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Abstract. The deployment of robots in dynamic, complex and uncer-
tain environments populated by people is gaining more and more atten-
tion, from both research and application perspectives. The new challenge
for the near future is to deploy intelligent social robots in public spaces
to make easier and safer the use of these spaces. In this paper, we provide
an overview of the COACHES project which addresses fundamental issues
related to the design and development of autonomous robots to be de-
ployed in public spaces. In particular, we describe the main components
in which Artificial Intelligence techniques are used and integrated with
the robotic system, as well as implementation details and some prelimi-
nary tests of these components.

1 Introduction

Public spaces in large cities are becoming increasingly complex and unwelcom-
ing environments because of the overcrowding and complex information in sign-
boards. It is in the interest of cities to make their public spaces easier to use,
friendlier to visitors and safer to increasing elderly population and to the peo-
ple with disabilities. In the last decade, we observe tremendous progress in the
development of robots in dynamic environments populated by people. There are
thus big expectations in the deployment of robots in public areas (malls, touris-
tic sites, parks, etc.) to offer services to welcome people in the environment and
improve its usability by visitors, elderly or disabled people.

Such application domains require robots with new capabilities leading to
new scientific challenges: robots should assess the situation, estimate the needs of
people, socially interact in a dynamic way and in a short time, with many people,
the navigation should be safe and respects the social norms. These capabilities
require new skills including robust and safe navigation, robust image and video
processing, short-term human-robot interaction models, human need estimation
techniques and distributed and scalable multi-agent planning.



Fig. 1. COACHES environment and robot.

The main goal of the COACHES project (October 2014 - September 2017) is
to develop robots that can suitably interact with users in a complex large public
environment, like a shopping mall. Figure 1 shows the Rive de l’orne shooping
mall in Caen (France) where the experimental activities of the project will be
carried out, as well as a prototype of the robot that will be used.

Previous work on social robotics and human-robot interaction mostly fo-
cused on one-to-one human-robot interaction, including elderly assistance (e.g.,
GiraffPlus project [5]) and interaction with children (e.g., MOnarCH project [6]).
Robots acting as museum tour-guides have also been successfully experimented.
One of the first robot interacting with many non-expert users was RHINO de-
ployed at the “Deutsches Museum” in Bonn, Germany [2]. In this work, the main
focus was in the mapping, localization and navigation abilities in crowded envi-
ronment, while human-robot interaction was limited to buttons on the robot, a
remote Web interface and pre-recorded sentences issued by the robot.

As shown in the figure, in contrast with previous work, the COACHES environ-
ment is very challenging, because populated by many people. Moreover, we aim
at a more sophisticated interaction using multiple modalities (speech, gesture,
touch user interfaces) and dialog generated on-line according to the current situ-
ation and the robot’s goals. Consequently, the required level of “intelligence” of
the COACHES robots in order to adequately perform complex and effective tasks in
this environment in presence of people is much higher than in previous projects.

The proposed methodology to reach the project goals is based on integration
of Artificial Intelligence and Robotics. In this paper, we describe the main overall
architecture of the system (Section 2) and the components related to Artificial
Intelligence and Robotics (Section 3): 1) knowledge representation, 2) planning
under uncertainty, 3) hierarchical plan execution and monitoring. Section 4 pro-
vides some examples and Section 5 concludes the paper.



2 Software Architecture

Fig. 2. COACHES software architecture

The software architecture of the COACHES robots is shown in Figure 2). An
open architecture (hard/soft) and standard technologies available will be used,
so that it will be easy to extend and/or adapt the capabilities of the system
during the whole length of the project (especially to integrate and test various
algorithms and/or sensors). Such an open architecture will also simplify and
optimize integration efficiency as well as re-use of assets in other projects or
products.

The main software components that will be developed for control, reasoning
and interaction functionalities of the system are listed below.

– Scene analysis, including sensor processing procedures for both on-board
robot devices and static sensors in order to determine the current situation
and understand events that are of interest for the system.

– Multi-modal HRI, defining a set of modalities for human-robot interaction,
including speech recognition and synthesis, touch interaction, graphical in-
terface on a screen mounted on the robot and Web interfaces.

– Knowledge-based representation and reasoning, defining the formalism and
the procedure to represent and reason about the environment and the task
of the robots.

– Planning and execution monitoring, for generating the plans to achieve the
desired goals and monitor their execution for robust behaviors.

– Safe navigation, for guaranteeing safety operations of the robot in a popu-
lated environment.



3 Artificial Intelligence components

While the overall software architecture described before integrates several com-
ponents that are all important for the development of the project, in this paper
we focus on the modules that implement a proper integration between Artifi-
cial Intelligence and Robotics techniques. Thus, in this section, we will describe
the three main components that allow the robots to: 1) represent and reason
about the environment, 2) generate the plan to reach their goals; 3) monitor the
execution to overcome failures.

3.1 Knowledge base representation and reasoning

The knowledge base (KB) is used to model both static knowledge (e.g., the se-
mantic map of the environment and the common sense information) and the
dynamic knowledge (e.g., human activities) coming from different units, such as
the perception modules of the architecture, particularly the multi-modal HRI
interface and the image processing modules. From these information, the rea-
soning module is able to infer the list of possible tasks to accomplish. This list
of tasks is then sent to the decision module (described in the following section)
that will compute the policy to accomplish them.

Although there are many existing approaches to semantic representations
of the environment (see [7] for a survey), a standard formalism does not exist.
In this section, we thus define the main features of the knowledge base used
in the project, based on experience in previous work [1, 3]. We first introduce
the semantic labels used to describe elements of the world, then predicates that
determine relations among these labels, and finally its application to the use case
in the project.

Semantic labels. In order to refer to objects and classes of objects in the
knowledge base, we introduce a set of labels that will be associated to semantic
meanings.

A first set of these labels are called Concepts. Concept labels are associated
to classes of objects and in this paper they are denoted with an uppercase initial
letter. For example, Restaurant is a concept used in the semantic map to denote
the class of restaurants in the shopping mall. These concepts are organized in
a hierarchical way according to the “is-a” relation. In this way, we can express,
for example, that the concept FrenchRestaurant is a Restaurant.

A second set of labels will be used to denote objects. Each object belongs to a
concept implementing the relation “instance-of”. Object labels are denoted with
lowercase letters. Thus, a particular restaurant in the mall will be denoted with
an object label caféMarcel that will be an instance of the concept FrenchRestau-
rant.

Predicates. Predicates are used to describe relations among the semantic labels.
For example, the “is-a” and the “instance-of” relations can be represented by
the corresponding predicates is-a and instance-of. Predicates are also used to



denote properties of objects or locations (e.g., the status of a door or the presence
of air-conditioned in a shop).

For representing the Rive de l’orne shopping mall, we consider different types
of areas: shops, restaurants, halls, corridors, rest areas, offices, toilettes, etc. For
shops, services and restaurants we consider different categories:

– Shop categories: dress shop, women dress shop, kid dress shop, men dress
shop, makeup store, store perfume, sport store, etc.

– Restaurant categories: French, Japanese, Chinese, Italian, Oriental, African,
fast-food, etc.

– Service categories: security, information, health-care, etc.

All these areas are represented as concepts that are grouped in a more general
concept Area. The hierarchy of these areas will be defined through the “is-a”
relation of the semantic labels described before.

Some examples of predicates for representing the shopping mall are:

is-a(FrenchRestaurant, Restaurant)
instance-of(caféMarcel, FrenchRestaurant)
connect(door12, hall, caféMarcel)
open(door12)
airconditioned(caféMarcel)

Reasoning. The KB is used by reasoning processes that define the goals for the
COACHES robots. To this end, the reasoning engine takes into account the available
information in the KB related to: semantic map, common-sense knowledge, and
dynamic knowledge coming from the scene analysis and HRI modules. With this
input, this module determines which goals for the system are consistent with the
current situation. Then these goals are passed to the Planning module described
below.

A further function of reasoning on the KB is to determine conditions for plan
execution that are derived from direct perception. In this way, plan execution
can consider properties not directly observable from perception, but coming from
a reasoning process that interpret perception with common-sense reasoning.

3.2 Planning under uncertainty

In this section we describe the Markov Decision Process (MDP) used to model
the COACHES planning domain and the algorithm implemented for computing the
optimal policy.

Task structure. The result of the reasoning module (KB module) is a set
of goals G = {g1, g2, . . . , gk} concerning advertisement, patrolling, assisting and
escorting. We note also that advertising goals could be performed in parallel with
the moving ones. Consequently, the task structure is a hierarchy of modules to
execute. This structure is inspired by progressive processing units [4], that we



name PRU+. In our application, we define four PRU+. Each PRU+ is composed
of levels where the first level concerns the execution of the subtask goto site
X, the second level concerns the advertisement at a location (x, y) and the third
level consists of do task X where X could be the assistance, the patrolling,
the escorting or the surveillance. With such task structures we can also define
some joint goals requiring joint PRU+. For example, escorting a people from
one location in a building to another location in the other building requires a
cooperation between robots. Indeed, the first robot executes a policy of PRU+
for escorting a user to the exit of the first building, provide him/her information
to reach the other building and then send information to the other robots in
the other building to continue the escorting task at the second building. The
structure of tasks we propose for single robot tasks is {goto x, advertisement,
do x}, while for the joint task is {goto x, advertisement, inform people,
send message to the other robots}. The task do x concerns different tasks
of assistance.

More formally, a PRU+ is defined by a set of levels {l1, l2, . . . , lk}, where each
level li is composed by a set of modules {m1

i ,m
2
i , . . . ,m

pi

i } and each module mj
i

is defined by different execution outcomes that we name options {αj
i , β

j
i , . . .}.

MDP definition and planning. The planning procedure consists of formal-
izing the robot activities as an MDP using the PRU+ task definition. This
procedure is based on two steps: 1) generating an MDP from a PRU+, 2) com-
pute the optimal policy for the generated MDP. In the following we define the
MDP =< S,A,R, T > where :

– S is a set of states defined by x = [l,m, o, v] where l is the level of the PRU,
m is a module of the level l, o is an option of module m and v are state
variables defining the execution context representing the subset of variables
to be considered for the option o.

– A is the set of actions consisting of execution of one module of the next levels
E or skipping the level S.

– T is the transition function defined as follows :
• Pr([l + 1,m′, o′, v′]|[l,m, o, v], E) = p(o′), this means when execution

module m′ at state [l,m, o, v] we move to state [l′,m′, o′, v′] with proba-
bility p(o’) representing the probability to get the outcome o′.

• Pr([l+ 2,m′, o′, v′]|[l,m, o, v], S) = 1, this transition is deterministic be-
cause we skip level l + 1 and we move to level l + 2.

– R is the reward function related to the options assessing the benefit to get
the outcome;

From this definition, the Bellman equation for our model becomes

V (x) = R(o) +maxE,S

∑
x′

Pr(x′|x, a)V (x′)

The optimal policy π is computed by a standard MDP solving algorithm
based on value-iteration. Moreover, in this algorithm, a tabu-list of actions is



used to choose or drop actions to be inserted in the policy. This tabu-list is built
and updated by the Model updater module, described below in this section,
representing the actual feedback coming from the execution layer.

3.3 Plan execution and monitoring

Plan execution monitoring and interleaving planning and execution are crucial
features for an autonomous robot acting in a real environment, specially when
human interaction is involved, as for the COACHES robots. Indeed, in complex
scenarios, it is not possible to model and foresee all the possible situations that
may occur, consequently plans generated off-line (i.e., before the actual execution
of the task), when several information about the real environment are not known,
may not be optimal or feasible at execution time.

It is thus necessary to explicitly model and consider possible plan failures and
to devise a mechanism that is able to properly react to these failures. Moreover,
on-line replanning (i.e., planning after plan failures) may not be feasible when
the model itself is inaccurate, since the same cause of the plan failure (typically a
non-modeled feature of the environment) will likely occur also in next executions.

To this end, we have defined a plan execution and monitoring framework
composed by three modules: a planner (as described in the previous section), an
executor, and a model updater. The three modules cooperate during the execu-
tion of a complex task for a robot and provide for a feedback mechanism from
execution to planning. More specifically, the following interactions are devised:
1) the planner notifies on-line to the executor the best plan (policy) to be exe-
cuted according to the current model of the world; 2) the executor executes this
plan (policy) and determines success or failures of the actions; 3) each failure
is reported to the model updater that will follow some rules (either automatic
domain dependent or manual domain dependent) to modify the current model,
so that the planner can generate a new plan that is more suitable for the current
situation as detected by the executor.

The execution module is based on the Petri Net Plan (PNP) formalism1

[8]. PNP is a formalism to represent high-level plans for robot and multi-robot
systems. Being based on Petri Nets, it is very expressive and can thus represent
durative ordinary and sensing actions, and many constructs such as sequence,
loop, interrupt, fork/join, and several multi-robot synchronization operators.
PNPs are used to model the behavior (i.e., the policy) that is generated by
the planner module and to execute it using the PNP-ROS implementation that
allows ROS actions2 to be executed under the control of a PNP.

The two main components of this process will be described in the rest of this
section: 1) Policy to PNP transformation; 2) Model updater.

Policy to PNP transformation. The policy generated by the MDP plan-
ner is automatically transformed in a PNP. For this process, the MDP planner

1 pnp.dis.uniroma1.it
2 wiki.ros.org/actionlib



produces the following information: the initial state, one or more goal states,
state-action pairs implementing the policy and the conditions to be checked
when non-deterministic actions are executed. States, actions and conditions are
represented just as unique labels. With this input, the algorithm for generating
the corresponding PNP is based on a recursive procedure for building the graph
corresponding to the policy, starting from the initial state to the goal states,
applying the state-action pairs for each state and adding a sensing operator for
every non-deterministic effect of an action.

The labels in the policy and in the PNP referring to actions correspond to
implemented actions, while labels referring to conditions correspond to sensor
processing procedures that evaluate their truth based on the current information
available to the system.

The PNP generated with this process does not contain a representation of
action failures. Action failures are considered by defining a set of execution
conditions for each action and by automatically adding action interrupts when
these conditions are not valid. In this way the new PNP will be able to actually
check execution conditions of actions and to interrupt the plan whenever these
conditions are not valid. For example, an execution condition of a communication
action is that a person is in front of the robot. While executing the action, the
condition of a person being in front of the robot is checked and, if it becomes
false, the action is interrupted.

When an interrupt is activated, the flow of execution of the plan can follow
one of the two following lines: 1) internal recovery procedure3, when the current
plan itself contains a recovery behavior (i.e., a sub-plan or portion of the plan)
for dealing with this failure; 2) plan failure, when the current plan is not able to
deal with this kind of failure.

In the latter case, the executor sends to the Model updater module the fol-
lowing information: 1) action failed, 2) condition that was checked to determine
action failure, 3) status of the plan (that can contain additional conditions use-
ful for diagnosis of the failure). Given this input, the Model updater module
(described in the next paragraph) modifies the MDP model of the domain and
activates a new planning procedure to generate a new plan (policy) that aims
at avoiding at least the failure cause just occurred.

Model update. The problem of updating a planning model, given the feedback
of the execution of the plan, is very relevant for actual application of planning
techniques to real problems, but, to the best of our knowledge, a general solution
suitable for our needs does not exists.

At this moment, we have implemented a simple method that builds and
maintains a tabu list of actions to be selected in the MDP planning process.
More specifically, whenever an action fails, the action is inserted in the tabu
list and thus it will not be selected in the next generation of the policy. This
mechanism is also tied to a time decay mechanism, so that the presence of an

3 At this moment, the internal recovery procedures are manually written, while some
automatic technique could be devised.



Fig. 3. 2D map of the Rive de l’orne shopping center and Stage simulator snapshot of
the DIAG example.

action in the tabu list decreases over time, making the action available some
time after the action failed, in order to try it again in the future.

For example, if the action of moving to a particular shop fails because there
are too many people in that area, the robot will avoid to generate a new plan
that will include going to that shop for a while, avoiding thus the main cause of
the current failure.

Although not optimal, this strategy allows the robot to generate new plans
that will possibly avoid the causes of failure of the previous plans.

4 Implementation and tests

Before experimenting the robots in the actual environment, it is necessary to
develop and test the solutions in a simulator and in a more controlled environ-
ment. To this end, we report here the development of a simulated environment
for the project and some preliminary tests made with the robot in the DIAG
Department.

COACHES architecture is implemented within the ROS framework4. ROS in-
cludes several ready-to-use modules for basic functionalities of the robots, hard-
ware drivers, simulation, and debugging. Moreover, the ROS environment guar-
antees an easy porting from simulation to real robots and in particular, our
software architecture is implemented in such a way to remain unchanged when
passing from simulation to robots.

4.1 2D Simulator environment

The simulation environment in COACHES is 2D and is based on Stage, in partic-
ular on its ROS version5. The choice of a 2D simulator (instead of a 3D one)
is motivated by: 1) the need of modeling and testing high-level behaviors of the
robots that do not involve 3D perception, 2) the possibility of using the simu-
lator for multiple robots and other moving elements representing people in the

4 www.ros.org
5 wiki.ros.org/stage



environment, 3) the possibility of using the simulator on standard laptops, thus
not requiring advanced graphical cards for running 3D simulations.

We have extended the original Stage simulator by adding a characterization
of people in the environment and simple forms of HRI: i) the words spoken by the
robot appears in the simulation window; ii) a GUI can be used by an operator
to simulate human-robot inputs.

In the Stage simulator maps of the Rive de l’orne shopping center (Fig. 3 left)
and of the DIAG Department (Fig. 3 right) have been realized. The Stage envi-
ronment models one or more robots that have the same 2D sensor and actuator
configurations as the real ones and some additional mobile obstacles that repre-
sent people moving in the environment. Several behaviors can be tested in this
simulated environment such as: 2D perception of human behaviors, human-robot
social navigation (e.g., following a person or guiding a person), safe navigation
in the environment.

Several tests have been performed on the simulator, showing that it is a
suitable tool for developing high-level robot behaviors.

4.2 Preliminary tests at DIAG

In order to test the developed modules on a robot, we have defined a task (similar
to the COACHES use cases) that can be run in an office environment. We consider
a robot assisting users in an office. The robot welcomes people at the entrance
and tell them about the latest news. It may also offer assistance for the printer:
bringing the printed document to some other person, or informing technicians
about printer troubles.

Fig. 4. PRU+ for printer-assistance and welcome



The mission is described in the PRU+ depicted in Figure 4. It has 4 layers:
1) waiting for people, 2) welcoming people and offering assistance, 3) bringing
documents and fetching for technicians, and 4) returning to home position. The
expected behavior is the following: from action ‘wait’ in Layer 1 four outcomes
are possible: nobody is there, somebody has been detected near the entrance,
near the printer, or both. When the ‘wait’ action completes, the robot might
decide to wait again. If somebody is close to it, the robot can welcome and
announce news. If somebody is at the printer, the robot can go there. Tasks
‘welcome’, ‘say hello’, ‘call tech’ and ‘give document’ are also granting the robot
a reward. They are represented by octagons in Figure 4.

From this PRU+, a 16-states MDP is built. Once solved, it produces the
following policy:

– (Init): wait
– (1,wait,both): goto printer
– (1,wait,entry): welcome
– (1,wait,print): goto printer
– (2,goto printer,err): goto home
– (2,goto printer,ok): say hello
– (2,say hello,bring): goto office
– (2,say hello,done): goto home

– (2,say hello,help): goto tech
– (2,welcome,done): restart
– (3,goto office,done): give document
– (3,goto tech,done): call tech
– (3,give document,done): goto home
– (3,call tech,done): goto home
– (4,goto home,done): restart
– (4,restart,done): restart

The policy is denoted by state-action pairs, where states are represented
as [l,m, v] (i.e., level, module and state variables, as described in the previous
section) and actions correspond to the tasks defined in the PRU+. This policy
is then translated into a PNP and executed by the robot.

Figure 5 shows some snapshots of plan execution, in the situation where the
robot is asked to bring a document to a person. The interaction with the two
persons involved and a few intermediate snapshots are reported. Notice that,
although in a simplified setting6, with these tests we have verified suitability
and effectiveness of most of the components of our software architecture and
their interconnection.

5 Conclusions

In this paper, we have described the main concepts of the COACHES project
and in particular its Artificial Intelligence and Robotics components and their
integration. More specifically, we have described a framework for integrating
knowledge representation and reasoning, MDP planning and PNP execution,
allowing a feedback from execution to reasoning in order to update and improve
the current model of the world. Implementation and preliminary tests of such
an integration have been performed to assess the suitability of the proposed
architecture.

6 At this moment HRI and perceptions modules are not fully implemented and thus
we replaced them with the remote control of an operator.



Fig. 5. Example of plan execution.

Many interesting results are expected from the COACHES project, since the
environment and the challenges considered here are very ambitious. Among the
several performance evaluation procedures, we aim at including extensive user
studies that will be used to validate the effective development of intelligent social
robots performing complex tasks in public populated areas.

We believe that deploying robots in public spaces populated by non-expert
users is a fundamental process for the actual design, development and validation
of integrated research in Artificial Intelligence and Robotics. Consequently, we
envision many significant contributions to this research area from the COACHES

project.
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