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Abstract— This paper describes a method for the iden-
tification of moving objects by a team of robots based on
kinematic information. The objective is to be able to identify
moving objects observed by different robots without using
specific landmarks. Our method uses a bayesian approach
and is based on the matching of maps of dynamic objects
built by the members of the team. These maps contain the
relative position of moving objects and their velocity at a
given time. Experimental results using data from a real
environment carried out to validate the method are presented
and discussed.

[. INTRODUCTION

Cooperative robotics has received considerable more
attention from the robotic community due to the advances
attained in the classic problems of mobile robotics. Be-
sides, the scenarios where the robots are supposed to
perform their tasks have become unstructured, dynamic
and cluttered, increasing the challenge and demanding
more complex capabilities from the robots. In this context,
it becomes necessary to be able to characterize these
complex environments and to share the information be-
tween the robots of a robot team. The work presented
in this paper addresses the problem of mobile object
identification by a team of robots. We assume that no
common absolute reference system or relative pose es-
timation of the members of the team is available. This
joint identification of the moving objects is necessary
to perform tasks like relative localization of the robots,
decision making, working area exploration or tracking of
specific targets in a multirobot framework.

Usually, robot or object identification is performed
using cameras, which provide information such as color,
texture, shape and size. Often artificial landmarks, as color
patches or bar codes, are used when a robot needs to
identify other robots. For example, some recent works
have addressed the problem of localization of a team of
robots [3], [9], [6]. All of them use external systems or
artificial landmarks to identify the members of the team.
However, in some situations moving object identification
can be difficult or even impossible using this kind of
information. Identification of moving objects that do not
belong to the team of robots (i.e. people) is a simple
example of one of these situations. On the other hand, the
robustness of the identification system will be increased
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if other type of information can be used together with the
landmarks. It will also provide an alternative when the
use of artificial landmarks on the robots is not possible or
when they are temporaly not usable.

In the last years several authors have addressed the
tracking of moving objects from a mobile platform (see [1]
[10], [11], [7]). The kinematic information of the moving
objects provided by some of these systems has not been
fully exploited, as it is used only for tracking purposes.
In the vision domain, Caspi et al. [2] use the dynamic
information of each sequence of images (moving objects,
changes of illumination) to resolve ambiguities that cannot
be solved with the classic image to image alignment. The
relative position of the cameras is not known but it remains
constant. In our case, the robots are not moving together
and they can even be sensing different areas.

We propose in this paper to exploit the location and
kinematic information provided by a tracking system to
identify the objects and the robots themselves. The basic
idea is that if the same object is being tracked by two dif-
ferent robots, the trajectories and therefore the kinematic
information observed by each robot must be compatible.
The problem we have to solve can be stated as a corre-
spondence problem between the information provided by
every robot in the team. We have developed a tracking
system similar to [5] using a 2D laser range finder. Using
the information provided by the tracker, each robot creates
a map of dynamic objects containing the locations and
velocities of every moving object within the field of view
of the sensor at a given time. We propose a probabilistic
framework to cope with the correspondences between
the objects tracked by each robot. A bayesian approach
is used to compute the beliefs of the correspondences
using the most probable correspondences at each time.
These correspondences are obtained using a map matching
technique [8] adapted to the maps of dynamic objects pro-
vided by the robots. To use this technique, the invariants
applicable to the kinematic information contained in this
type of maps have been identified. Experimental results
obtained using real data have been carried out to validate
the method and are presented and discussed. Finally, some
extensions and future work are suggested.



II. IDENTIFYING MOVING OBJECTS

Our problem can be formulated as follows. Let T, =
{r,...rg} be a team of R robots without any information
about their absolute or relative positions. The robots move
in a dynamic environment where some other moving
objects can also be present. Each robot is equipped with a
system that provides an estimation of its own displacement
and velocity as well as the position and velocity of the
moving objects within the field of view of its sensors.
The objective is to identify the correspondences between
the moving objects sensed by each robot. In other words,
we aim to identify which object seen by the robot r;
corresponds with each object seen by robot r L Notice that
the robots themselves are moving objects and therefore
they can be observed by the other members of the team.
Therefore, robot identification is a particular case of the
general formulation presented below.

We first propose a solution for object identification by a
pair of robots where the number of objects does not vary,
i.e. new objects do not appear and the tracked objects do
not dissapear from the sensing area of a robot. Then we
show how to manage a variable number of objects in the
scene and how the method scales to three or more robots.

A. Moving object identification for two robots

Let r, and r, be two different robots and N, and N,
be the number of objects being tracked by ra and r,
including the robot itself. We denote {0, ,,...,0,, } and
{Ob ) b, } the objects being tracked by ra and 7y, re-
spectlvely 0 ,1 TEpresents 7, and Ob | Tepresents r;. At the
moment we assume that N, and N, are fixed. Let Z,, (k) =
{za,l( )seees a,Nu( )} and Z,,( ) = {zb,1( )y Zb,Nb(k)}
denote the observations of the objects sensed by each
robot at time k. In our particular case the observations
contain the position and velocities of the moving objects
(See Sec. IV).

The problem to solve is to establish the correspondences
between the objects of both robots at each point in time
by using the observations Z’,‘u ={Z.,(1),...,Z.,(k)} and
Z’;b ={Z,,(1),...,Z,,(k)} obtained until time k. We can
formulate the method as a data association problem, in
which we calculate the belief of the hypotheses of all the
possible pairings between the objects being tracked by the
robots.

Let x;; be a discrete binary variable representing the
hypothesis that O,; = O, ; for i € 1...N, and j € 1...N,.
Let x;, be a dlscrete bmary variable representing the
hypothesis that O, ; # Oy s Vj€ 1..N,. We define X
(X115 Xy ...,xNal,...,xNa@)T as the state vector represent-
ing all the pairing hypotheses.

To calculate the belief of a hypothesis, we can compute
the posterior probability P(x k|Zk) of each discrete binary

variable x;;, where VAR {Z" Z’,‘b} is the set of all obser-
vations until time k. Table I shows a graphic representation
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BELIEFS OF THE STATE VECTOR.

of the estimated probabilities of the variables of the state
vector. Assuming a Markov process and applying Bayes
rule we obtain:
( |Zk) P(Z(k)lxtj) ( t]kle l)
ok X P(Z(K) x;j)P(x,; | Z41)
i€1..N, jEO..N,
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If the number of objects remains constant, the prior infor-
mation P(x; j’k|Zk_1) is equal to the posterior probability
P(x; = |Z*=1) computed in the previous step. In the next
Subsection we show how to compute this term when the
number of objects varies. The term P(Z(k)|x;;) represents
the likelihood of the observation Z(k) given an association
x;; (see Sec. III). The denominator is just a normalization
factor. Rows and columns of Table I describe a complete
set of mutually exclusive events.

L Px)

The row restriction is used to compute the normalization
factor and the column one to estimate the elements of the
last row of table I.

Actually the complete correspondence space for N, and
N, objects is formed by all the possible joint associations.
The dimension of this space has a complexity of order
é’(N{iVb“) [4]. Instead of considering all these possible
states, we are just considering the states x;; for objects O,
and O, _j» ho matter which are the palrmgs for the rest of
the ob]ects This allows us to reduce the complexity of the
problem, while resolving the individual correspondence
problem. The reduction is achieved by losing the interde-
pendencies between the different individual associations.
The resulting number of variables of the state vector, all
the possible pairing hypotheses, is N (N, + 1).

, JEO...Ny; ZiP(xij)zl, i€0..N,

B. Managing appearing and disappearing objects

In a real dynamic scenario moving objects enter and
leave the sensing area of the robots. Hence, the vari-
ables forming the state vector X, change. The terms
P(x; j7k|Zk_1) of this state vector are computed based on
the posterior probabilities calculated in the previous step.
Using the representation of table I, a new object O al
detected by r, adds a new row to the table. We need to



give an a priori probability P(x;; |ZF71) to the new states

xlj:

P (|27 = BP(xyj,|1Z1),  jel.N, (2
P(x®j7k|Zk_1) = P(x@j’k_] |Zk_1) —P(xlj’k|Zk_1) 3)

The constant 3 determines the maximum amount of a
priori belief that is allocated to the new objects. On the
other hand, if object 0, disappears from the sensing area
of r,, the row corresponding to this object is removed. The
beliefs associated to the row are added to the last row,
increasing the belief that objects of r; are not associated
to any of the objects of r,:

k=1 k=1 k=1
P(xg; o Z°77) = Plxg; 4 |2°77) + Py |27,
jEL.N,

The same reasoning is applied for objects of r, just by
using columns instead of rows.

C. Scalability to a team of N robots

The previous Subsections describe a method for object
identification by a pair of robots. A simple extension for
a team of R robots consists in the application of the
method for each couple of robots. Therefore, the number
of possible pairs of robots is @. For a team of R
robots the complexity of the identification process scales
with order &'(R?). However, as every robot of the team
cooperates in the identification process, we can compute
the correspondences for each pair of robots just once. In
this case the complexity for each robot increases with
order € (R), as each robot need to process % pairs.

ITII. THE MATCHING ALGORITHM

To complete our formulation, it remains to compute the
likelihood P(Z(k)|x;;) of an observation for the pairing of
objects i and j (see Eq. (1)). As stated in Subsection II-A
the space of all possible associations has order & (N(ivh"'l ),
which makes unfeasible to compute in real time the
probability of each possible association even with a small
number of objects. The observations Z,(k) of a robot are
interpreted as a map of dynamic objects at time k. We use a
joint compatibility test (JC) similar to the one presented in
[8] together with a branch and bound technique [4] to find
the most probable association between the observations
Z,,(k) and Z, (k) of two robots at time k. The constraints
used to restrict the number of associations to be explored
while matching the maps of dynamic objects of two robots
at time k are presented in Sec. IV.

The JC test is based on the Mahalanobis distance.
Hence, the uncertainty of the observations of the objects
is represented by gaussian distributions. Each map Z, (k)
is described by the mean vector Z,(k) = (2,,,--2rpy,) and
the covariance matrix C, 0 calculated from the tracking
system we have developed. A function f,(Z,,,Z,,) =

0 is defined using the invariants presented in the next
Section between the pairs of a possible association A =
{i;jy>-+imjm}, where m is the number of pairings of the
association. Usually, f, (ZraaZrb) is a non linear function
and it has to be linearized,

t,(Z,,,Z,) =~ h,+H,(Z, )+

-7,
+ GA(Zr;, - Zrh)
h, = f,(Z,, Zrb)

At each sample period k, we compute the JC of the
pairings of an association A using an innovation test on
the joint innovation h, as follows,

Di=hiCi'h, < xi, 4)

where C, is the covariance of the joint innovation, o
is the desired confidence level and d = dim(f,). The
probability of a spurious pairing being jointly compatible
with all the pairings of an association decreases with
the number of pairings of the association. Thus, the JC
algorithm provides the set of longest jointly compatible
associations, H,~ = {A|,...,Ay}. Note that due to oc-
clusions, uncertainty and ambiguities, the JC algorithm
can provide several hypotheses with the same number of
pairings. Using the joint compatibility test instead of an
individual compatibility one is justified by the nature of
the constraints used. In the velocity space of Fig. 1 clutter
appears frequently. The joint compatibility test manages
these cluttered situations appearing in dynamic environ-
ments by taking into account the correlations between the
observations of the objects of each single robot. For further
details of the JC see [8].

To compute the likelihood P(Z(k)|x;;) we sum over
all the hypotheses H,. provided by the JC algorithm.
The likelihood of a given association hypothesis A € H,,
P(Alx;;), is computed as the product of the likelihood of
all the pairings contained in the assciation A,

P(Z(k)lxij): Z P(Alxij) = Z H gHJC(D/QA)C YIIJJ_CC

A€H)c A€H, ¢ (1,q)€A
_ [0, ifU=iandq#)) or (#iand g=))
€= 1, otherwise

If a pairing (/,q) and x;; are compatible, the likelihood
P((1,q)lx;;) = gHJC(Df\), where 8, is a function of the
Mahalanobis distance of the hypotillesis A. If they are not
compatible, the term P((/,k)|x;;) receives a residual value
Vit In our current implementation g, is a bell-shaped
exponential function centered at 0. The maximum and the
decrease of the function as well as the residual likelihood
depend on the maximum number of possible pairings of
an association and the number of pairings of H,.. This
way, the longer the hypothesis the higher the likelihood
associated to the pairings belonging to it. The subscript



Algorithm 1: Step k of the object identification algorithm.

Iteration k
INPUT: P(x,;,,|Z51), Vi, js Z(K) = {2, (K), Z, (0)).
. . ayegs k—1

Step 1: Compute the prior probabilities P(xi_].7k|Z )
1.1- Remove objects
for all removed object [ of r, do

P(xg; 1| Z41) = P(xg oy [Z1) + P(xy oy [Z471), ¥
end for
Same loop over removed objects of r,
1.2- Add new objects
for all new object / of r, do

P(xzj’k|Zk_1) = BP(X(DJ‘JG] |Zk_1)a vj

P(x0j7k|Zk_1) = P(ijvk_1|Zk_1) fP(xlj7k|Zk_1)
end for
Same loop over new objects of r
Step 2: Compute the likelihood of the observations
2.1- Generate the most probable associations:

Hye = JC(Z(K))
2.2- Compute likelihoods:
for all x;; € X do

_ 2\¢ al—c

P(Z(k) |xij) - ZAGH.IC H(Z:Q)GA 8H,c (DA)C ’yHJCL
end for
Step 3: Compute the posterior probabilities P(xl.j7k|Zk)
for all x;; € X do

. ky P(Z(k)lxij)P(Xij,klzk_])

POy h25) = 5 b, P, 21

end for

OUTPUT: P(x;; ZR), Vi, .

H,. shows this dependency for both the function 8n,,
and the residual value ¥, . Algorithm 1 summarizes a
complete step of the algorithm to compute the probabilities
of the state vector at time step k.

IV. CONSTRAINTS USING KINEMATIC
INFORMATION

In this Section we analyze how to use the kinematic
information for matching the observations obtained by
the robots. In the absence of other types of information,
we characterize a moving object by the position of a
characteristic point (i.e. centroid) p = (x,y)” and its ve-
locity p = (x,y)” in the robot reference system. Using the
notation of previous Sections, we denote an observation
of an object O, ; in the reference of the robot r at time k
as z,;(k) = (p,;(k),p,;(k))". As the objective is to match
and identify objects between two unrelated robots, we
are interested in those invariant characteristics in their
reference system.

We analyze next four invariants that can be used as
unary or binary constraints to match objects. These in-
variants are used as constraints in Sec. III to match the
maps of dynamic objects of two robots.

(1) Euclidean distance between two locations.

The euclidean distance is a well known invariant that
has been widely used as a binary constraint [4] for object
recognition, robot localization and SLAM.
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Fig. 1. (a) Scenario with two mobile robots and two moving objects,
(b) Velocities of moving objects viewed by Robot 1 expressed in Robotl
reference system (c) Velocities of moving objects viewed by Robot 1
expressed in Robot2 reference system

(2) Velocity module and (3) angle between a pair of
velocity vectors

Velocity constraints are not so widely used but are
useful to solve the proposed problem. They depend only
on the relative orientation of the two reference systems.
Let a and b be two different reference systems and q,, =
(tx ty 0)7 the relative pose of a with respect to b. Let
p. and p, be the position of an object in the reference
systems a and b, respectively. The equation transforming
the location of the object from one reference system to
the other and its derivative are

P, = Rbap“ + tba I‘)b = Jbapa o)

where R, and t, are the rotation matrix and the relative
position between a and b, respectively, and J,  is the
Jacobian of the transformation from the reference a to
the reference b. The previous equations assumes that the
relative position between both reference systems remains
constant.

From Eqgs. 5 we conclude that two objects moving with
the same velocity p cannot be distinguished. Using a polar
representation (v,¢) of the velocity vector P it is easily
shown that the module v is an invariant in the reference
system. On the other hand the direction of the vector ¢ is
rotated an angle 0,

v, = Vg

¢b:¢a+9 (6)

Therefore, the module is used as an unary constraint and
the angle between two velocity vectors is used as a binary
constraint. Unfortunately, in most situations the velocity
module is not discriminant enough. Usually, objects of
the same type move with similar velocities in module.
For instance, people walking speed is usually between



Wheelchair

Labmate

Fig. 2. (a) Scenario with two mobile robots and three moving people. (b) Map of dynamic objects generated by the tracking system of the wheelchair
and the labmate respectively. (c) Detail of the location and velocity of an object and their uncertainties.

0.7m/seg and 1m/seg and it is difficult to discriminate
them in the presence of noise. Fig. 1(a) depicts 2 robots
and 2 moving objects with their absolute velocities in an
unknown global reference system. Fig. 1(b) and 1(c) show
the velocity maps observed by each robot. As stated before
the velocity maps are just rotated an angle 6.

(4) Angle between a segment joining a pair of points
and a velocity vector.

The fourth invariant uses the orientation of the segment
between two points. Without using kinematic informa-
tion, angles between segments are a ternary constraint.
Using the velocity vector we measure the angle between
the orientation of the segment joining the positions of
two objects and the orientation of one of their velocity
vectors. This binary restriction is used to disambiguate a
symmetric situation when the previous constraints are not
discriminant. That is, when both the distances between two
pairs of objects and the angle of their velocity vectors are
compatible. Throughout our experiments we found that
in some cluttered environments this constraint reduces
considerably the number of nodes to be explored and
improves the robustness of the algorithm, specially when
the uncertainty increases.

A. Sources of uncertainty

We have described four invariants that can be used to
match maps of dynamic objects. Unfortunately, sensors
information is noisy. Furthermore, a multirobot scenario
introduces new sources of uncertainty that must be taken
into account. First, sensors can be non perfectly syn-
chronized, unsynchronized or even have different scan
rates. This makes that the discretization of the trajectory
described by a moving object will not be the same for
each robot. Although prediction or smoothing techniques
[1] can be used to temporally align the maps, the resulting
trajectory observed by each robot will be distorted. The
second source or uncertainty is the estimation of the
position of the centroid of an object. Usually objects are

only partially observed. As they are viewed from different
points their estimated centroid positions at a given time
will not be the same for different robots. The precision of
the estimated position of the centroid will depend on the
sensor and on the type of objects being tracked. A priori
knowledge of the shape of the objects being tracked allows
to better estimate the centroid, but restricts the method to
the type of objects being considered. Finally, the motion
of the robot is not perfectly known. The uncertainty of the
ego motion estimation method used by the tracking system
will also introduce noise in the estimated velocities of the
objects. Results provided in Sec. V show how our method
cope with these uncertainties.

V. EXPERIMENTAL RESULTS

We have tested the previous method in several ex-
periments in our laboratory using the two robots shown
in Fig. 2(a). Both robots, a Labmate platform and an
automatic wheelchair, are equipped with a Sick laser
range finder LMS200. During the experiments the robots
moved describing different trajectories while up to four
people walked randomly around them. The method is
currently implemented in Matlab. It was run off-line
using the recorded real data from the experiments in a
Pentium III at 800Mhz. In our current implementation
the temporal alignment is not corrected. Nevertheless, the
maximum synchronization error is limited to 110ms. The
results show that the method can cope with the temporal
error, mainly because of the uncertainty introduced in the
estimation of the centroid.

A tracking system similar to [5], developed at our
laboratory, is implemented on each robot and generates
the maps of dynamic objects used as the input to the
identification method. An example of one of these maps is
shown in Fig. 2(b) and (c). The white area represents the
free space detected by the last laser scan. Each moving
object is represented by the position of its centroid, its
velocity (red solid segment) and their associated uncer-
tainties. The circle represents the centroid uncertainty. The
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Fig. 3. (a) Execution times of the algorithm for different set of

constraints for LU maps. (b) Belief evolution for a right association
event for the LU case.

angular uncertainty of the velocity vector is represented
by the two dotted segments surrounding the velocity
vector. The two small segments crossing the velocity
direction represent the module uncertainty. In order to
test the performance and robustness of the method, the
tracking system generated two different maps of dynamic
objects using the uncertainty of the centroid estimation
process (typically about o; ~ 0.20cm) and an artificially
increased one (0, =40,). We will refer to each case as low
uncertainty (LU) and high uncertainty (HU), respectively.

We have analyzed the influence in the success of the
method of: (1) the constraints applied in the matching
algorithm using only locations, only velocities or both
together; (2) the number of objects in the scene; and (3)
the uncertainty of the maps. We provide results about the
execution time of the method, the evolution of the beliefs
of correspondences and the response time, i.e. the number
of steps needed to identify an object.

We now describe how the performance of the algorithm
depends directly on the type of constraints used in the
matching algorithm. If the maps of dynamic objects do not
contain clutter or ambiguities, the results obtained using
only locations or only velocities are similar to the ones
obtained using both together. However, when the num-
ber of objects or their uncertainty increases, clutter and
ambiguities appear more frequently and only velocities or
locations are not able to find the right correspondences. As
expected, the use of both types of information at the same

Fig. 4. Correspondences estimated probabilities: (a) a priori probabil-
ities, (b) step 6, (c) step 16, (d) step 20. The (x-y) axes contain the
labels of the objects detected by each robot, respectively. The 0 label
corresponds to the null association.

time improves the robustness of the method and allows it
to find the correct pairings. However, in some cases the
JC algorithm provides some incomplete or even erroneous
pairings. The estimated correspondences using Bayes take
into account the whole set of observations obtained until
time step k filtering the wrong associations provided by
the JC.

With regard to the execution times, using all constraints
is more expensive when there are no ambiguities between
the maps. However, for cluttered scenarios the execution
time of the matching algorithm using all the constraints is
similar for all the cases. Using all the constraints can even
improve the execution time, as the bound technique is able
to discard more nodes. Fig. 3(a) shows the times obtained
in the identification method using different constraints
for a total number of 6 moving objects (4 people and
2 robots). The peaks corresponds to ambiguous situations
where almost all the possible nodes need to be examined.
Table II contains the mean and maximum execution times

Time (sec.) LU HU
# obj u max u max
2 0.01 | 0.06 | 0.06 | 0.06
3 0.03 | 0.11 | 0.06 | 0.11
4 0.11 | 0.22 | 0.18 | 0.55
5 0.29 | 0.78 | 0.69 1.4
6 053 | 1.76 | 1.23 | 35

TABLE I
EXECUTION TIME DEPENDING ON THE NUMBER OF OBJECTS FOR A
NON OPTIMIZED MATLAB IMPLEMENTATION.



obtained for different number of objects. It shows how the
performance of the JC algorithm degrades when the uncer-
tainty, and consequently the number of wrong compatible
hypothesis, increases. However, the maximum obtained for
6 objects correspond to a particular situation produced by
a mistake of the tracking system. In a cluttered situation,
two filters were created to track the same object which
produces this maximum. The number of filters is corrected
after two steps and the execution time reduced.

We have also analyzed the number of steps needed to
identify an object, which can be interpreted as the response
time of our method. As in the previous case, the results
depend on the characteristics of the scenario. For the low
uncertainty case, the response time does not depend on the
constraints used. Only in some particular configurations,
the response time obtained by using all the constraints
is better than the others. In most of the cases, the correct
pairings are achieved using the observations of about three
steps. When the uncertainty increases, the response time
using all constraints is better than the others. Furthermore,
in a high percentage of the cases using only locations or
velocities does not obtain the right correspondences. The
method response for a correct pairing for the LU and HU
maps is shown in fig. 3(b).

Finally, fig. 4 shows the estimated beliefs of our state
vector at different time steps using all the constraints.
Fig. 4(a) corresponds to the a priori beliefs for a given
number of tracked objects. After 5 steps, Fig. 4(b), the
estimated probabilities of all the right correspondences
are close to one. Fig. 4(c)(d) show how the identification
matrix evolves when the number of objects varies. First,
the probabilities are redistributed among the new objects
keeping the already existing correspondences. After two
more steps, the correct correspondences for the new ob-
jects have been identified again.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method for moving
objects identification by a team of robots based only on
the relative locations and the velocities of the moving
objects. The experimental results show how this method
is able to quickly identify the right correspondences even
in the presence of high uncertainty. We have shown how
the joint use of location and kinematic information of the
moving objects can be utilized to solve the correspondence
problem, improving the performance and robustness of the
method. There is still some on going work been carried
out to determine the best likelihood estimation for an
association provided by the joint compatibility algorithm
and its influence on the identification method. The use of
an individual compatibility test is also been considered to
reduce the amount of shared data and the execution times.
The method can be interpreted as a trajectory matching
algorithm where at each time step trajectories defined

by the last two observed positions are matched. The
sequential integration using Bayes extends the matching
to the whole trajectory eliminating the spurious matches
given by the JC algorithm and increasing the robustness
of the identification.

This paper has addressed the identification problem in
the correspondence space by matching the maps of moving
objects generated by the robots from their observations.
We think that the method can be combined with other
static map matching techniques to match maps contain-
ing both static and dynamic information. The problem
could also be solved in the pose space instead of using
the correspondence space by estimating the relative pose
between the robots. We intend to explore this approach and
compare both solutions in terms of complexity, accuracy
and scalability.
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