHES web sites. PRU+ can
be defined as an XML file, while ERs are defined through
a text file with a simple sintax reflecting the rules. While in
the previous sections we provided the full process applied to
Example1, in this section we provide additional details of
the implementation and execution in real environments with
real robots. More details, videos, and full specifications of
the PRU, ER, and PNP used in these tests are provided in
the COACHES web site.

Shopping mall experiments
Several runs of 2 different tasks modeled with the formalism
described in this paper have been performed at the “Rives
de l’Orne” shopping mall in Caen on February 8th, 2016.
Example2 provides a description of one of these tasks.

During the experiments we have experienced some incon-
veniences that we were able to fix on the fly by just adding
the proper execution rules. First, the robot was trying to just
avoid people in the environment when moving to a loca-
tion, without exploiting the fact that encountered people can
be interested in interacting with the robot. An ER was thus
added to greet a person when the robot encounters him/her.
In some cases, the current task is interrupted and the encoun-
tered person is allowed to start an interaction with the robot.
Another situation arised when the robot reached a shop lo-
cation and executed a default behavior of turning back to the
center of the mall. This behavior is not adequate however
when a person is close to the shop. Also in this case an ER
allowed to fix this inconvenience. Video Rive Feb16 in the
COACHES web site show the execution of these tasks.

Office experiments
In the experiments made at DIAG Sapienza University, the
robot performed several assistance tasks for visitors, as de-
scribed in Example3.

In these experiments, ERs have been useful to improve
the robot behavior in approaching people. For example, if

the robot has to reach a location and the user moves to-
wards the robot before it has completed the action, block-
ing its path to the target position, the action will not end and
the interaction with the person will not be started. We thus
added an ER to skip the current action whenever the robot is
close enough to its target position and the person is in a so-
cial distance to the robot. Additional examples are shown in
Video DIAG Nov15 available in the COACHES web site.

Computational complexity
In this section, we discuss a computational analysis of the
proposed algorithms.

The complexity of state generation mainly depends on the
number of state variables to instanciate and on the number
of layers and outcomes in the PRU. For instance, a PRU con-
taining L = 3 levels, withA = 2 alternative modules having
eachB = 5 outcomes, would generate Sc = L×A×B = 30
different MDP states for each instance of the variables. If
there are 2 variables with 3 possible values on each layer
(C = 32 = 9 possible combinations), then the final MDP
has S = Sc × C = 270 states. Since each layer has its own
set of variables, this exponential growth is limited by the
number of necessary variables for each level. Building the
reward and the transition functions depends on the number
of states where each action can be used and on the number
of outcomes each action can lead to. Adding observations to
the MDP policy to build an executable plan is linear in the
number of states, since only one action is used in each state.
This complexity may be further reduced if the initial state
of the system is known, since only a subset of the states is
typically used from a given situation.

In summary, the complexity for computing the optimal
plan for a given PRU is O(S · A · B ·H + S · A · B + L ·
A · B · C) = O(L · A2 · B2 · C · H). With L the number
of layers, A the average number of modules per layer, B the
branching factor (the average number of outcomes per mod-
ule), C the average number of state-variable combinations
per layer, and H the horizon.

The cost of generating the PNP is proportional to the num-
ber of MDP states. As described in the previous section, the
policy to PNP transformation algorithm builds a PNP action
for any state that is described in the policy and adds a num-
ber of transitions to other MDP states. Thus the size of the
generated PNP is linear in the number of MDP states.

The application of the ERs is linear in the number of oc-
currences of actions and in the number of rules. In the worst
case (arising when all the rules apply to all the actions), the
complexity is proportional to the product of the number of
occurrences of actions in the PNP and the total length of
all the rules. However, this situation is very uncommon. If,
for each action, only a few rules apply and the length of the
recovery procedures in the rules is limited (that is a more
realistic case), then this complexity can be considered pro-
portional to size of the original PNP without ER, thus again
proportional to the number of MDP states in the policy.

Conclusion
In this paper we presented a practical framework for gen-
eration and execution of robust plans for service robots.

Our framework integrates compact representation of com-
plex tasks using Progressive Reasoning Units (PRUs); a ro-
bust mathematical tool for decision-theoretic planning tech-
niques based on Markov Decision process (MDP) and ex-
ecution model to support failures by transforming the pol-
icy into a Petri-Net Plan (PNP). This general framework has
been implemented and succesfully tested with real robots in
shopping mall and office environments. The main future di-
rections of this work are: 1) to test its scalability to more
complex tasks involving complex user interactions, 2) to ap-
ply machine learning techniques for long-term adaptation
and evolution of the PRU, 3) to augment the robot knowl-
edge with common-sense knowledge.

References
Bellman, R. 1957. A markovian decision process. Indiana
Univ. Math. J. 6:679–684.
Boutilier, C., and Poole, D. 1996. Computing optimal
policies for partially observable decision processes using
compact representations. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96),
1168–1175.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored representa-
tions. Artificial Intelligence 1-2(121):49–107.
Cheuk, A. Y. W., and Boutilier, C. 1997. Structured arc
reversal and simulation of dynamic probabilistic networks.
In Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence (UAI-97), 72–79.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Hanheide, M., et al. 2015. Robot task planning and expla-
nation in open and uncertain worlds. Artificial Intelligence.
Hoey, J.; St-aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In
Proc. of 15th Conference on Uncertainty in Artificial Intel-
ligence, 279–288. Morgan Kaufmann.
Howard, R. 1960. Dynamic Programming and Markov Pro-
cesses. Published jointly by the Technology Press of the
Massachusetts Institute of Technology and.
Koller, D., and Parr, R. 2000. Policy iteration for factored
mdps. In Proc. of 16th Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 326–334.
Mouaddib, A.-I.; Zilberstein, S.; and Danilchenko, V. 1998.
New directions in modeling and control of progressive pro-
cessing. In ECAI, volume 98.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Ziparo, V.; Iocchi, L.; Lima, P.; Nardi, D.; and Palamara, P.
2011. Petri Net Plans - A framework for collaboration and
coordination in multi-robot systems. Autonomous Agents
and Multi-Agent Systems 23(3):344–383.

