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Abstract— In this paper we explore how a visual SLAM sys-
tem and a robot knowledge base can mutually benefit from each
other. The object recognition and mapping methods are used for
grounding abstract knowledge and for creating a semantically
annotated environment map that is available for reasoning. The
knowledge base allows to reason about which object types are
to be expected while exploring an environment and where to
search for novel objects given a partial environment map. Prior
information like task descriptions and object models is loaded
from RoboEarth, a web-based knowledge base for exchanging
knowledge between robots, and the created maps are again
uploaded to RoboEarth. We show that by exploiting knowledge
about common objects in a room and about the co-occurrence
of objects, both efficacy and efficiency of the perception can be
boosted.

I. INTRODUCTION

The abilities to efficiently create semantic environment
models and to use these models intelligently to locate objects
will become increasingly important as more and more robots
enter human living and working environments. To successfully
operate in such environments, robots will have to face the
open-world challenge, i.e. they will need to be able to handle
high numbers of (novel) objects that are located in various
places on top of or inside furniture, and they need to quickly
become acquainted with novel environments.

Competently performing these tasks poses several chal-
lenges for today’s robots, for example: How can the visual
perception system handle large numbers of object models
without slowing down the recognition or detecting more false
positives? How can a robot efficiently explore an environment
to create a semantic map of objects? Which are the most
important objects to look out for? How can the robot exploit
common-sense knowledge to guide its search for novel
objects? How can it profit from information other robots
have already collected? We believe that finding solutions to
these problems will be crucial to scale object search tasks
from restricted and well-known laboratory environments to
more open and diverse scenes.

In this paper, we investigate a web-enabled and knowledge-
based approach to this problem. Our robots have access to the
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web-scale RoboEarth knowledge base [24] that provides them
with formally represented task descriptions, different kinds of
environment maps and both semantic and geometric object
models. Through RoboEarth, robots can share information
by uploading maps of environments they have explored
or descriptions of tasks they have learned. By intelligently
selecting only that information that is needed for the current
task from this web-based knowledge base, robots can keep
their local knowledge bases and object model databases small
and efficient, while having much larger information resources
in the background.

All pieces of information in RoboEarth are semantically
annotated, i.e. they are described in a formal, logical lan-
guage [23] and linked to an ontology. This enables the robot
to perform logical inference to verify that all capabilities that
are required for a task are available, to compute the most
likely locations for an object, and to query for all objects
of a certain type in the environment. Using inference on its
background knowledge, the robot can decide which are the
most likely objects in a room (and only download their models
to its local database), can compute where novel objects are
likely to be found (and guide the search accordingly), and
thereby become more efficient in performing its tasks.

In order to apply the abstract knowledge to operation in
the real world, it needs to be grounded [8] in the robot’s
perception system and its knowledge about the environment.
In this paper, we propose to link the knowledge base with a
visual SLAM system that provides accurate and continuous
asynchronous perception and is integrated with an object
recognition module that identifies objects based on a local
database of object models. The main contributions of this
paper are (1) the integrated system synergetically combining
a SLAM and object recognition system with a knowledge
base; (2) techniques for using prior knowledge to select object
models for exploration; and (3) methods for guiding object
search by exploiting background knowledge about objects
and a partial semantic map.

The remainder of the paper is organized as follows: We
start with an overview of related work on searching objects
and explain the structure of our system and the two main
tasks it performs: guided exploration and knowledge-based
object search. We then present the system components in
more detail, describe the experiments we have performed,
and finish with our conclusions.

II. RELATED WORK

Structured object search and reasoning about likely object
locations have been an active research topic over the past



Fig. 1. System overview. The robot downloads information from the RoboEarth knowledge base (right), executes the task based on the downloaded
specification (grey blocks), explores the environment, detects objects and creates a semantic environment map. The resulting can then be uploaded to
RoboEarth to share it with other robots.

years. Much work explored vision-based methods to search
for objects in a top-down manner based on saliency and
visual attention mechanisms [17], [5], [21]. Zhou et al. [27]
use information from Web-based common-sense databases
and search engines to compute object–room co-occurrence
probabilities. Kunze et al. propose a utility-based approach
for object search that particularly focuses on the decision of
which location to search first [10]. The approach by Aydemir
et al. [2] is similar to ours in that they also use landmark
objects to guide the search for smaller objects inside or on
top of the landmarks. While they focus on the probabilistic
formulation of the search procedure as a Markov Decision
Process, we explore a knowledge-based strategy that exploits
formal knowledge about object types, their (likely) spatial
relations, and their shape and appearance.

III. OVERVIEW

Figure 1 gives an overview of the main components of the
proposed system on the example of the semantic mapping
task. We assume that the RoboEarth knowledge base (right
block) contains a task description (called “action recipe”) for
the semantic mapping tasks and models for common objects.
In this paper, we focus on two action recipes for perception
tasks: semantic mapping of an unknown environment and
active search for an object. The second recipe for active search
exploits knowledge about the locations of already detected
objects in the room that act as landmark objects.

Each piece of information in RoboEarth is annotated with a
formal description of the requirements a robot has to fulfill in
order to use it. This description (depicted as colored puzzle
pieces) is matched against a formal model of the robot’s
capabilities using the Semantic Robot Description Language
(SRDL) [11] to make sure that the information can be used
by the robot. Based on the background knowledge about
which objects are likely to be encountered in which kinds of

rooms, RoboEarth infers a set of object models that will be
recognized during the exploration. The downloaded object
models are sent to the visual SLAM and object recognition
components (Section V-C) that are able to insert recognized
objects into the map in real time. The object models are in a
local sub-database composed of about a dozen models, which
ensures fast recognition and a low false-positive rate. The
recognized objects are added to the SLAM map and serve as
landmark objects when searching for objects later on.

After download, a robot plan is generated from the
action recipe (Section IV), and the robot executes the task
according to the structure defined in the recipe. It explores the
environment using a frontier-based algorithm (Section V-B)
and creates a visual SLAM map including the recognized
objects (Section V-C). After the exploration has finished, the
robot exports the map in the formal RoboEarth language and
uploads it to the RoboEarth knowledge base.

IV. ACTION RECIPES FOR ACTIVE PERCEPTION TASKS

Action Recipes [23] specify a task on a platform- and
environment-independent level. They are formulated in the
Web Ontology Language (OWL) in terms of action classes
defined in a common ontology. Recipes describe the action
to be executed, objects to interact with, as well as constraints
on the execution flow. In comparison to a robot execution
plan, they are formulated on an abstract level (see e.g.
Figure 1). This enables sharing recipes among robots with
different hardware configurations. However, due to the level
of abstraction, this representation is not viable to be used as
input to an interpreter for task execution, and the information
missing in the recipe needs to be included first. Our system
thus has a set of manually written functions that generate
partial execution plans for different OWL action concepts.
They can be thought of as templates for the final plan steps,
which are completed using the description of the robot and



the environment. For example, the code generating function
for the visibility reasoning step (Section VI) looks up the pose
of the camera used for object detection relative to the robot
base in the robot’s SRDL description. The code generating
functions are stored in the RoboEarth database and annotated
with an OWL description that defines the OWL classes and
robot SRDL for which it is able to generate executable code.
For each action described in the recipe, the system looks up
possible code generator functions in the RoboEarth database
and checks which are usable for the given robot platform
by matching the SRDL capabilities. In case multiple code
generator functions are found, it chooses the one with minimal
Rada distance [4] to the action concept under consideration.
If the result is still ambiguous, the human operator is asked.
The code generator functions then get the robot platform
used and the environment as parameters and extract required
parameters themselves. We chose the CRAM plan language
[3] as notation for executable plans.

In this paper, we mainly investigate two robot tasks:
semantic mapping of an environment and knowledge-based
object search. Both tasks have been described in terms of
a RoboEarth action recipe. The SemanticMapping Recipe
enables a robot to build a semantic map from scratch and to
store the result as a RoboEarth environment. Before the task,
the knowledge base infers a set of landmark objects which
are typically found in the type of room that is being explored.
A semantic map including these landmark objects is useful
in future tasks to guide the search for small objects which
are hard to detect if the robot is not close to them. The small
set of landmark objects allows real-time map building and
increases the robustness with respect to recognition errors
because it contains only those objects that are likely to be in
the room. To compute the exploration trajectory, we apply
a frontier exploration algorithm which uses path planning
and reactive navigation techniques for safe navigation. Once
the exploration is finished, the semantic map is uploaded to
RoboEarth for future use.

The ObjectSearch Recipe exploits the semantic map built
in an earlier exploration run, not necessarily done by the same
robot. The knowledge base infers the potential locations from
where the selected object is probable to be detected (see
Section VI for details about the inference). The robot safely
navigates directly towards the computed locations and starts
a local search until the object is found. The found objects
are included within the semantic map, which is uploaded to
the RoboEarth knowledge base.

V. ROBOT CAPABILITIES FOR ACTIVE PERCEPTION

An action recipe specifies the set of capabilities needed for
its execution. A robot capability is defined as the ability to
perform a certain action. A robot effectively has a capability
if it has the necessary hardware and low-level software
components that implement this capability. The set of available
capabilities also influences the structure of the robot plan
that is generated from the action recipe. For the case of the
active perception tasks described in this work, the needed
robot capabilities are depicted in Figure 2. The following
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Fig. 2. A summary of the SRDL robot capabilities ontology including the
active perception capabilities.

subsections describe these capabilities and the corresponding
components.

A. Navigation and Exploration Capabilities

The NavigationCapability class comprises the following
navigation capabilities:
• EnvironmentExplorationCapability: Ability to navigate

in an unknown environment in order to build a navigation
map. This capability is implemented by an exploration
algorithm that is represented as an instance of the class
EnvironmentExploration.

• CollisionFreeNavigationCapability: Ability to safely
navigate to a goal. This capability is implemented by
obstacle avoidance and trajectory planning algorithms
which are described as instances of the class Naviga-
tionComponent.

The PerceptionCapability class groups the following
perception-related capabilities:
• VisualSLAMCapability: Ability to build a map composed

of point features, objects and a 3D grid cell map. This
capability is implemented by a SLAM algorithm of the
type VisualSlamMappingComponent.

• ObjectRecognitionCapability: Ability to recognize ob-
jects and provide an initial estimate of its location.
This capability is implemented by a visual recognition
algorithm of type ObjectRecognitionComponent.

B. Navigation and Exploration Components

The Navigation component implements robot trajectory
planning and collision avoidance algorithms for safe navi-
gation towards the goal location. Whilst the robot moves, a
2D map is built and the robot is continuously localized in it.
This component is implemented by the following algorithms:

1) An integrated path planning and obstacle avoidance
method. The global navigation plan is locally modified
by the reactive navigation, which is in charge of com-
puting the motion command. The planning technique
is based on a A*-type algorithm [13]. As obstacle
avoidance method we have applied ORM [15] adapted
for differential drive robots due to its performance on
dense, complex and cluttered environments.



Fig. 3. Output of the semantic visual map stored according to RoboEarth
standards for environment model representation. The right box encodes
meta-information about the map to be used for searching the RoboEarth
database. The top left represents the semantic map composed of objects.
The middle left represents the occupancy grid, the bottom left the visual
SLAM map.

2) A Rao-Blackwellized particle filter SLAM [6] to
estimate the robot location and the 2D navigation map,
computed from 2D laser rangefinder readings.

The purpose of the EnvironmentExploration component
is to provide the capability to explore a room for the first
time. It is very unlikely to build a full map of the room just
from the first sensor reading, so the main issue is to compute
on-line the robot locations from where to perceive unexplored
room regions. The exploration uses a frontier-based approach
[26] to compute the robot exploration goals. The robot moves
to an unexplored area while avoiding obstacles using the
Navigation component and adds the new information to its
map. The exploration ends when the map contains no more
accessible frontiers.

C. Perception Components

The goal of the perception components is to provide
environment maps, see Figure 3. RoboEarth classes for storing
environments are:
• SemanticEnvironmentMap: These maps are described in

OWL and consist of detected objects in the environment.
Objects are described as instances of the respective object
classes in the ontology, which allows the application of
logical inference methods to the spatial configuration of
objects.

• OctoMap: 3D occupancy grid map. The Octomap
algorithm [25] computes a 3D occupancy grid for the
room from an RGB-D sensor jointly with the camera
trajectory. This map can be reused to generate 2D maps
for navigation.

• ReVslamMap: Raw storage of visual maps for localiza-
tion that are built from the sole input of an RGB-D
camera. Along with the creation of the room map, the
camera trajectory is estimated. For visual SLAM, we
have used the C2TAM [18] SLAM algorithm which is
based on PTAM [9]. Additionally, objects in the local
sub-database are detected in the images and inserted
in the map. The final result is a semantic map of the
observed room [19]. This component is used both in

Fig. 4. Visibility costmap computed from the semantic environment map,
the semantic robot model and geometric object models downloaded from
RoboEarth.

the SemanticMapping recipe and in the ObjectSearch
recipe.

VI. REASONING ABOUT OBJECT LOCATIONS

In order to successfully find an object in the environment,
a robot must answer the questions “Where is the object likely
to be?” and “Where do I need to go in order to see it?”.

1) Inferring likely object positions: We employ knowledge
that has been extracted from the OMICS common-sense
database [7] and converted into the representation used in
the robot’s knowledge base [12] to compute likely object
positions. The OMICS database holds tuples of objects and
their locations in the form (object, location). The number
of times a relation is contained in OMICS can be used to
approximate the likelihood that an object O can be found at
a location LOC:

P (O|LOC) = count(O,LOC)/count(LOC) (1)

where count is the number of database entries. The value of
P (LOC|O) is calculated from the above model using Bayes
rule. To retrieve the location with the highest probability we
simply apply the argmax operator

argmax
LOC∈Locations

P (LOC|O) (2)

The resulting models allow queries for the locations of objects
given by corresponding landmark objects. These object classes
can be grounded in the robots semantic environment map to
determine their positions.

2) Computing robot poses using visibility reasoning: Based
on the semantic map (that contains known object instances in
the environment) and CAD models of these objects previously
downloaded from RoboEarth, the system computes a visibility
costmap describing from which robot poses the object is likely
to be visible [16]. Especially for objects that are inside a
cabinet or shelf, occlusions by the surrounding objects need
to be taken into account when planning a pose for the robot.
To compute the costmap, the system renders the scene from
the viewpoint of the inferred object location and computes
the amount of the object that is visible from all grid-cells in
the costmap (Figure 4).

VII. EXPERIMENTS

To validate the web-enabled and knowledge-based active
perception, both action recipes presented before have been
tested on a real Pioneer P3-DX robot platform operating in a



Fig. 5. Bed and cabinet detected during the semantic mapping action recipe.

Fig. 6. (From left to right). Semantic map composed of a bed and a cabinet,
map of visual features and octomap generated during the action recipe.

mock-up hospital room environment. In addition, we present
experiments in simulation that show how this system operates
on different robots and in different environments. Finally, we
provide results1 that show the performance improvement
obtained by using the proposed method.

A. Real-world experiments

Regarding the hardware and software components for visual
semantic mapping, we have used a Kinect RGB-D sensor and,
for navigation purposes, the robot is equipped with a Sick
2D laserscanner and odometry sensors. It also incorporates
the move base ROS stack with the ORM obstacle avoidance
method and GMapping package. The ROS RoboEarth stack
[1] and the KnowRob knowledge base [22] provide the
inference methods used.

The following scenario has been investigated: A robot in
a hospital room has to find a bottle to be served to a patient.
The robot initially does not know the location of the bottle in
the room. A naı̈ve solution would be to exhaustively search
the room to find the bottle, but it is a costly process. To
improve efficiency, we propose a knowledge-based search
strategy based on the action recipes mentioned earlier. The
SemanticMapping recipe enables the robot to efficiently create
a semantic map of the environment during the exploration
of the room. Before the task, the knowledge base infers that
the bed and the cabinet are likely landmark objects, and the
corresponding object models are downloaded into the model
sub-database on the robot. A customized plan for an efficient
exploration is generated for the robot based on the recipe.
The robot executes the tailored plan and starts to explore
the unknown environment until it obtains a complete map of
the room. While the robot is exploring the environment, the
perception component detects objects in the sub-database.
Figure 5 shows two snapshots of the object recognition
component output corresponding to two object recognition
events. The generated semantic map is then uploaded to
RoboEarth (Figure 6).

1A video of the experiments can be found at http://robots.unizar.
es/data/videos/roboearth/activePerception.mp4

Fig. 7. Left, in red robot location for optimal perception, in green the
planned trajectory to those locations. Right, the final semantic map including
the just found bottle on top of the cabinet (detected during the creation of
the original map).

The second recipe allows guided search for objects based
on a partial semantic map of the environment – in our case
a map containing a bed and a cabinet that has been built
in a previous exploration run. The object location inference
determines the cabinet as likely location for the bottle and
computes several reachable robot locations from where the
bottle is probably detected based on the current scene layout
and the free space. A CRAM plan is generated for the Pioneer
P3-DX robot, and a suitable 2D occupancy map for navigation
is computed based on the 3D octomap and the semantic robot
description. Overall, RoboEarth provided the plan, the set of
recognition models and the maps for safe robot navigation
to the robot.

The robot navigates to the computed locations until the
object is found (Figure 7). Once the object is located, the
updated map containing the object is uploaded. Figure 7
shows the semantic map including the objects known a
priori (bed and cabinet) and the new one (bottle). The visual
semantic mapping also updates its map and integrates the
newly gathered information.

B. Simulation Experiments

To show the applicability of the system on different robot
hardware and different environments, we also did some
simulation experiments. We used both the Amigo robot, a
service robot prototype with a holonomic base [14], and the
previously described Pioneer.

Figure 8 shows the travelled path for both robots in two
different simulated environments in blue color. The paths
mirror the difference in locomotion; the Amigo robot is able
to maneuver more efficiently in the tight spaces than the
non-holonomic Pioneer. For the visibility reasoning, the pose
of the camera relative to the respective robot base is required.
This value was inferred from the SRDL descriptions of the
robots during plan generation.

C. Performance Improvements

To show the improvement made by the proposed system,
the same experiments have been done without using the
information from the semantic map. In this case, the robot
has to perform an exhaustive search of the entire environment
to find the small object. To perform this search, we used the
art gallery algorithm [20] that gives us the minimum number
of positions which can cover an environment. Figure 9 shows
the distribution of the positions needed for full coverage of the
entire environment, which are between 20-100. The presented
inference methods exploit the semantic information of the



Fig. 8. Travelled path (blue) in simulated object search for Amigo (left)
and Pioneer (right) robots in two different simulation environments.

Fig. 9. Exhaustive search of a small object. Blue squares are the potential
visibility positions, and red areas are the field of view of the camera in order
to detect a small object.

environment (Figure 8) and are able to reduce this number to
between 9 to 15 locations (with different orientations) where
the small object could be found. This leads to a substantial
improvement in efficiency and search time.

VIII. CONCLUSIONS AND FUTURE WORK

A basic robot with state-of-the-art navigation and per-
ception capabilities is not able to efficiently explore and
actively search for an object. We have shown that the
robot performance in active perception is boosted by web
services provided by RoboEarth. Our experiments provide
experimental support for the initial claim.

We showed how the RoboEarth system handles the robot
diversity because it is able to deliver an execution plan that
is customized for the current robot and current environment.
RoboEarth also provides the robot with a selection of only
models that are relevant for the current task. The rather small
number of required models allows to obtain perception with
high precision and recall in real time. In future work, we
plan to extend the range of environments, robots and sensors
that can benefit from the RoboEarth boost.
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