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RoboEarth Semantic Mapping: A Cloud Enabled
Knowledge-Based Approach

Luis Riazuelo, Moritz Tenorth, Daniel Di Marco, Marta Salas, Dorian Gálvez-López, Lorenz Mösenlechner,
Lars Kunze, Michael Beetz, Juan D. Tardós, Luis Montano, and J. M. Martínez Montiel

Abstract—The vision of the RoboEarth project is to design
a knowledge-based system to provide web and cloud services
that can transform a simple robot into an intelligent one. In this
work, we describe the RoboEarth semantic mapping system. The
semantic map is composed of: 1) an ontology to code the concepts
and relations in maps and objects and 2) a SLAM map providing
the scene geometry and the object locations with respect to the
robot. We propose to ground the terminological knowledge in
the robot perceptions by means of the SLAM map of objects.
RoboEarth boosts mapping by providing: 1) a subdatabase of
object models relevant for the task at hand, obtained by semantic
reasoning, which improves recognition by reducing computation
and the false positive rate; 2) the sharing of semantic maps be-
tween robots; and 3) software as a service to externalize in the
cloud themore intensive mapping computations, while meeting the
mandatory hard real time constraints of the robot. To demonstrate
the RoboEarth cloud mapping system, we investigate two action
recipes that embody semantic map building in a simple mobile
robot. The first recipe enables semantic map building for a novel
environment while exploiting available prior information about
the environment. The second recipe searches for a novel object,
with the efficiency boosted thanks to the reasoning on a semanti-
cally annotated map. Our experimental results demonstrate that,
by using RoboEarth cloud services, a simple robot can reliably
and efficiently build the semantic maps needed to perform its
quotidian tasks. In addition, we show the synergetic relation of the
SLAM map of objects that grounds the terminological knowledge
coded in the ontology.

Note to Practitioners—RoboEarth is a cloud-based knowledge
base for robots that transforms a simple robot into an intelli-
gent one thanks to the web services provided. As mapping is a
mandatory element on most of the robot systems, we focus on
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the RoboEarth semantic mapping for robot systems, showing the
benefits of the combination of SLAM (Simultaneous Localization
And Map building), and knowledge-based reasoning. We show
the qualities of our system by means of two experiments: 1)
building a map of a novel environment boosted by prior infor-
mation and 2) efficient searching for a novel object thanks to the
knowledge-based reasoning techniques. We can conclude that
RoboEarth enables the execution of the proposed methods as web
and cloud services that enable advanced perception in a simple
robot.

Index Terms—Cloudmapping, knowledge representation, object
recognition, semantic mapping, visual SLAM.

I. INTRODUCTION

T HE ability to efficiently create semantic environment
models and to use them intelligently to locate objects

will become increasingly important as more and more robots
enter human living and working environments. To successfully
operate in such environments, robots will have to face the
open-world challenge, i.e., they will need to be able to handle
large numbers of (novel) objects located in various places on
top of or inside furniture, and they need to quickly become
acquainted with novel environments.
This poses several challenges for today's robots. For ex-

ample, how can the visual perception system handle large
numbers of object models without slowing down recognition
or detecting more false positives? How can a robot efficiently
explore an environment to create a map of the objects therein?
Which are the most important objects to look out for? How
can the robot exploit common-sense knowledge to guide its
search for novel objects? How can it profit from information
collected by other robots? We believe that finding solutions to
these problems will be crucial to scale object search tasks from
restricted and well-known laboratory environments to more
open and diverse scenes.
We investigate a Web-enabled and knowledge-based ap-

proach to semantic mapping in order to build models of the
environment and explore the role that cloud services can play
in this mapping approach. The use of these cloud services
has recently opened a new line of research in robotics called
Cloud Robotics [1]. In [2] different architectures based on a
knowledge-based solution have been presented in industrial
robotized automation systems. [3] and [4] explore the use of
a Cloud Computing for offloading intensive computing tasks
like vision-based algorithms and grasp planning respectively.
In particular, we consider a simple robot that has access to
the cloud-based RoboEarth knowledge base [5], and evaluate
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how access to such a cloud-based knowledge base can help
robots with their tasks. RoboEarth enables robots to upload
and download “action recipes,” models of objects they have
created and maps of environments. By intelligently selecting
only those pieces of information that are needed for the current
task, robots can keep their local knowledge bases and object
model database small and efficient, while having much larger
information resources in the background.
All pieces of information in RoboEarth are semantically an-

notated, i.e., they are described in a formal, logical language
[6] and are linked to an ontology. To achieve platform indepen-
dence, these annotations include a specification of which capa-
bilities a robot needs to have in order to execute a task. When
searching for suitable “action recipes,, a robot can match this
specification against a formal model of its own components and
capabilities described in the Semantic Robot Description Lan-
guage (SRDL) [7]. If necessary components or capabilities are
missing on the robot, the recipe cannot be executed and is not
considered for download. If all required capabilities are avail-
able, the robot model is used to generate a plan that is tailored to
the hardware of the respective robot. The semantic annotations
further enable robots to perform logical inference, for instance
to decide which are the most likely objects in a room (and only
download their models to their local database), or where novel
objects are likely to be found (and guide the search accordingly).
In order to apply abstract knowledge to operation in the real

world, it needs to be grounded [8] in the robot's perception
system and its knowledge about the environment. In this article,
we propose to link the knowledge base with a visual SLAM
system that provides accurate and continuous asynchronous per-
ception. The system is integrated with an object recognition
module that identifies objects based on a local database of object
models. The main contributions of this work are: 1) a semantic
mapping method resulting from the synergistic integration of a
visual SLAM map of objects with the RoboEarth ontology; 2)
knowledge-based methods for using prior information, exem-
plified in the selection of object models for exploration and in
the guidance of a robot when searching for a novel object; and
3) methods for embodying the semantic map building and ex-
ploitation in a simple robot using RoboEarth cloud services.
The remainder of the paper is organized as follows. We start

with an overview of related work on searching for objects, ex-
plain the structure of our system as well as the two main tasks
it performs: the creation of an initial semantic map building and
knowledge-guided object search. We then present the system's
components in more detail, describe the experiments we have
performed, and finish with our conclusions.

II. RELATED WORK

Several proposals have been made for building maps of ob-
jects. Objects from a database are recognized and located in
[9], where polyhedral CAD object models are recognized in
single RGBD images. Similarly, using point clouds, in [10], ge-
ometrical primitives are segmented assuming they correspond
to scene objects. Combining visual SLAM with object recog-
nition to produce maps of objects has recently gained more at-
tention for pure visual RGB sensors in [11] and [12], and for

RGBD in [13]. Several approaches have been made to endow
maps with reasoning capabilities. A Bayesian network classi-
fier is proposed in [14] to encode the relations between objects
in a scene and the objects typically present in a type of room. An
ontology-based approach is proposed in [15], [16] to represent
knowledge about the elements in a map. The knowledge-based
maps by Zender et al. [17] provide grounding by combining
place recognition from 2-D laser maps and object recognition.
An exploration method similar to ours has been proposed in
[18]. Our contribution is to combine a knowledge base with a
visual SLAM map of objects to ground the robot perceptions
to implement the RoboEarth Web and cloud mapping services.
For the estimation of this semantic map, we propose the use of
action recipes that describe how to explore the free space while
searching for objects in a local database using an object recog-
nition algorithm.
Structured object search and reasoning about likely object

locations have been an active research topic over the past
years. Much of the work has explored vision-based methods
to search for objects in a top-down manner based on saliency
and visual attention mechanisms [19]–[21]. Having a (partial)
semantic map allows a robot to apply background knowledge
for directing the search. One possibility is to learn co-occur-
rence statistics of object types and object-room relations, for
example from online image databases [22] or from search
engine results [23]. Joho et al. [24] use co-occurrence informa-
tion and other heuristics for efficiently searching for objects in
structured environments, in particular supermarkets. Schuster
et al. exploit similarity scores computed based on an ontology
of object types for directing the search towards locations where
semantically similar objects are known to be [25]. Kunze et
al. propose a utility-based approach for object search that
particularly focuses on the decision of which location to search
first [26]. This work was extended in [27] to use geometric
models of directional qualitative spatial relations with respect
to landmark objects and to use 2-D cones for approximating the
sensor field of view. Wong et al. include manipulation actions
into the object search, which allows the robot to reason about
which objects have to be removed before being able to see the
target object [28].
The approach by Aydemir et al. [29] is similar to ours in

that they also use landmark objects to guide the search for
smaller objects inside or on top of the landmarks. While they
focus on the probabilistic formulation of the search procedure
as a Markov Decision Process, we explore a knowledge-based
strategy that exploits formal knowledge about object types,
their (likely) spatial relations, and their shape and appearance.

III. SYSTEM OVERVIEW

Fig. 1 shows the typical workflow of a robot using the system.
We assume that the RoboEarth knowledge base (right block)
contains the required task descriptions (called “action recipes”)
and object models. In this paper, we focus on two action recipes
for semantic mapping of an unknown environment [Fig. 1(a)]
and active search for an object based on a partial semantic map
[Fig. 1(b)]. The locations of objects already detected in the room
thereby serve as landmark objects.
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(a) (b)

Fig. 1. Overview of the proposed system. In the beginning, (a) the RoboEarth knowledge base contains only the elements above the dotted line: an action recipe
describing the exploration task, a set of object models and the robot's SRDL description. When a robot requests an action recipe, it is matched against its capability
model and, if all required capabilities are available, a plan is generated. (b) During execution of this plan, the robot first downloads a set of object models that are
to be expected in this environment and uses these models to build a semantic map. After execution, it uploads the generated set of maps to RoboEarth (lower part
of the right block) to make them available to other robots.

Each piece of information is annotated with a description of
the capabilities required for making use of it (depicted as col-
ored puzzle pieces), that is matched against a formal model of
the robot's capabilities described in the Semantic Robot De-
scription Language. Based on the background knowledge about
which objects are likely to be encountered in which kinds of
rooms, RoboEarth infers a set of object models that can be rec-
ognized during the exploration.
After download, a robot plan is generated from the action

recipe (Section IV) and the task is executed accordingly. The
robot explores the environment using a frontier-based algo-
rithm (re_explore component), recognizes objects using the
re_vision module and inserts them into a map build by the
re_vslam module. After the exploration has finished, the robot
exports the map in the formal RoboEarth language and uploads
it to the RoboEarth knowledge base.

IV. ACTION RECIPES FOR ACTIVE PERCEPTION TASKS
Action recipes abstractly specify which actions need to be

performed to accomplish a task in a (largely) robot- and envi-
ronment-independent manner. RoboEarth aims at the exchange
of recipes between heterogeneous robots in different environ-
ments, which therefore need to be reduced to a description of the
task itself, eliminating all hardware- and environment-specific
parts. While the resulting descriptions can easily be transferred
to another robot, they are too abstract to be directly executable.

The robot thus needs to interpret the instructions, fill in missing
information, and select and parameterize suitable “skills” that
provide the implementation for the respective action steps. The
capability matching procedure described in Section V verifies
that all skills needed for executing a recipe are available on a
robot.
Action recipes are formulated in the RoboEarth language

[6] that is based on the W3C-standardized Web Ontology
Language OWL [30]. Actions in a recipe are described as
classes whose properties described action parameters such
as the objectActedOn. They can inherit properties from more
generic classes in the knowledge base, which we often use for
inheriting information about required capabilities. This way, the
recipes can be kept short and concise, since ‘common-sense’
knowledge does not have to be communicated. Examples of
action recipes for exploring an environment and searching
for objects can be found in Figs. 2 and 3, respectively. These
recipes can easily be created using a graphical editor without
knowledge of the OWL language.1.
As mentioned earlier, action recipes are not executable by

themselves, but aggregate “skills” (that implement single action
steps) into more complex task structures. Our system uses the
CRAM executive [31] for controlling the robot, so the “skills”
correspond to fragments of the robot plans. These fragments are

1See http://knowrob.org/doc/action_recipe_editor.
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Fig. 2. Generation of the execution plan. The recipe (left) is an OWL document
composed of parametrized subactions, described in terms of OWL classes. To
generate the plan, the system looks in the database for code generating functions
that are applicable on the specific instance and robots (bottom), and inserts the
resulting function into the final execution plan (right).

Fig. 3. ObjectSearch Action recipe task execution.

not static, but are generated by Lisp macros that are parameter-
ized with the OWL description of an action step (Fig. 2). This
allows to consider the action context as well as the robot model
to generate tailored plans. For example, when generating the
code for computing object visibility (Section VI), the pose of
the camera relative to the robot base is read from the robot's
SRDL description.
The code generation macros are also stored in the RoboEarth

database and can therefore be shared among robots. For each
action described in the recipe, the system searches for suitable
macros considering the robot's capabilities. In case multiple re-
sults are found, the one with the minimal semantic distance (es-
timated via the Rada distance [32]) to the action at hand is se-
lected. If the result is still ambiguous, a human operator is asked.
The code generation macros then extract the required action pa-
rameters from the robot model and the semantic environment
map.
As part of this work, we have created two action recipes to

enable a simple robot to perform semantic mapping in the cloud
using RoboEarth. The first action recipe [Fig. 1(a)], sketched in
Algorithm 1, enables a robot to build a semantic map for a novel
environment, exploiting prior information about the room type.

The second one (Fig. 3) illustrates how information from the
semantic map can be exploited when searching for an specific
object. Algorithm 2 sketches the steps of this recipe. The de-
scribed recipes build upon a set of perception and navigation
capabilities that are detailed in Section V.

Algorithm 1 SemanticMapping(in: environType, environId)

subDataBase load-typical-object-models(environType)

slamVisualMap void

start-exploration-modules()

start-vision-modules(slamVisualMap, subDataBase)

repeat

explore-environment(freeFrontiers)

until check-finished(freeFrontiers)

return-to-initial-pose()

environment upgrade-to-semantic(slamVisualMap)

upload-environment-map(environment, environId)

Algorithm 2 ObjectSearch(in: environId, object)

environment download-environment(environId)

semanticMap,slamVisualMap extract(environment)

start-navigation()

start-vision-modules(slamVisualMap)

nextPoses infer-likely-locations(semanticMap, object)

repeat

go-to-next-best-pose(nextPoses)

slamVisualMap search(slamVisualMap,object)

until check-if-object-found(object) or
last-location-reached

stop-vision-modules()

environment upgrade-to-semantic(slamVisualMap)

upload-environment-map(environment,environId)

A. SemanticMapping Action Recipe

The execution of the SemanticMapping action recipe results
in an exploratory behavior of the robot. Before starting the ex-
ploration, the knowledge base infers a set of landmark objects
that are typically found in the type of room to be explored. These
models are loaded into a local subdatabase on the robot that al-
lows real-time object recognition for map building. It further
increases the recognition precision and recall because only ob-
jects that are likely to be in the room are searched for. After
completing the room exploration, it produces a semantic map
that is stored in the RoboEarth knowledge base.
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The recipe commands the robot to explore the room while
avoiding obstacles. Simultaneous to room exploration, the vi-
sual SLAM builds a map providing locations for selected geo-
metrical features and landmark objects recognized in the scene.
Once the exploration is finished, the object instances are linked
with the RoboEarth ontology in order to upgrade the map of
objects into a semantic one. The semantic map along with the
occupancy grid and features map are uploaded as a RoboEarth
environment.

B. ObjectSearch Action Recipe

The ObjectSearch recipe assumes that a (partial) semantic
map valid for the room is already stored on a RoboEarth en-
vironment. Based on the locations of landmark objects in this
map, the knowledge base infers potential locations from where
the object might be detected. From the occupancy map, the free
space for robot navigation is computed, and according to the
robot's SRDL model, the sensors' ranges and locations within
the robot are inferred. The features map stored on the RoboEarth
environment allows the visual SLAM to provide a continuous
robot localization when the map is reused. Using all this infor-
mation, a list of robot locations is computed from where the
object is likely to be detected.
Upon execution of the generated CRAM plan, the robot

sequentially navigates towards the computed locations from
where it searches for the object until it is found. The detected
object is added to the initial semantic map, which is then finally
uploaded back to the RoboEarth database.

V. ROBOT CAPABILITIES FOR ACTIVE PERCEPTION

Since RoboEarth aims at knowledge exchange among hetero-
geneous robots, we cannot assume that every robot possesses
all required capabilities for executing a recipe. Therefore, both
those capabilities that are available on a robot and those that are
needed for a task are modeled and can automatically be matched
using the Semantic Robot Description Language (SRDL). This
procedure is described in detail in [6]. Capabilities are usu-
ally provided by software components (e.g., ROS nodes) on the
robot, are interfaced from CRAM plan fragments, and are de-
scribed in SRDL to allow reasoning about which tasks are fea-
sible. Capabilities are often not binary, but may be available
to a certain degree. It is however hard to measure this, since
the criteria will be different for many different abilities. We
therefore do not store a quantitative degree to which an ability
is available, but distinguish different cases as specialized sub-
classes as can be seen e.g., for the different kinds of naviga-
tional abilities. In general, SRDL does support numerical at-
tributes such as the range of a laser scanner or the resolution
of a camera. Dependencies of actions on capabilities are usu-
ally not described in the recipe itself, but inherited from more
generic action classes in the RoboEarth ontology (e.g., that all
kinds of reachingmotions need an arm component). Capabilities
are also described as OWL classes and are declared in another
branch in the RoboEarth ontology. The capabilities needed for
the two recipes described in this work that focus on active per-
ception are highlighted in Fig. 4 and will be presented in the
remainder of this section.

Fig. 4. Subbranch of the SRDL ontology stating some of the robot capabilities.
All of the mandatory compatibilities for active perception are highlighted in
blue.

Fig. 5. Visualization of the frontier-based exploration algorithm. Black con-
tours represent known obstacles and the green grid cells encode the inflation for
safe navigation. The dark blue arrows represent unexplored frontiers. The next
frontier to be explored is coded as a light blue arrow.

1) CollisionFree Navigation Capability: Represents the
ability to safely navigate to a goal. The initial global navigation
plan to achieve the goal is locally modified by a reactive navi-
gation module which is responsible for computing the motions
finally commanded to the robot. The planning technique is
based on a -type algorithm [33]. For reactive navigation, we
have applied ORM [34] adapted for differential drive robots
due to its performance in dense, complex and cluttered envi-
ronments. A Rao-Blackwellized particle filter [35] is used to
estimate the robot location and the 2-D navigation map from
2-D laser rangefinder readings.
2) Environment Exploration Capability: Declares the ability

to actively build a 2-D navigation map of an unknown environ-
ment. Based on the 2-D laser readings and the odometry, the
component guides the robot in building a 2-D map of its en-
vironment. The main issue is to compute at run-time the next
robot locations from where to perceive unexplored regions. The
next point of view is computed according to the frontier-based
approach [36], where the robot moves while avoiding obstacles
and integrating the 2-D laser readings into the map (Navigation
Component). The exploration ends when the map contains no
more accessible frontiers. Fig. 5 visualizes the method.
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3) Object Recognition Capability: Declares the ability to
recognize objects in single images and to provide an initial es-
timate of their 3D location with respect to the camera. The cor-
responding component implements an object recognition algo-
rithm [12] in which each object is modeled as a collection of
faces. Each face comprises an image that represents a point of
view of the object, a set of SURF features [37] and their as-
sociated 3D coordinates in the local object frame, obtained by
multi-view geometry [38]. These models are initially stored in
the RoboEarth database. When a subset of them is required to
fulfill a task, they are downloaded, creating a local subdatabase
used by the recognition algorithm.
4) Visual SLAM Capability: Declares the capability to

estimate a visual SLAM map composed of point features and
recognized objects, and a 3D occupancy grid map. This capa-
bility is implemented by a distributed framework, [39],
based on PTAM [40]. A lightweight process handles the camera
trackingon theonboard robot computer,while the expensivemap
optimization is externalized as a service in the cloud (Amazon
EC2 service [41]) using the RoboEarth Cloud Engine [42].
Thanks to this division, the hard real-time constraintsmandatory
in a robotic embedded system are met by the visual SLAM,
despite the typical network delays in the link with the cloud
server. The SLAM map not only includes visual point features
but also objects that are recognized in the images by the Object
Recognition Component. The recognitionmodels come from the
local subdatabase provided by RoboEarth. Once themap is com-
puted, the result is incorporated into the RoboEarth environment
data structure, providing the data for the following classes:
• SemanticEnvironmentMapsaredescribedinOWLandcon-
sist of objects detected in the environment, described as in-
stances of the respective object classes in the ontology. This
allows the application of logical inference methods to the
spatial configuration of objects. The object instances may
further contain informationabout their extensions, 6Dposes
andpossiblyCADmodelsdescribing theirgeometryandap-
pearance.

• OctoMap: a 3D occupancy grid map, coded as proposed in
[43]. It is computed from RGB-D sensor readings in the vi-
sual SLAM keyframes. This map can be reused to generate
2-Dmaps for navigation.

• ReVslamMap: the raw storage of visual maps for visual lo-
calization. They are built from the sole input of an RGB-D
camera. Provides a continuous localization of the robot
while the map is building. Furthermore, thanks to the ca-
pability of Roboearth system for sharing environments, this
map can be downloaded and reused by other robots in order
to localize,while navigate, in the sameenvironment.

VI. REASONING ABOUT OBJECT LOCATIONS

In order to successfully find an object in the environment, a
robot must answer the questions “Where is the object likely to
be?” and “Where do I need to go in order to see it?”.
1) Inferring Likely Object Positions: We employ knowl-

edge that has been extracted from the OMICS common-sense
database [44] and converted into the representation used in the

Fig. 6. Visibility costmap computed from the semantic environment map,
the semantic robot model and geometric object models downloaded from
RoboEarth. The colors indicate the amount of the object that is visible from a
given camera of the robot considering its pose.

robot's knowledge base [45] to compute likely object positions.
The OMICS database holds tuples of objects and their loca-
tions in the form . The number of times a
relation is contained in OMICS can be used to approximate the
likelihood that an object O can be found at a location :

(1)

where is the number of database entries. The value of
is calculated from the above model using Bayes'

rule. To retrieve the location with the highest probability we
simply apply the operator

(2)

The resulting models allow queries for the locations of objects
given by corresponding landmark objects. These object classes
can be grounded in the robot's semantic environment map to
determine their positions.
2) Computing Robot Poses Using Visibility Reasoning:

Based on the semantic map (that contains known object in-
stances in the environment) and CAD models of these objects
previously downloaded from RoboEarth, the system computes
a visibility costmap describing from which robot poses the
object is likely to be visible [46]. Especially for objects that are
inside a cabinet or shelf, occlusions by the surrounding objects
need to be taken into account when planning a pose for the
robot. To compute the costmap, the system renders the scene
from the viewpoint of the inferred object location and computes
the amount of the object that is visible from each grid cell in
the costmap (Fig. 6).

VII. EXPERIMENTS

This section is devoted to showing how diverse robots ben-
efit from the cloud-based RoboEarth semantic mapping system.
The experiments include those carried out with a real Pioneer
P3-DX robot and simulations. We demonstrate how a simple
robot can reliably and efficiently build and exploit the semantic
maps needed to perform quotidian tasks using the Roboearth
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cloud services2. The experiments are based on the two action
recipes described in Section IV.
Assuming that RoboEarth contains a huge database of ob-

ject models, one key advantage is the ability to serve a reduced
subdatabase that only contains the relevant models for the cur-
rent tasks. This reduces the local computation overhead and im-
proves recognition precision and recall. In the case of the se-
mantic map building for a novel environment, given the type of
the environment, in this case a hospital room, RoboEarth is able
to elaborate and serve to the robot a subdatabase containing only
object models expected to be relevant and salient in this envi-
ronment. In this case, the selected object categories are a bed
and cabinet. For each object category all the relevant individual
object models are included in the subdatabase. In contrast in the
active search recipe, the served subdabase would contain only
the recognition model of the object searched for.
Given the SRDL model of a robot, RoboEarth can produce

and serve a customized CRAMplan for this robot. In the simula-
tion we consider two different robots operating in two different
environments. It is shown how, from a single recipe, four dif-
ferent execution CRAM plans are generated, one per robot-en-
vironment combination.
To illustrate the benefits that a simple robot can gain from

using RoboEarth, we focus on the increase in efficiency de-
rived from the exploitation of the knowledge-based reasoning
available in the semantic maps in the case of a search for a
novel object. In contrast to an exhaustive search, RoboEarth ex-
ploits a map the environment acquired previously and performs
a knowledge-based search strategy of small objects by landmark
objects.

A. Real-World Experiments

The following scenario has been investigated. A robot in a
hospital room has to find a bottle to be served to a patient. Ini-
tially, the robot does not know the location of the bottle. The
naïve and expensive solution would have been to exhaustively
search the whole room. In contrast, to improve efficiency, we
use both the semantic mapping and object search recipes (Alg.
1, Alg. 2) to embody a knowledge-based search strategy in the
robot.
We used a Pioneer P3-DX in which the navigation is based on

a Sick 2D laser scanner and odometry sensors. It has been imple-
mented by means of the ROS stacksGMapping, andmove_base
that has been extended to include the ORM obstacle avoid-
ance. The robot also incorporates a Kinect RGB-D that provides
the raw data for visual mapping. The visual SLAM is imple-
mented by means of the algorithm that externalizes
heavy computations using a Platform as a Service, in our case
the RoboEarth Cloud Engine. It is worth noting that during the
experiments, has been able to fulfill all the manda-
tory real-time constraints of our robot-embedded computer, de-
spite the delays and low bandwidth typical of any computer net-
work. Regarding the inference methods, the ROS RoboEarth
stack [47] and the KnowRob knowledge base [48] are used. The
capability matching and the CRAM plan generation have been

2A video of the experiments can be found at http://robots.unizar.es/data/
videos/roboearth/roboearthSemanticMapping.mp4.

(a) (b)

Fig. 7. (a) Initial and (b) final steps of the exploration algorithm. The dark blue
arrows represent the currently unexplored frontiers.

(a) (b)

Fig. 8. Object recognition events: (a) bed and (b) cabinet.

executed locally on our robot computer, but these can also be
externalized to the cloud.
1) Semantic Mapping: Before performing the task, the

knowledge base infers that the bed and the cabinet are likely
landmark objects, and the corresponding object models are
inserted in the model subdatabase that is served to the robot.
A customized CRAM plan is generated for the robot based on
the recipe. The robot executes the CRAM plan and starts to
explore the unknown environment until it obtains a complete
map of the room. Fig. 7 shows the beginning and end of the
exploration. At the beginning the map is incomplete, with
several open frontiers that have yet to be explored. At the end
the complete map is estimated.
While the robot is exploring the environment, the perception

component builds the visual SLAMmap and inserts the detected
objects according to the models in the subdatabase. Fig. 8 shows
two examples of object recognition events. Once the explo-
ration is finished the robot uploads the created semantic map
to RoboEarth (as we can see in Fig. 1). This comprises the de-
tected objects (Fig. 9), the map of visual features, and a 3-D
occupancy grid map, coded as an OctoMap (Fig. 10).
2) Object Search: The second recipe execution presents the

guided object search. This is based on the semantic map of
the environment built and uploaded in the previous exploration
(Section VII-A1). The object location inference determines the
cabinet as the landmark object to guide the search for the bottle.
Taking the scene layout and occupancy map into account, sev-
eral reachable robot locations from where the bottle is likely be
detected are computed (see Fig. 11). Considering the SRDL de-
scription of the Pioneer P3-DX, the stored semantic map and
the action recipe, RoboEarth provides: 1) a custom 2-D map
for navigation estimated from the OctoMap; 2) a customized
CRAM plan; and 3) the set of recognition models for the bottle.
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Fig. 9. Detailed storage format for a semantic map composed by two objects,
a bed, and a cabinet. Each object instance contains information about the type
of object, dimensions, recognition model used, time detection and its location
into the map.

(a) (b)
Fig. 10. (a) Map of visual features and (b) 3-D occupancy grid OctoMap.

(a) (b)
Fig. 11. (a) Visibility costmap. (b) Occupancy map and, in blue, the selected
search robot locations.

The provided CRAM plan iteratively drives the robot to a list
of selected positions until the object is eventually found. Once
it is located, its position is added to the map and the map is
uploaded to RoboEarth. Fig. 12 shows the robot trajectory and
the semantic map including the objects known a priori (bed and
cabinet) and the new one (the bottle).

B. Simulation Experiments

The goal of the simulation experiments is to demonstrate
the interoperability of the system. For these experiments, we
have used the open source robotics simulator Gazebo [49]. The
same object search action recipe has been executed on two dif-
ferent robots in two different environments. The selected robots

(a) (b)
Fig. 12. (a) Computed robot locations for detecting the object, in blue, and
planned trajectory, in green. (b) Final semantic map including the bottle detected
on top of the cabinet.

Fig. 13. Travelled path (blue) in simulated object search. Top row displays
Amigo, and bottom row displays Pioneer. Left column for the room, right
column for the suite.

have been the holonomic service robot Amigo [50], and the
previously described nonholonomic Pioneer P3-DX. Per each
selected robot, the SRDL model describes its capabilities and
kinematics, enabling RoboEarth to produce a specific CRAM
plan for a definite robot in a particular environment.
The searched object has been considered to be probably found

on top of beds, cabinets or shelves. The first environment em-
ulates the hospital room, assuming a semantic map where a
bed, and a cabinet have been located. The second environment
mimics a suite, composed of two rooms communicated through
an open door. It is assumed to have a semantic map where a bed,
a cabinet and two shelves have been detected. Fig. 13 shows the
paths resulting from the four different CRAM plans, one per
each robot in each room. The paths mirror the difference in lo-
comotion, the Amigo robot is able to maneuver more efficiently
in the tight spaces than the nonholonomic Pioneer P3-DX. The
two robots also have their camera in different locations; con-
sequently the reasoning for the path generation has been influ-
enced by the differences in visibility.

C. Performance Improvements

The purpose of this experiments is to highlight the benefits
of using the proposed system. We focus the quantitative results
on three aspects: 1) the externalization in the cloud of the most
intensive computations; 2) the use of a subdatabase of objects
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Fig. 14. Response time of the tracking process. Top graph running
mapping in the cloud, botton graph all processes running onboard the
robot.

which improves recognition; and 3) the efficiency of the knowl-
edge-based search strategy based on landmark objects imple-
mented by the object search action recipe.
1) Computational Efficiency: The use of the cloud for exter-

nalizing the expensive computation processes provides an im-
provement in the response time, as we can see on Fig. 14. This
figure presents two graphs that show the response time per frame
of the tracking process of the visual SLAM system with respect
to the size of the map during the execution of exploration ac-
tion recipe. On the top graph, we can see the performance of the
system when the expensive computation process of the visual
SLAM system used is running on the cloud. The tracking re-
sponse time remains constant (around 10 ms) independently of
the map size. The bottom graph shows the tracking time when
the complete system is running onboard the robot. We
can see how the tracking response time increase when the size
of the map grows and even it overtakes the video frame rate
threshold (33 ms). We can conclude that the externalization of
the expensive map optimization process of as a ser-
vice in the cloud provides an improvement in the response time
of the real-time critical processes because they can benefit of all
the onboard resources once the mapping process is outsourced
to the cloud.
2) Recognition Using a Subdatabse: Two search strategies

has been tested for a range of subdatabase sizes. The first
strategy is a naïve detection that checks all the models in
the subdatabase. The second is an advanced one that only
checks the 10 most promising object models according to an
appearance score obtained when their local features are con-
verted into bags of words (BoW) [51]. In this experiment
we focus on the semantic mapping of a hospital room. The
subdatabase contains the RoboEarth provided relevant models
in all the experiments. Additional object models, up to 500,
are added to the subdatabase to analyze the effect of a big
database containing objects not appearing in the actual scene.
Fig. 15 shows a quantitative performance analysis. The top
graph shows the naïve detector, bottom graph shows the ad-
vance BoW recognition. As expected mean time of detection
after the BoWs preselection scales better with the subdatabase
size. Both of the methods produces more detections with re-
duced subdatabase, i.e., low false negative rate after processing
the whole experiment sequence. Additionally in our experi-
ments we did not detect any false positive, what is a good

Fig. 15. Number of detections and time performance of the object detector as
function of the subdatabse size. Top: naïve recognition. Bottom: bag of words
preselection.

(a) (b)

Fig. 16. Art Gallery exhaustive search. Blue squares code the search locations,
and red sectors represent the camera field of view. (a) Room: 40 locations. (b)
Suite: 100 locations.

indicator of a remarkable recognition precision. In any case,
in both algorithms, we can see how the increase number of
objects in the subdatabase degrades the performance. We can
conclude that a subdatabase which only contains the most rel-
evant models for a specific task provides a better performance
on the object detection in terms of number of detections and
speed. RoboEarth is able to provide this subdabase of only
relevant objects.
3) Knowledge-Based Search Strategy: Finally, in terms of

the proposed knowledge-based search strategy, we show how
the priors provided by the semantic map are able to reduce the
number of potential search locations, and hence significantly re-
duce the search time. We compare the guided exploration tra-
jectories with those of an exhaustive search. The comparison is
made in terms of the number of locations from where the object
search is performed in the worst case. The selected scenarios
are the room and the suite described in the previous section. For
the search locations in the exhaustive case, we have selected
the Art Gallery algorithm [52] because, for a given sensor visi-
bility range, it provides theminimum number of positions which
can cover a particular environment. Fig. 16 shows the locations
which achieve full coverage of the considered environments.
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The number of locations depends on the size of the environ-
ment—the bigger the environment, the higher the number. In
our case, 40 locations were computed for the room and 100
for the suite. The benefit is evident if we compare this with
the knowledge-based search (Fig. 13, bottom row), where the
room needs only nine locations and 15 were needed by the suite,
leading to a corresponding reduction in the search time.

VIII. CONCLUSION
A robot operating in an environment for the first time can

benefit from information previously stored by other robots
operating in the same environment, thanks to the RoboEarth
semantic mapping system. The proposed semantic mapping
system combines a visual SLAM map of objects with an
ontology representing the knowledge. Thanks to this combina-
tion, knowledge-based reasoning about map entities becomes
possible.
We have demonstrated that the building and exploitation of

this mapping system can be implemented as web and cloud
services. The robot has to provide its SRDL description, and
hence RoboEarth provides all the information needed to exe-
cute the task. The result of the execution is also stored in the
database for reuse by the same or other robots. We have pro-
vided a pioneering experimental validation of a web-enabled
cloud semantic mapping system exemplified in the case of map
building and guided search for a novel object. We conclude that
our system can: 1) enable robots to perform novel tasks; 2) gen-
erate semantically meaningful environment maps; and 3) reason
about these maps in conjunction with formally described back-
ground knowledge. Indeed, the strategy cannot address all cases
in an open world at once (i.e., recognize all objects at all times),
but this is in general not feasible at the moment. With limited
on-board resources, the options are either to manually select a
number of objects that can be recognized (as it is commonly
done today), or to give the robot the ability to autonomously
select a range of object models that are to be expected in the en-
vironment. This is obviously limited by the quality of the pre-
dictions, but still more flexible than a rigid selection of objects.
Evidence has also been provided about the possibility of ex-

ternalizing in the cloud those processes which are demanding
in terms of memory or CPU while at the same time meeting
the hard real time robot constraints. We can hence conclude that
the operation of simple robots with typical computing and net-
working facilities can be boosted by RoboEarth.
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