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Abstract— Recent works suggest that several human cognitive
processes elicited during the observation and monitoring of
tasks developed by others can be detected in real time. These
works have also demonstrated that human brain activity can
be used to recover from machine errors, and as reward signals
to teach a simulated robot how to perform given tasks. This
paper studies the elicitation of this activity during the operation
of a real robot. Experimental results have been obtained with
4 participants observing the operation of a 5 d.o.f. robotic
arm performing correct/incorrect reaching tasks, while an EEG
system recorded their brain activity. The results give evidence
that the brain areas that play a role in detection and monitoring
of errors also play a role when observing the operation of a
real robot, that a brain discriminative response is elicited during
the observation of a correct/incorrect operation of a real robot,
and that it is possible to learn a classifier that provides online
categorization with high accuracy (80%).

I. INTRODUCTION

Event-Related Potentials (ERP) are signals that are elicited

by the presence of an internal or external event [1], usually

recorded by means of an electroencephalogram (EEG). In

cognitive neuroscience, it is well known the usage of the

ERP to study the underlying mechanisms of human error

processing, sometimes referred to Error-related Potentials

(ErrPs) [2]. This is because the observation/execution of an

incorrect action for the user triggers an activity or potential.

This potential codifies the difference between the user’s

expected outcome and the actual one. Different ErrPs have

been described, for instance, when a subject performs a

choice reaction task under time pressure and realizes that

he/she has committed an error [3] (response ErrPs); when

the subject perceives an error committed by another person

(observation ErrPs) [4]; when the subject delivers an order

and the machine executes another one [2] (interaction ErrP);

and recently when the subject perceives an error committed

by a simulated robot [5].

Recent studies have shown that it is possible to use these

error potentials in a Brain-Computer Interface context. In

[2], the authors demonstrated the feasibility of detecting

these potentials online, and proposed their use to recover

from BCI errors when operating a wheelchair controlled

by asynchronous EEG activity. In a similar way, in [6],

the authors proposed the use of single-trial detection of
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error potentials to detect misinterpreted commands in a

P300-based speller. Finally, in [5], the authors proposed the

detection and use of these signals as a reward for a sim-

ple Reinforcement Learning task. However, the question is

whether this framework is potentially usable in a real robotic

context (e.g. a rehabilitation prosthesis), that is, whether the

error mechanisms of the brain are also elicited by observing

a real robot operation, and the feasibility of detecting these

signals in real-time. The benefits of this framework would

be the possibility to detect online an incorrect operation of

the robotic device and correct its behavior.

To study this question, this paper presents an experiment

developed with a real robot. Experimental results have been

obtained with 4 participants observing the operation of a

5 degrees of freedom (d.o.f.) robotic arm performing cor-

rect/incorrect reaching tasks, while an EEG system recorded

their brain activity. The results suggest that: (a) the brain

areas that play a role in detection and monitoring of errors

also play a role when observing the operation of a real

robot; (b) a brain discriminative response is elicited during

the observation of a correct/incorrect operation of a real

robot, (c) this response is consistent among different subjects,

(d) it is possible to learn a classifier that provides online

categorization with high accuracy (∼ 80%).

II. PROTOCOL AND DESIGN OF THE EXPERIMENT

This section describes the design of the main experiment

of the paper. The objective is to collect the EEG to deter-

mine: (a) if a specific brain potential is elicited during the

observation of a correct/incorrect operation of a real robot,

and if this response is consistent among different subjects;

and (b) if it is possible to learn a classifier that provides

online categorization with enough accuracy, to evaluate the

feasibility of an online Brain-Computer Interface.

In the experiment, it was used a Katana300 robot arm with

5 degrees of freedom. The instrumentation used to record

the EEG brain activity was a gTec system. The location of

the electrodes was selected following previous ErrP studies

[5] at FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7, P8,

P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1, FC2, CP5,

CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz (according to

the international 10/10 system). The ground electrode was

positioned on FPz and the reference electrode was placed

on the right earlobe. The EEG was amplified, digitized with

a sampling frequency of 256 Hz, power-line notch-filtered,

and 0.5− 10 Hz bandpass-filtered. Additionally, a Common

Average Reference (CAR) Filter was applied to remove

any background activity detected on the signal. The signal
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(a) (b)

Fig. 1. (a) General view of the setup. The subject observes the robotic
arm motion while the EEG system records the brain activity. (b) The robot
arm performs consecutive reaching tasks to five predefined positions.

recording and processing and the synchronization between

the robot arm and the EEG were developed under BCI2000

platform [7]. The general setting of the experiment was a

user observing the operation of a robot arm while the EEG

was recorded (Figure 1a). The robot continuously operated

by developing reaching tasks to five predefined positions

(Figure 1b). The participants were instructed to judge the

robot motion as follows: (a) a motion towards the center

was a correct operation, (b) a motion towards the locations

placed just on the side (left or right) of the center was a

small operation error, and (c) a motion towards the furthest

locations from the center (left or right) was a large operation

error. The reaching positions were marked with colors to

facilitate the participants the identification of the operations,

where green was the correct movement, yellow the small

operation errors, and red the large operation errors.

Four male, right-handed, 24-aged people participated in

the experiments. The participants were informed about the

experiment. They were instructed to avoid as much as

possible any muscular movement to avoid the contamination

of the EEG (artifacts), especially the lateral eye movements.

The protocol was adapted to minimize the motion of the

eyes by placing the robot arm far enough from the subject

(4 meters).

Fig. 2. Temporal diagram of a sequence of robot actions.

For each participant, an experiment consisted of 10 trials

of 5 sequences each, where each sequence was composed

by 10 random reaching actions carried out by the robot

arm. A total number of 500 operations were executed. Each

sequence was designed as follows (Figure 2): firstly there

was a 6 seconds countdown with auditory signals associated

(to inform the participant that the sequence was starting) and

then ten random actions were executed by the robot. The

reaching action lasted for 1.5 s, and was composed by two

phases: the motion to the actual location, which lasted for

0.8−1.1 s depending on the action, and a second phase where
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Fig. 3. Time-locked average waveforms (up) and SL at 375 ms (down)
averaged over all the participants in channel Cz. A baseline of 200 ms before
the movement started is also shown. The SL figure is better understood in
color, where yellow and red areas indicate a high brain activity.

the robot stayed on the final position without moving (which

lasted for 0.4−0.7 s depending on the action). The returning

to the rest position lasted for 4 s. In a similar way, it had two

phases: the first one was the returning motion (which lasted

for 0.8− 1.1 s), and a second phase where the robot stayed

on the rest position for 2.9−3.2 s, providing the participants

some time to relax between robot motions. The total time of

the experiment was 50 minutes plus approximately 5 minutes

of breaks distributed between trials.

The experiment was designed in such a way that the 500

operations were equally distributed as 100 times per possible

action. Thus, 100 ERP brain responses of each action were

recorded.

III. NEUROPHYSIOLOGYICAL ANALYSIS

After recording the EEG data, the first step was to char-

acterize the brain response as a possible ERP. Previous to

the analysis, possible eye blinking artifacts were removed

using a threshold-based method. The analysis was developed

as follows. Firstly, the averaged ERP potentials for each

participant were constructed, which are simply the averaged

sum of the individual responses for each condition at each

electrode, in order to improve the signal-to-noise ratio and,

as a consequence, filter background noise and occasional

artifacts. This averaged ERP was then averaged for the four

participants for error versus correct responses. Additionally,

in order to speculate about the brain areas involved in the

generation of the potentials, we used sLORETA [8], an EEG

Source Localization (SL) technique. This type of techniques

estimates the neural generators within the brain given the

EEG at the surface of the scalp.

Figure 3 shows the results of the averaged ERPs in the

Cz electrode (usually selected to display error-related poten-

tials), and the result of the source localization technique.

The first observation is that the averaged ERPs resulting

from the robot correct/incorrect operations are different,

which implies that on average, there are different brain
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processes involved. Secondly, the shape of the response in

Cz elicited by the incorrect operations, and by the difference

signal (error minus correct responses on average) are similar

to the responses of other protocols that involve the human

monitoring of errors, concretely the interaction errors (see [9]

for some examples): they have a sharp positive potential at

around 0.3 seconds, followed by a wide prominent negativity

around 0.4 seconds. Thirdly, the main active areas at the

time of the prominent negativity of the difference signal

(∼ 375 ms) were Brodmann Areas (BA) 6, 31, 5, 24 and

4 (Figure 3). These activations conform a brain activity

on the frontier of the Pre-Supplementary Motor Area (Pre-

SMA, BA 6 and 4), Anterior Cingulate Cortex (ACC, BA

24) and Posterior Cingulate Cortex (PCC, BA 31 and 5).

As discussed on [9], the results suggest the existence of an

activity related with error detection and processing (due to

ACC and Pre-SMA), as well as a more posterior activity,

which could be related with spatial attention [10] (due to

PCC). The error-related areas also agree with several results

that obtained the same areas in the most prominent negativity

in reaction, observation and interaction errors [9], [3], [4].

These results support the hypothesis that a discriminative

(correct/incorrect) Event-Related Potential is elicited during

the human monitoring of the robot operation.

IV. CALIBRATION AND REAL-TIME CLASSIFICATION

The objective of this section is to perform a single trial

classification of the ERPs. We studied two classification

tasks: error versus correct responses and small versus large

errors.

The classification process is composed of two different

phases: feature extraction and classification. The used fea-

tures were the RAW data subsampled to 64 Hz. In order to

select which features use (i.e, which channels and time win-

dow), a statistical measure that shows the areas significantly

different between error and correct responses was performed.

Concretely, we computed the r2 analysis [7], widely used in

neurophysiology for this purpose. Figure 4a shows the r2 for

error versus correct responses, for every channel within the

time window 0 − 800 ms, averaged for all the participants.

The activity on the ERP is clearly centered on the FCz

and Cz electrodes, suggesting a fronto-central activity and

thus agreeing with the analysis performed on the previous

section. Despite there is a significantly different activity on

other channels, these could be related with other cognitive

processes and therefore not related with error processing.

Thus, we selected (by visual inspection) for classification the

following fronto-central channels: Fz, FC1, FC2, FCz, Cz,

CP1, CP2 and CPz.1 Finally, the time window was also fixed

by visual inspection according to the r2 results (see footnote

1), selecting the range 200−800 ms. This selection leaded to

a feature vector (concatenating all the channels selected), of

1 Notice that we are aware of a possible effect of overfitting because of
using all the examples to select the channels and the time window. For this
reason, we also computed the r

2 separately for each participant and also
with different percentages of the data, having no substantial differences on
the results obtained.

312 features. Regarding the small vs large errors case, the r2

within the time window 0−1000 ms is shown on Figure 4b.

For this second classification task, the differences are clearly

later when compared with the first task. This is due to the

fact that the movement of the robot was continuous, and thus

the participants noticed the differences between these actions

later. In this case, we chose the range 700− 900 ms, having

a total of 104 features.

The previous features were normalized on the range 0−1,

and they were used to train a Support Vector Machine

(SVM). This classifier has been used on the past for classify-

ing error-related potentials [6], [11]. Among all the possible

versions of SVM, we used the ν-SVM classifier with a radial

basis function kernel2. The ν parameter was set to 0.5 and the

γ parameter of the radial basis function was set to 1

♯features
.

For the error/correct classification task, we selected 25% of

each type of incorrect movement so as to have balanced data,

thus having 100 error examples and 100 correct examples.

For the second classification task, we had 200 small errors

and 200 large errors. Finally, in order to minimize overfitting

effects, we used a ten-fold cross-validation strategy to train

the classifier. Furthermore, the normalization values were

calculated with the 90% of the data and applied to the

remaining 10%.

The classification performances (True Positives and True

Negatives) for the error/correct classification task for each

participant are shown on table I.

TABLE I

CLASSIFIER PERFORMANCE: ERROR VS CORRECT RESPONSES

P1 P2 P3 P4 Average

Error 84.67% 77.56% 76.00% 77.67% 78.97%
Correct 90.56% 80.78% 80.00% 79.00% 82.58%

The results show a high detection rate of the ERPs, being

roughly an 80% on average. The accuracies are always higher

on the correct responses. In general, these results demonstrate

the feasibility of detecting these signals on single trial when

elicitated by a robotic arm. However, for the small/large

errors classification task, we obtained on average a 57.80%
and 60% of accuracy for small and large errors respectively.

These results suggest that, despite there were differences

between the small and large errors (see Figure 4b), they were

rather subtle to obtain good performances.

Additionally, when using Brain-Computer Interfaces for

real applications, it is important to know the amount of data

needed for training in order to achieve good detection rates

(the EEG data acquisition is a consuming and tiring process).

Thus, we studied the evolution of the classification rate as a

function of the number of training examples, for error versus

correct responses. The analysis was performed selecting sets

as follows: using the first (in time) 10% of the data as

training set and the 90% of the last (in time) data as the test

set (labeled as 10%-90%). We performed this comparison

2We made a comparison among different linear and non-linear kernels for
SVM, obtaining slightly better results with the radial basis function kernel.
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(a) (b)

Fig. 4. (a) r
2 of the Error vs Correct Responses (time versus channels). Notice that it is only shown the window 0 − 800 ms, since the error ERP is

elicited within this range. (b) r
2 of the Small vs Large error responses. In this case the differences start later since the movement is continuous, and thus

the 0 − 1000 ms is shown. The figure is best viewed in color.

also for the cases 20%-80%, 30%-70%, 40%-60%, 50%-

50%, 60%-40%, 70%-30%, 80%-20% and 90%-10%. Figure

5 shows the recognition rate for each class averaged over the

four participants.

The results show that the recognition rate reached a stable

value with a 60% of the data (60 examples of each action),

equivalent to around 35 minutes of data collection.
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Fig. 5. Classification accuracies for different percentages of training and
test data.

Notice that these results also suggest that the protocol for

further experiments does not require such a long training as

the one used in this paper. For instance, the 60%-40% case

represent a first phase of training, of roughly 30 minutes, and

a second phase concerning the experiment as such, where the

signal is detected online using the previous training data.

Summarizing, we have shown that it is possible to distin-

guish between error and correct robot operations with a high

accuracy (∼ 80%). In the case of the percentages analysis, a

data collection of 30 minutes with 60 examples is required

to obtain stable classification rates.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the existence of a

brain response during the observation of a real robot action.

The results show that the brain areas involved in this brain

activity are those related with prior work on human error

processing. The nature of this response, together with the

ability to classify single-trial EEG measurements, opens the

door to develop prostheses that could learn users’ desires and

adapt to time-specific requirements.

Our future work focuses on extract more information on

the responses obtained. Concretely, the differentiation be-

tween various aspects of errors, such as laterality (left-right)

and degree (small-large), may play an important role when

being in more complex settings, such as continuous domains,

and therefore needs more thorough studies. Furthermore,

we are also studying selection methods that automatically

selects the time window and channels according to the neural

process of interest. We also plan to explore the detection of

errors on a continuous EEG signal to incorporate this on

more complex robot actions. In the long term, the objective

of this work would be to online detect these signals on real

rehabilitation applications, such as robotic prostheses, so as

to correct the device’s behavior.
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