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Abstract— This paper presents a new method for relative
localization of a pair of robots based on the trajectories
described by unidentifiable moving objects. Our approach
uses a Rao-Blackwellized particle filter to estimate both the
relative location of the robots and the data associations
between the moving objects around the robots. We describe
our implementation on real robots and present experiments
illustrating the robustness of our algorithm.

I. INTRODUCTION

In the past cooperative robotics has received remarkable
attention from the robotics community since the use of a
team of robots instead of a single robot has several advan-
tages. Teams of robots can solve problems which cannot
be solved by a single robot. Additionally, robot teams can
be more efficient due to the parallelism they introduce.
Furthermore, teams of robots improve the robustness since
the failure of a single system can often be compensated by
its team members. However, the use of a team of robots
also introduces new challenges for example in the areas
of decision making or state estimation. In this paper we
concentrate on the second aspect and consider the question
of how to relatively localize a pair of robots in the absence
of global pose information. In particular we are interested
in estimating the relative pose of two robots based on
information about moving objects in the field of views of
the robots. This approach has certain advantages even for
larger teams of robots. It allows robots to determine their
relative pose in the absence of static information such as
a map. It also provides a way to share a single global
positioning sensor such as a GPS among a team of robots.
Simultaneously, it does not require that the robots can
identify each other or distinguish themselves from other
moving objects.

In the last years several authors investigated the problem
of tracking moving objects with a mobile robot [11], [7],
[14]. The authors mainly focused on the problem of how to
robustly keep track of the moving objects and investigated
sample-based belief representations and proposed solutions
for the data association problem between consecutive ob-
servations. If, however, one wants to relatively localize
a pair of robots based on observed moving objects, one
additionally has to deal with the potential data associations
between the observations of the individual objects. The key
idea of this paper is that, if two robots are tracking the same
moving objects, the trajectories described by these moving

objects, the robots included, must be compatible. The goal
of the approach presented here is to accumulate evidence
about the relative location of two robots based on the
information about the trajectories of observed objects. This
paper extends our previous work [8] in which we presented
an approach to utilize the kinematic information about
moving objects to establish correspondences between the
moving objects tracked by different robots. We particularly
investigate how to use the information provided by a
tracking system to relatively localize a pair of robots.

The approach presented in this paper is purely proba-
bilistic. We use a Rao-Blackwellized particle filter [3] to
estimate the posterior over both the relative locations of the
robots and the data associations between the moving fea-
tures around them. Our approach includes an efficient way
of managing the uncertainty about the data associations of
the individual trackers. Our method has been implemented
and evaluated on real robots. The results suggest that our
approach can robustly localize the robots and deal with
certain kinds of sensor limitations such as restricted fields
of view.

The rest of the paper is organized as follows. After
discussing related work Section III provides a full de-
scription of the problem. In sections IV and V we then
present our algorithm for relative pose estimation based on
moving features. Finally, we describe experimental results
in Section VI.

II. RELATED WORK

The problem of multi-robot localization has been studied
intensively in the past. In the algorithm proposed by Fox
et al. [4] each robot maintains its own belief about its
pose relative to a given map. When two robots meet each
other they exchange their beliefs. A further approach to
the multi-robot localization problem has been proposed
by Rekleitis et al. [9]. In this work the authors use the
robots as landmarks in order to reduce the odometry
errors during exploration tasks. Roumeliotis [10] presents
a distributed cooperative localization algorithm based on a
single Kalman filter that jointly estimates the position of
the robots of the team. The method provides a framework
to estimate the global positions of the robots and to
maintain the correlations between the poses of the different
robots. Howard et al. [6] describe a multi-robot localization
method where only the robots are used as landmarks. Thus,



the robots do not localize themselves in a common static
reference system. Rather each robot estimates the relatives
poses of the other members of the team with respect to
itself.

All these approaches assume that the identity of the
robots is always known. The detection and identification of
robots are achieved by special markers placed on the robots
(such as color patches and fiducial codes) or by using
an external system (such as a camera). This assumption
avoids data association problems according to the lack of
identities and greatly reduces the overall complexity of the
state estimation problem. However, in certain situations
the identity of the robots is not always available. For
example, when a laser range sensor is used, when it is not
possible to use cameras and/or artificial markers, when the
landmarks are temporarily not visible, or in the presence
of ambiguities.

Our framework is similar to that of [6] in the sense
that the robots are not localized with respect to a global
reference system. However, our approach allows to use all
moving objects observed by the pair of robots to compute
their relative location. Furthermore, it does not require that
the identity of the observed objects is known to estimate
the relative locations.

From a different point of view, the general problem
considered in this paper can be regarded as a particular
network of mobile sensors. This network uses the same
sensor to estimate the relative locations of the nodes of
the network and to track moving objects around them.
In this case one wants to jointly track the objects (data
associations) and also discover and maintain the network
topology (relative locations of the sensors). The problem is
therefore a multi-hypothesis tracking problem from mobile
platforms. Whereas several solutions have been proposed
to the problem of multi-tracking [1], [13] there is, at
least to the best of our knowledge, no work coupling the
tracking problem with the estimation of the relative poses
of the sensors. For example, Schulz et al. [12] recently
presented a multi-hypothesis approach to people tracking
with a network of location and ID-sensors. They assume,
however, that the locations of the sensors are known and
static.

Compared to previous work our approach is novel in
the sense that it estimates the relative pose of two robots
based on the kinematic about not identified moving objects.
It combines techniques for tracking moving objects with
an approach to jointly estimate the relative pose of the
pair of robots and the correspondences between the tracked
objects. Although in this work we have focused only on the
use of kinematic information provided by the trackers, the
method can be extended to include other types of informa-
tion, i.e. shape, color, texture. This provides a framework
to fuse information from different kind of sensors.

III. PROBLEM DESCRIPTION, NOTATION AND
ASSUMPTIONS

Throughout this paper we assume that each robot is
equipped with sensors that provide odometry measure-

ments and observations of the positions of moving objects
in the vicinity of the robots. Suppose Zi = {zi1, . . . , zin}
are the observations corresponding to the moving objects
in the field of view of robot ri and ui the motion executed
by ri. In this paper we will use the superscript index k to
refer to the set of variables up to time k and the subscript
k to refer the variable at time k. To ease and shorten the
notation all the variables with the suffix ij denote the set
of variables of ri and rj . For instance, uij = {ui, uj} is
the set of actions of both robots ri and rj .

Our goal is to estimate the relative locations x
k =

(x, y, θ) of the two robots ri and rj given all information
Z

k
ij and uk−1

ij . Let ηik
be the intra-robot data associations

between the observations Zik
and Zik−1

and ηjk
those

between Zjk
and Zjk−1

. Let also ηzk
be the inter-robot

data associations, i.e., the data associations between the
observations Zik

and Zjk
. Mathematically, we want to

estimate the joint distribution over the relative pose of the
robots and the data associations

p(xk, ηk
z , ηk

i , ηk
j |Z

k
ij , u

k−1

ij ) (1)

Finally, we assume that the robots are able to commu-
nicate independently of their relative positions. In a real
scenario, however, the fact of being able to communicate
already provides some prior information about the relative
positions of the robots (wireless connection available,
strength of the radio link, etc). Even though we do not
explicitly address this issue in this paper, our algorithm can
be easily extended to incorporate limited communication
ranges in order to improve the performance of the method.

IV. FROM OBSERVATIONS TO TRACKS

To keep as much as possible of the computational burden
on the individual robots, we track the moving objects
around each platform independently on each robot. Thus,
the robots only need to share the information about the
trajectories of the moving objects and can compute their
relative location based on the associations between these
trajectories. In this section we show how we factorize
Eq. (1) to use trackers and which information the trackers
must provide. Accordingly, we compute the joint distribu-
tion as follows,

p(xk, ηk
z , ηk

i , ηk
j |Z

k
ij , u

k−1

ij )

= p(xk, ηk
z |η

k
i , ηk

j ,Zk
ij , u

k−1

ij )p(ηk
i , ηk

j |Z
k
ij , u

k−1

j )(2)

= p(xk, ηk
z |η

k
i , ηk

j ,Zk
ij , u

k−1

ij )

p(ηk
i |Z

k
i , uk−1

i )p(ηk
j |Z

k
j , uk−1

j ). (3)

Eq. (3) follows from Eq. (2) under the assumption of
independence between the observations and movements of
the two robots. From Eq. (3) we see that the distributions of
the intra-robot data associations ηk

i and ηk
j only depend on

the observations and movements of the corresponding robot
and therefore can be computed independently. This is what
a tracking system actually does on each individual robot. It
solves the intra-robot data associations computing the set
of possible tracks which implicitly represent a history of
data associations.
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Fig. 1. A possible scenario: (a) shows the global situation. For the sake of clarity in this representation the robots R1 and R2 are static and we
only use the two moving objects O1,O2. The objects cross their trajectories producing an ambiguity in the intra-robot data associations. (b) and (c)
show, respectively, the observations obtained by the robots at each time step and the intra-robot data associations made by the individual trackers. The
matrices represent the probability of flipping tracks at different time steps (black 0, white 1). Note that the robots make different data associations at
time step k − 2. Consequently the estimated trajectories are different. However, the flipping matrices reflect the ambiguity and allow us to correctly
match the trajectories by changing the inter-robot data association at that time step from {1B, 2A} to {1A, 2B}.

In order to match the trajectories the robots must share
the information generated by their tracking systems. Un-
fortunately, from the multi-tracking literature it is known
that keeping the set of all possible tracks has an expo-
nential complexity due to the combinatorial explosion of
possible data associations. In the presence of ambiguities
this requires to keep an increasing number of possible
tracks. To illustrate this consider the situation depicted in
Figure 1(a) where two robots observe two moving objects.
A data association ambiguity arises at time step k − 2 for
the individual trackers of each robot when the two moving
objects intersect. Each robot should keep both possible sets
of tracks (figures 1(b) and (c)) requiring to communicate
an unbounded number of tracks and their probabilities.

We, therefore, need a way to represent the set of all
possible trajectories with a constant cost on the number of
tracked objects. To do this we use what we call a flipping
matrix. Each element of a flipping matrix represents the
probability of switching the identity of a pair of tracks
at a certain point in time (see figures 1(b) and (c)).
Thus, the tracking system of each robot computes the
maximum a posteriori (MAP) set of tracks together with
the corresponding flipping matrices. The set of all matrices
up to time k allow us to approximate from the MAP
estimated tracks the set of all possible tracks corresponding
to all the possible data associations.

In our current system we use a multi-target tracker based
on a set of independent Extended Kalman Filters (EKF)
and the nearest neighbor principle to compute the MAP
set of tracks 0i = {oi1, ..., oin}. Each element of Oi is
an independent Kalman filter that estimates the location
and velocity of a moving object. To efficiently compute
the flipping probabilities between the tracks of a single
robot ri we use Markov Chain Monte Carlo (MCMC)
techniques. We construct a Markov chain to approximate
the distribution of possible flips among the tracks. A
flip represents an association between a pair of tracks of

Oi that exchange their identities and its likelihood is a
function of the distance between the tracks. The chains
are generated using smart chain flipping, a specific version
of the Metropolis-Hasting algorithm proposed by Dellaert
et al. [2] for the data association problem. The smart
chain flipping technique proposes new mappings among the
tracks based on the individual likelihoods of all the possible
flips. We use the samples of the MCMC to compute the
probability of the flips between each pair of tracks. The
probability of a flip is its frequency in the chain, i.e. the
number of occurrences of the flip divided by the number
of samples of the chain.

In the following we will denote tik
to all the information

provided by the tracker of robot ri at time k. Thus, tik

contains the estimated EKFs Oi at time k, the flipping
probabilities among the tracks at this point in time and the
odometry reading uik

. As before tki represents the set of
tik

up to time k. The tki can be regarded as a sufficient
statistics for the set of ηk

i , Z
k
i and uk−1

i . Substituting them
in Eq. (3) we obtain,

p(xk, ηk
z , ηk

i , ηk
j | Zk

ij , u
k−1

ij ) = p(xk, ηk
t | tkij) (4)

where tkij = {tki , tkj } and ηk
t are the data associations be-

tween the tracks of the individual robots. A inter-robot data
association is a set of pairs {< oih, ojl >} representing
that tracks oih and ojl correspond to the same object. The
terms p(ηk

i | Z
k
i , uk−1

i ) and p(ηk
j | Z

k
j , uk−1

j ) of Eq. (3)
do not appear on Eq. 4 as the flipping probabilities already
contain the information associated to these terms. We are
now able to define how to use the information provided
by the tracking systems to estimate the inter-robot data
associations and the relative pose of the vehicles.

V. ESTIMATION OF RELATIVE POSE AND
CORRESPONDENCES

Figure 2(a) shows the graphical representation of our
problem using individual trackers. According to this graph-
ical model we realize that given the data associations
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Fig. 2. (a) Graphical model for relative pose estimation based on trackers. Each robot tracks the objects around them ti and tj . The hidden states
are the relative location of the robots x and the correspondences between the tracked objects ηt. (b) and (c) show two different data associations for
the example of Fig.1. The wrong data association (b) computes an erroneous relative location and consequently the trajectories of the objects are not
compatible. On the other hand the correct inter-robot data association (c) computes the correct relative location and the trajectories of the moving
objects are compatible.

between the tracks ηk
t we can estimate the relative location

of the robots. Furthermore the full posterior p(xk, ηk
t | tkij)

in Eq. (4) can be factorized as follows:

p(xk, ηk
t |t

k
ij) = p(xk|ηk

t , tkij)p(ηk
t |t

k
ij). (5)

The data association problem is known to be a hard
problem with combinatorial complexity in the number of
objects. Besides, the mutual exclusion restrictions between
the objects make it analytically intractable. In this paper
we implement Eq. (5) using a Rao-Blackwellized particle
filter [3]. The key idea is to sample over possible data
associations p(ηk

t | tkij) and to compute the relative position
of the robots based on the sampled data associations. Given
a data association sample η

k,s
t , the relative pose can be

analytically estimated using a single Kalman filter [1].
Thus, each data association sample η

k,s
t has associated

a Kalman filter representing the relative position of the
robots based on the specific data associations history of
this sample.

Figures 2 (b) and (c) show two inter-robot data associa-
tions and the corresponding relative location for the exam-
ple of Figure 1. The first data association, and accordingly
its associated relative position, is wrong. Therefore, the
trajectories of the moving objects diverge. On the other
hand, Figure 2 (c) represent the correct correspondence
and relative position. In this case the trajectories described
for the objects are compatible.

A. Estimation of correspondences

The estimation of the distribution p(ηk
t | tkij) is done

sequentially based on the previous one p(ηk−1

t | tk−1

ij ),

p(ηk
t | tkij) ∝ p(tijk

| ηk
t , tk−1

ij )p(ηk
t | tk−1

ij ) (6)

= p(tijk
| ηk

t , tk−1

ij )p(ηtk
| ηk−1

t , tk−1

ij )p(ηk−1

t | tk−1

ij )(7)

= p(tijk
|ηtk

,xk−1)p(ηtk
|ηtk−1

, tijk−1
)p(ηk−1

t |tk−1

ij ) (8)

The previous derivation is obtained applying Bayes and
substituting the set of tracks tk−1

ij and data associations

ηk−1

t by the relative pose of the robots xk−1. The latter
comes out from the fact that knowing both, the relative
pose of the robots is a sufficient statistics for the data
associations. Note that we assume a Markov process for
the evolution of the data associations p(ηtk

| ηtk−1
, tijk−1

).
This assumption does not hold for pure observations and is
a consequence of using individual trackers for each robot.
It allows us to use only the information corresponding to
the last step, tijk−1

and ηtk−1
, discarding previous states.

The usual way to compute Eq. (8) for particle filters is to
propagate the samples of the previous step Sk−1 according
to the prediction model p(ηtk

| ηtk−1
, tijk−1

) and weigh
them according to the likelihood p(tijk

| ηtk
,xk−1). The

new set Sk is obtained by sampling the predicted sample
set according to the weights.

When generating the proposal distribution, we must
take into account the flipping probabilities introduced in
the previous section. Neglecting these terms would allow
wrong data associations and their associated relative pose
to continuously evolve to fit the observations based only
on the current state of the tracks at time k. Intuitively, in
the absence of ambiguity in the tracking systems, the inter-
robot assignments cannot change. If there exist ambiguities,
the inter-robot data associations ηtk

can only evolve to
accommodate possible flips on the trackers of each robot.

Therefore, we sample potential track flips based on
the flipping matrices computed by each robot. Each flip
exchanges the identity of the tracks of two pairings of
the previous data association sample ηs

tk−1
. For instance,

figure 3(a) show the possible data associations generated
from association {1A,2B} and their probability according
to the flipping matrices.

Once the data association ηtk
is known the likelihood

p(tijk
| ηtk

,xk−1) of a given sample is easily computed
based on the distances between the positions of the associ-
ated tracks given the relative pose xk−1 (see figure 3(c)).

In this work we only use the kinematic information
generated by the tracking systems. The framework, how-
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Fig. 3. One step of the algorithm. (a) Sampling the data associations. The proposed data associations evolve according to the flip probabilities of
each robot. The figure shows the possible results of the sampling procedure and their probabilities for two different cases of figure 1. (b) Prediction
of the relative pose of the robots using odometry. The uncertainty of the relative location increases due to the motion of both vehicles. In the figure
robot 1 acts as reference system and x represents the relative location of robot 2. (c) Likelihood of the data associations and update step of the relative
location. The likelihood p(tijk

| ηtk
,xk−1) measures how well the inter-robot data association ηt,k explains the location of the objects observed by

the robots at time k. Those samples with wrong data associations ({1A 2B} in this case) will have a lower likelihood and will be removed during the
resampling step. On the other hand the update step reduces the uncertainty of the relative location xk .

ever, allows to extend the information included in the
tracks tkij to include other types of information. This new
information will modify the inter-robot and intra-robot
data association models and the likelihood function. For
instance, color or shape information could be used to ease
the data associations modifying the probabilities of the
possible correspondences.

B. Relative Pose Estimation

As mentioned before, the relative position associated
to each data association sample is estimated using an
Extended Kalman Filter. This Kalman filter represents the
location of one of the robots with respect to the other
based on a given data association history. The relative pose
estimation must take into account the fact that the reference
system is moving. Consequently, the relative position must
be transformed to the new robot position at each time step,

x̄k−1 = xk−1 ⊕ uk−1 (9)

where x̄k−1 is the estimated relative position at time
k − 1 referenced to the robot position at k. ⊕ represents
the composition of two uncertain locations: the previous
relative position estimation xk−1 and the displacement of
the robot acting as reference system between the last two
steps uk−1.

We apply the classical EKF equations to estimate the
position of the tracked robot. In our case the motion model,
xk|k−1 = f(x̄k−1, uk−1), computes the predicted relative
position based on the odometry readings of the tracked
robot (see figure 3(b)). The observations are integrated
through the joint observation model h(tijk

,xk|k−1) = 0
in the update step to compute xk. This model is a function
of the positions of the objects tracked by each robot,
the correspondences between these objects at this time
step and the relative pose of the robots (figure 3(c)). In

other words, the observation model represents the fact that,
given the correct correspondences and its relative pose, the
trajectories described by the objects do not diverge. If they
are not correct, the resulting pose will be wrong and the
trajectories will not match. This sample will be deleted in
the resampling step due to its low importance factor.

(a) (b)

Fig. 4. Pioneer 3 with two SICK lasers used in the experiments (a) and
a snapshot of one of the experiments (b).

VI. EXPERIMENTS

The technique described above has been implemented
and tested on data collected with real robots. In this
section we present results demonstrating the ability of our
method to correctly determine initial relative locations and
to reliably track them.

The real data experiments have been performed using
two Pioneer-3 robots as the one shown in Figure 4. Both
robots are equipped with two sick LMS291 laser range
scanners which together provide a 360 degrees field of
view. We carried out 5 experiments in the main lobby
of the lecture hall at the computer science department
of the University of Freiburg. The size of this hall is
approximately 51 by 18 meters. In each experiment the
robots were manually driven in this hall for about 3 to
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Fig. 5. Results of a real robot experiment: Position (a) and orientation (b) error for each hypothesis, probabilities of the individual hypotheses (c),
and number of objects being tracked (d).
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Fig. 6. Results of a real robot experiment with no common evidence in the very beginning: Position (a) and orientation (b) error for each hypothesis,
probabilities of the individual hypotheses (c), and number of objects being tracked (d).

4 minutes while up to 5 people walked around them.
The right image of Figure 4 shows a typical situation
encountered during this experiment. To evaluate the results
of our algorithm we computed the ground truth using the
localization system developed by Hähnel et al. [5]. The real
data were recorded and processed off-line. We run each real
data set starting at different points in time to increase the
number of initial configurations.

Figures 5 and 6 show the behavior of our algorithm in
two different situations. For the sake of clarity we clustered
the data association samples using the relative location
associated to them. This way we are able to plot only
hypotheses corresponding to different locations indepen-
dently of the current data associations. The probability of
each hypothesis was computed sequentially based on the
likelihood of the samples belonging to the corresponding
cluster and using a fixed likelihood for the hypothesis
of not being tracking the correct associations. Moreover,
hypotheses are only plotted after surviving more than ten
iterations. The figures show the relative error in terms of
distance and orientation and the probability for all such
hypotheses. In addition, we plot the number of objects
tracked by each robot, and the number of common objects
(without taking into account occlusions) according to the
ground truth.

In the first situation shown in Figure 5, the robots
started close to each other and had four moving objects
in common. The correct relative pose was estimated based
on the correct data associations for the tracks of these
objects, which is represented by the hypothesis h1 in this
figure. Some new hypotheses are introduced when new
objects appear (for instance in iterations 5 and 17). In
this experiment the robots are moving close to each other.

Therefore, the probability of the correct hypothesis h1
quickly converges to 1 while the others are deleted during
the resampling step. As depicted in Figure 5(a) and (b), the
position and orientation error with respect to the ground
truth for h1 is always under 0.6 meters and 4 degrees
respectively. Note that the initial error for h1 is small
since our algorithm generates it based on the right data
association hypothesis.

In the second situation the robots started far away from
each other and therefore were not tracking any common
moving object. Anyway the robots try to estimate their
relative position using the moving objects they perceive and
generate wrong hypotheses (h1, h4, and h5). This situation
lasts until iteration 40. Then the right data association
(hypothesis h6) was generated and started being tracked.
As more common objects appeared, some other hypotheses
were created but they were removed after some steps. This
is depicted in Figure 6.

Finally, Figure 7 shows the results for a complete exper-
iment where there were always common features. Fig 7(a)
plots the ground truth trajectory of one robot as a solid
line. Additionally it contains the trajectory of the same
robot computed based on the ground truth trajectory of the
second robot and the relative pose between the two robots
(dotted line). The dashed line corresponds to the trajectory
of the first robot computed based on its initial pose and
the odometry data. Figure 7(b) plots the positioning error
of the first robot with respect to the ground truth. As the
figure shows, the accuracy is quite high and the robots stay
well localized over the whole experiment despite the fact of
using moving features only. Finally, Figure 7(c) show the
trajectories of all the moving objects seen by each robot
based on our pose estimation. According to this figure,
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Fig. 7. (a) Trajectories of one robot assuming the trajectory of the other robot is known. The error between the estimated trajectory (dotted line) and
the ground truth (solid). Just using odometry (dashed line) accumulates error over time. (b) Error of position for the estimated relative trajectories. (c)
All moving objects trajectories matched during 100 steps.

the moving objects are also tracked quite accurately. Thus
our algorithm has in fact determined the correct matching
between the trajectories of the moving objects.

Despite the fact of using not identifiable moving land-
marks, in the presence of common moving objects our
algorithm is able to track the relative pose of the robots
with a similar precision to the method presented in [6]
at the same time that it estimates the data associations
between the objects. However, the results depend a lot on
the precision of the observations. This makes it difficult
to compare our algorithm to other systems using different
methods to obtain the robot positions as the quality of the
data can differ largely. The number of samples used in
the experiments was 50. This number is large enough to
manage all the initial location hypotheses generated from
the observations and the data association ambiguities of our
experiments. The number of moving objects present in the
field of view of the sensor is usually limited. In our case
the maximum number of objects was six. The computation
times of our non optimized Matlab implementation on a
PentiumIV are under the sensor rate of 220 milliseconds.
Therefore, the algorithm can be executed in real time.

VII. CONCLUSIONS

In this paper we presented a method to estimate the
relative position of a pair of robots based only on the
trajectories described by unidentifiable moving objects.
The method first computes the correspondences between
the moving objects observed by each individual robot.
Then it estimates the relative position based on these cor-
respondences. It uses a Rao-Blackwellized particle filter to
sample over potential data associations and then efficiently
computes the relative poses corresponding to these data
associations. Special techniques are included to overcome
the combinatorial number of possible tracks due to data
association ambiguities.

Our algorithm has been implemented and evaluated in
practical experiments. The results suggest that our ap-
proach can robustly estimate the relative pose of pairs of
moving robots based on observations of moving objects.
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