
Modeling the Static and the Dynamic Parts of the
Environment to Improve Sensor-based Navigation

Luis Montesano Javier Minguez Luis Montano
Instituto de Investigación en Ingeniería de Aragón

Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Spain
{montesano,minguez,montano}@unizar.es

Abstract— This paper addresses the modeling of the static and
dynamic parts of the scenario and how to use this information
within a real sensor-based navigation system. The contribution
in the modeling aspect is a formulation of the Detection and
Tracking of Mobile Objects and the Simultaneous Localization
and Map Building in such a way that the nature (static/dynamic)
of the observations is included in the estimation process. This
is achieved by a set of filters tracking the moving objects and
a map of the static structure constructed on line. In addition,
this paper discusses how this modeling module is integrated in a
real sensor-based navigation system taking advantage selectively
of the dynamic and static information. The experimental results
confirm that the complete navigation system is able to move a
vehicle in unknown and dynamic scenarios. Furthermore, the
system overcomes many of the limitations of previous systems
associated to the ability to distinguish the nature of the parts of
the scenario.

I. INTRODUCTION

Currently, the vehicle motion in unknown and dynamic en-
vironments is computed by hybrid architectures that combine
aspects of modeling, tactical planning and obstacle avoidance.
The skill to model the environment distinguishing the dynamic
and static parts opens a new dimension in these systems, since
it allows a selective treatment of this information to improve
the performance of all the modules of the architecture. This
greatly ameliorates the overall behavior of the sensor-based
navigation system. In this work we present a modeling module
that includes the detection and tracking of moving objects, and
its integration within the navigation architecture that currently
works on our wheelchair vehicle.

The first key aspect of our system is to model the envi-
ronment. Modeling the static parts of the environment from a
mobile robot is known as the Simultaneous Localization and
Map Building (SLAM) and it has been an active research area
during the last years [4], [17]. On the other hand the Detection
And Tracking of Moving Objects (DATMO) is also a well-
studied problem [3], [16]. However, a robust solution requires
to perform both tasks at the same time.

Most of the DATMO-SLAM systems use the sensor infor-
mation to model the static parts of the environment with a
map and apply some filtering techniques to track the moving
objects. For example [7] use a feature based approach to detect
the moving objects in the range information. Next, they use
Joint Probabilistic Data Association particle filters to track
the moving objects and a probabilistic SLAM technique to

build the map. In [18] a rigorous formulation of the DATMO-
SLAM problem is provided assuming a classification of the
observations into static and dynamic. Their detection algorithm
is based on the violation of the free space and the tracking
on extended Kalman filters (EKF). Another technique detects
and filters dynamic measurements while solving the SLAM
problem using the Expectation Maximization algorithm [8].
It classifies the observations during the expectation step and
correct the robot pose in the maximization step. However they
do not take into account the uncertainty of the robot motion in
the classification step. Thus difficulties arise in the presence
of large odometry errors if many observations are labeled
dynamic.

The second key aspect is how the modeling module is inte-
grated within a motion architecture. Most of the hybrid motion
systems that work in unknown and dynamic scenarios assume
that all the sensory information available is instantaneously
static (there is no dynamic obstacle modeling) [1], [2], [14].
These systems perform very well in most surroundings due to
a combination of environment modeling (short term memory),
tactical planning (that allows to avoid the potential minima and
the trap situations) and the obstacle avoidance (that computes
the motion using the information of the previous modules).
Nevertheless, there exist situations in which the behavior of
these systems is degraded due to the necessity to model the
dynamic part of the environment. Significant examples are an
obstacle moving in a direction where it will collide with the
robot, or people that temporarily obstruct zones of passage
like doors or corridors.

On the other hand there are systems that model both, the
static and dynamic parts of the environment. This information
is used next to improve the vehicle location and the avoidance
of obstacles [9], [15]. Nevertheless, the limitation of these
systems lies in the lack of an integration architecture that
solves problems associated with navigation. For example they
fall in trap situations or cyclic behaviours, or they exhibit
difficulties to compute safe motion in troublesome scenarios
(very dense, cluttered and complex).

A reliable solution must address both: a module able to
model the static and dynamic parts of the scenario, and the
integration within an architecture able to deal with the typical
navigation issues. In fact these are the two contributions of this
work. The first is a modeling module that carries out DATMO
and SLAM at the same time. Our formulation extends the

work of [18] to jointly classify the nature of the observations
and solve the SLAM problem. The second contribution is the
integration of this module in the architecture. The usage of
the static and dynamic information selectively by the planning
and obstacle avoidance modules allows to avoid the undesir-
able situations outlined previously, while fully exploiting the
advantages of an hybrid sensor-based navigation system. We
present experimental results with a wheelchair vehicle working
in a realistic scenario.

The rest of the paper is organized as follows. Next section
briefly introduces our architecture. Section III and IV describe
our method to model dynamic environments and section V
shows how this information is used in our system. Experi-
mental results are presented in section VI.

II. NAVIGATION SYSTEM

We give in this Section a global vision of the navigation
system architecture [14]. It integrates three modules with the
following functionalities: model construction, tactical motion
planning and obstacle avoidance,

• Model Builder Module: construction of a model of
the static and dynamic parts of the environment. We
describe the static parts with a probabilistic occupancy
grid map (with limited size and that travels centered with
the robot), and track the moving objects with a set of
filters. This model increases the spatial domain of the
planning and is used as local memory for the obstacle
avoidance. Section III provides a detailed description of
this module.

• Planner Module: extraction of the connectivity of the
free space (used to avoid the cyclical motions and trap
situations). We developed a planner that computes the
existence of a path that joins the robot and goal locations
[14]. The planner constructs iteratively a graph whose
nodes are locations in the space and the arcs are tunnels
of free space that joins them. When the goal is reached,
the current tunnel contains a path to the goal. This planner
avoids the local minima and is very efficient so that it can
be executed in real time.

• Obstacle Avoidance Module: computation of the
collision-free motion. We chose the Nearness Diagram
Navigation (ND method in short) [13], which is based
on selecting at each time a navigational situation and
to apply a motion law adapted to each one. In other
words it employs a "divide and conquer" strategy based
on situations to simplify the difficulty of the navigation.
This method has demonstrated to perform in scenarios
that remain troublesome for many existing methods.

Globally the system works as follows (Figure 1): given a
laser scan and the odometry of the vehicle, the model builder
incorporates this information into the existing model. Next,
the static and dynamic information of obstacles in the model
is selectively used by the planner module to compute the
course to follow to reach the goal (tactical information). Fi-
nally, the obstacle avoidance module uses the planner tactical
information together with the information of the obstacles

ACTION
− Motion

OBSTACLE
AVOIDANCE

PERCEPTION
− Laser scan
− Odometry

ControllerSensors

ROBOT

MODELLING

PLANNING

Fig. 1. Overview of the sensor-based navigation system

(static and dynamic) to generate the target-oriented collision-
free motion. The motion is executed by the vehicle controller
and the process restarts with a new sensorial measurement. It is
important to stress that the three modules work synchronously
within the perception - action cycle. Next, we address the two
main issues of this paper: the model builder module and how
its information is employed by the other modules.

III. MODELING DYNAMIC ENVIRONMENTS

Let zk = {z(1)k, ..., z(m)k} be the m observations obtained
by the robot at time k and uk the motion command executed
at time k. The sets Zk = {z1, ..., zk}, Uk = {u0, ..., uk}
represent the observations and motion commands up to time
k. We denote the robot location at time k by xk and the map
of the static environment by M . Let Ok = {o1, ...on} be the
location of the moving objects at time k. The objective is to
estimate the poterior distribution p(Ok, xk,M | Zk, Uk−1) at
each point in time.

Previous work on DATMO-SLAM [18] factorizes the distri-
bution assuming that the observations are classified into static
and dynamic, zk = zs

k+zd
k . As a result classical techniques are

used to solve the SLAM problem and the tracking of moving
objects independently. In real applications this classification is
usually not available. One can classify the points at each time
step before estimating p(Ok, xk,M | Zk, Uk−1) using the in-
formation of the previous step or some feature based approach.
However, this represents a hard decision and, consequently, a
misclassification at this step will not be corrected.

In this paper we explicitly include the classification process
within our formulation. We define a binary variable ck =
{ck(1), ...ck(m)} to represent the nature of the observation,
ck(i) = 1 if the observation has been generated by a static
object and ck(i) = 0 if not. We need to estimate ck together
with the pose xk, the map M and the location of the objects
Ok,

p(Ok, xk,M, ck | Zk, Uk−1) ∝ p(zk, ck | Ok, xk,M) (1)

p(Ok | xk,M,Zk−1, Uk−1)p(xk,M | Zk−1, Uk−1)

x
kx

k−1

Observations MapMoving objects

3

2

1

Fig. 2. Uncertain location of observations with respect to the model of
the environment. The ellipses associated to each observation represent their
uncertainty due to the current uncertain location of xk with respect to xk−1.
This motion uncertainty affects differently to each point. The classification
step integrates over all the possible locations of the observations.

The derivation of the previous equation uses the Bayes the-
orem and conditional probabilities together with the Markov
assumption. Due to the numerous variables involved the
full derivation is not included to keep the paper readable.
According to Eq. 1 the process requires to evaluate the
likelihood term p(zk, ck | Ok, xk,M) which also includes the
classification variables. The terms p(Ok | xk,M,Zk−1, Uk−1)
and p(xk,M | Zk−1, Uk−1) represent the evolution of the
robot location xk, the map M and the moving objects Ok.

IV. MODEL BUILDER IMPLEMENTATION

In this section we describe the implementation of the model
builder module according to the formulation of the previous
section. Our particular implementation is designed to integrate
it within the navigation architecture of Section II which is
running on a wheelchair equipped with a 2D laser range finder.
The map is implemented as a probabilistic grid map. It travels
centered with the robot and has a limited size. The information
contained in the grid map is enough to perform sensor-based
navigation and implicitly forgets those areas far away from the
current position of the robot. On the other hand, we use a set
of independent extended Kalman filters to track the detected
moving objects.

A. Joint classification and pose estimation

We use a maximum likelihood incremental approach ([18],
[7]) to estimate the relative pose x̂k, the map M̂k and the
moving objects Ôk. Maximizing p(zk, ck | M,xk, Ok) is a
hard task which involves continuous and discrete variables. We
present here an extension to the IDC algorithm [11] proposed
by Lu and Milios that jointly estimates the position of the
robot and classify the observations into static or dynamic. The
classical IDC algorithm computes the relative motion of the
robot between two scans. The algorithm iterates over two steps
until it converges. First it computes a set of correspondences
between the points of the reference scan and the new scan.

Then it improves the robot pose estimation using a least
squares minimization of the errors of these correspondences.

We want to find the x̂k and ĉk that maximizes the likelihood
term. To cope with the classification we add a new step to the
IDC algorithm. At each iteration before computing the corre-
spondences we classify the points using the current estimated
robot pose, the estimated map and the estimated locations of
the moving objects. We then estimate the correspondences for
those points classified as static and compute x̂k. As in the IDC
the algorithm iterates until it converges.

It remains to describe the classification procedure. Our main
purpose is to provide a robust classification that considers
all the information available at the previous step, i.e. the
static map and the tracked moving objects, together with the
uncertainty of the robot position due to its last displacement.

For each observation zk(i) we compute the probability of
the classification variable ck(i) = 1 integrating over all the
possible locations of the observation after the last motion
uk−1,

p(ck(i) = 1) =
∫

p(zk(i) | ck(i) = 1, xk,M,Ok) (2)

p(xk | xk−1, uk−1)p(uk−1)duk−1

We model the odometry uk−1 of the previous equation as a
random variable with Gaussian distribution with a covariance
matrix Puk−1 . Consequently the location of the observation
zk(i) is also a random variable given by the transformation of
a point between two reference systems. Using the Jacobian
of this transformation we propagate the uncertainty of the
possible robot locations to the observations (see Fig. 2). The
integration of Eq. 3 is implemented as a discrete weighted
summation over all the possible locations of zk(i). For each
possible robot pose xk the value of p(zk(i) | ck(i) =
1, xk,M,Ok) is equal to:

p(zk(i) | ck(i) = 1, xk, M, Ok) =

8<
:

pstatic, if zk(i) ∈ M
pdynamic, if zk(i) ∈ Ok

0.5, otherwise

Those locations corresponding to static obstacles have a
high probability, pstatic, of generating static observations
while those occupied by moving objects have a lower one
pdynamic. Note that we are using only positive information and
thus all the free space and unknown areas are initialized to the
non informative probability of 0.5. If the resulting probability
p(ck(i) = 1) is above a certain threshold, the observation is
classified as static.

Figure 2 illustrates the previous procedure for three different
observations. For instance, the classification of observation
two will depend on the support provided by the static and
dynamic parts. Note that observations corresponding to new
areas or new moving objects will usually have a p(c(i)) equal
to 0.5. For these observations we now use negative information
to classify as dynamic those observations surrounded by free
space. The decision for those observations placed at the
frontiers of known areas must be delayed until we get some
more information in the next steps. These points are not

Algorithm 1 : Step k .
Iteration k
INPUT: M̂k−1,x̂k−1, Ôk−1, zk, uk.
Step 1: Prediction:
1.1- compute x̂k− = p(x̂k | x̂k−1, uk−1)
1.2- ∀ object oi compute ôi

k− = p(oi
k | ôi

k−1)

Ôk− = {ô1
k− , ...ôn

k−}
Step 2: xk and ck estimation
2.1-x̂k = x̂k−
2.2 Maximize p(zk, ck | M, xk, Ok)
repeat

2.2.1- ∀ zk(i), compute ĉk(i)
2.2.2- Compute x̂k = argmaxxp(zk|x̂k, M̂k−1, Ôk− , ĉk)

until convergence
Step 3: Update:
3.1- update the map M̂k

3.2- Associate dynamic observations to each object zoi

3.3- ∀ object oi compute ôi
k = p(zoi |oi)p(oi | ôi

k−1, x̂k)
Ôk = {ô1

k, ...ôn
k}

OUTPUT: M̂k, x̂k, Ôk

included in the optimization process but will be used in next
steps to identify new static parts of the environment.

Once the classification of points and the position of the
robot have converged, we proceed to update the grid map
with those points classified as static. The grid map is updated
using a technique similar to the one presented in [5] using
the final pose estimate x̂k. As mentioned before, the map has
a limited size which implies that we do not need to close
big loops. However, one could apply techniques for global
mapping([18], [10]) if necessary. Algorithm 1 illustrates the
algorithm for step k.

B. Tracking the moving objects

In our current implementation we represent the moving
objects as a set of independent extended Kalman filters, one
per object. The state vector of each Kalman filter contains
the estimated location and velocities of the object oi

k =
{xi, yi, ẋi, ẏi}. Given our particular application we model the
motion of the moving objects with a constant velocity model
with acceleration noise. Although moving people are highly
unpredictable, we found that this model is enough to track
them in most of the situations.

Once the measurements have been classified and the pose
of the robot estimated, we proceed to update the filters using
the dynamic measurements. The data association is done using
the nearest neighbor rule. Besides the classical prediction and
update steps for each filter, our system also has to perform
some other tasks to correctly track the objects. First, it creates
and removes filters as objects appear and disappear from the
field of view of the sensor. It also has to perform merging and
splitting operations to avoid several filters to track the same
object or a filter to track several objects.

V. USING THE MODEL INFORMATION FOR TACTICAL

PLANNING AND OBSTACLE AVOIDANCE

The model builder presented in the previous section pro-
vides a map of the static parts of the environment and a set of

Corridor

Target

Cruise

Door 1 Door 2

Static obstacles

Dynamic obstacles

Robot

Fig. 3. Moving obstacles are not taken into account to compute the path.

Robot

Vr

Vo Vox

Voy

Object

Collision
Pc

Pr

Po

Fig. 4. Computation of the new object location for obstacle avoidance.

filters tracking the moving objects. In this section we describe
how this information is used by the rest of the modules (Figure
1). Further details about the architecture are described in [14].

The role of the tactical planner is to determine at each cycle
the main cruise to direct the vehicle. A cruise depends on the
permanent structure of the scenario (e.g. walls and doors) and
not on the dynamic objects1 that move around (e.g. people).
Thus, we use the static map as model for the planner. Figure
3 shows an example. The planner computes the cruise (main
direction of the path) that points toward the end of the corridor.
This is because the dynamic obstacles do not affect the planner.
Notice that for a system that does not model the dynamic parts,
Door 2 and the corridor would appear closed. Furthermore, in
the example, if one of the dynamic obstacles stops it becomes
an static object and would be integrated in the static map
(blocking the path). Thus, they will be taken into account by
the planner and the new cruise would point through Door 1
(avoiding the trap situation).

The obstacle avoidance module generates the collision-free
motion to align the vehicle toward the cruise (computed by
the planner). Here we use the map of static obstacles, since
all the obstacles included in the map must be avoided. Further-
more, we use an approximation to the full obstacle avoidance
problem with dynamic obstacles [6] which is described next.
For each dynamic obstacle, we compute the time tc at which
the collision occurs in the direction of motion of the robot
using the current vehicle and obstacle velocities (vr and vo

respectively). We assume that both the object and the robot
move with constant lineal velocities.

1A mobile object that stops (zero velocity) becomes a static object after a
certain time period.

(a)

(b) (c) (d)

Fig. 5. These Figures show one experiment where the wheelchair drove out of the office. (a) A snapshot of the experiment. (b) real laser data and trajectory
using the raw non corrected odometry. (c) the map built during the experiment and the vehicle trajectory. The map shows the occupancy probability of each
cell. White corresponds to a probability of zero (free cell) and black to a probability of one (occupied cell). (d) the trajectories of the detected moving objects.

tc =
pox

− (Rr + Ro)
vrx

− vox

(3)

where Rr is the radius of the robot, Ro the radius of the
object and po is the current location of the obstacle. Then,
we place the obstacle at the location pc that will be in time
tc (Figure 4). The new location of the obstacle pc is:

pc = (pox
+ vox

tc, poy
+ voy

.tc) (4)

In fact, we want to avoid that the robot moves toward pc

since the collision will occur there. Let us remark that the
new location of the obstacle depends on the current obstacle
location but also on both the vehicle and obstacle relative
velocities. Furthermore, if the obstacle moves further away
from the robot (tc < 0), it is not taken into account. This
approach to avoid the moving obstacle implies: (i) if there is
a potential collision, the obstacle avoidance method starts the
avoidance maneuver before than if the obstacle was considered
static; and (ii) if there is no potential collision, the obstacle
is not taken into account. This strategy heavily relies on
the information provided by the modeling module. Since our
model assumes a constant lineal velocity model, the predicted
collision could not be correct when this assumption does not
hold. However, this effect is mitigated since the system works
at a high rate rapidly reacting to the moving obstacle velocity
changes.

In summary, we have seen how the performance of the
tactical planning and obstacle avoidance method are greatly

improved by selectively using the static and dynamic infor-
mation. Next, we describe the experimental results.

VI. EXPERIMENTAL RESULTS

For experimentation we used a commercial wheelchair that
we have equipped with two on-board computers and a SICK
laser. The vehicle is rectangular (1.2 × 0.7meters) with
two tractor wheels that work in differential-driven mode. We
set the maximum operational velocities to (vmax, wmax) =
(0.3 m

sec , 0.7 rd
sec) due to the application context (human trans-

portation). All the modules work synchronously on the on-
board PentiumIII850Mhz at the frequency of the laser 5Hz.

We outline next one of the tests of the sensor-based navi-
gation system in a difficult scenario due to the vehicle used
and the nature of the surroundings. The wheelchair is a non
holonomic robot with a rectangular geometry (it cannot move
in any direction it sweeps an ample area when turns). The
laser sensor is placed in the front part of the robot (0.72m) and
has a 180◦ field of view. Thus, sometimes some of the static
obstacles to avoid are out of the field of view and dynamic
obstacles appear and disappear constantly. Furthermore, the
ground is polished and the vehicle slides constantly with
an adverse effect on the odometry. On the other hand the
scenario is unknown and not prepared to move a wheelchair
and there are many places where there is little room to
maneuver. In addition, people turn the scenario in a dynamic
and unpredictable place and sometimes modify the structure
of the environment creating global trap situations.

The objective of the experiment was to drive the vehicle to
a location that was out of the office (Figure 5a). Initially, the

Predicted
collision

Avoidance
direction

Moving
obstacleGoal

Cruise

Avoidance
direction

Moving
obstacle

Goal

Cruise

Passage 1
not blocked

Moving
obstacles

Avoidance
direction

U−shape
obstacleGoal

Cruise

Passage 2

(a) (b) (c)

Fig. 6. Three snapshots of the experiment. The figures show the tracked moving objects (rectangles), the dynamic observations associated to them and the
estimated velocities. The two arrows on the vehicle show the cruise computed by the planner module and the direction of motion computed by the obstacle
avoidance one. (a) Moving obstacle going toward the robot, (b) a moving obstacle placed in the area of passage, (c) robot avoiding a trap situation.

vehicle proceeded toward the Passage 1 avoiding collisions
with the humans that move around. Then, we blocked the
passage creating a global trap situation that was detected by
the system (Figure 5c). The vehicle moved backwards through
Passage 2 and then traversed the Door exiting the room and
reaching the goal location without collisions. The time of the
experiment was 200sec and the distance traveled around 18m.
We next outline some conclusions regarding the modeling
module and the performance of the sensor-based system.

A. Modeling module results

The laser data collected during the experiment and the
vehicle trajectory as given by the odometry are illustrated in
Figure 5b. Here we devise that the vehicle odometry is very
bad and it seems not possible to use it without a processing
step. The size of the map is 20m × 20m (5cm resolution
grid). The map is centered around the current robot location,
always contain the goal location and its resolution its enough
for planning and obstacle avoidance. Figure 5c depicts the
map of the static parts and the vehicle trajectory computed
by the module. The map also includes some obstacles that
stopped after moving for a certain period. The model can be
used for tactical planning purposes and as short-time memory
for obstacle avoidance.

The trajectories of the people tracked during the experiment
are shown in Figure 5d. Most of them correspond to the people
walking in the free space of the office. All the moving objects
were detected by the modeling module. There were also some
false positives due to misclassifications. They occurred mainly
in two situations: when the laser beams were almost parallel
to the reflected surface or when the beams missed an object
because its height was similar to the height of the laser scan.
Figure 5d depicts two of them which were included in the map
when the system realized they were static.

Finally, Figure 6 illustrates different moments of the exper-
iment. The rectangles represent the estimated location of the
moving objects being tracked and contain the observations

associated to each of them. The estimated velocity vector
is represented by a straight line. The circle of Figure 6a
represents the predicted collision according to the current
velocities of the object and the robot. In the other figures the
objects do not interfere with the vehicle trajectory.

B. Sensor based navigation system performance

There are two issues regarding the navigation performance.
The improvement of the individual module behavior due to
the selective usage of the static and dynamic information, and
the improvement of the whole behavior of the system due to
the integration architecture.

The planner computed at any moment the tactical infor-
mation needed to guide the vehicle out of the trap situations
(the cruise) but only using the static information. The most
representative situations happened in the Passage 1. While
the vehicle was heading this passage, people was crossing it.
However, since the humans were tracked and labeled dynamic
they were not used by the planner and thus the cruise points
toward this passage (Figure 6b). Then, the vehicle aligned
with this direction. Notice that systems that do not model the
dynamic obstacle would consider the human static and the
vehicle trapped within a U-shape obstacle.

Next, while the vehicle was about reaching the passage, a
human placed an obstacle in the way. The vehicle was trapped
in a large U-shape obstacle (Figure 6c). Rapidly, the object
was identified static and included in the static map. Then, the
planner computed a cruise that pointed toward the Passage 2.
The vehicle was driven toward this passage avoiding the trap
situation.

The obstacle avoidance module computed the motion taking
into account the geometric, kinematic and dynamic constraints
of the vehicle [12]. The method used the static information
included in the map, but also the predicted locations of the
objects computed using the obstacle velocities. Figure 6a
depicts an object moving toward the robot, and how the
predicted collision creates an avoidance maneuver before than

Robot
Door

Fig. 7. Detail of the robot maneuver to cross the Door.

it would be obtained if the obstacle is consider static (case
of the navigation systems that do not model the dynamic).
Furthermore, obstacles that move further away from the robot
are not considered. In Figure 6c the two dynamic obstacles
were not included in the avoidance step (systems that do not
model the dynamic would consider them).

The performance of obstacle avoidance module was de-
terminant in some circumstances, specially when the vehicle
was driven among very narrow zones. For example, when it
crossed the door (Figure 7), there were less than 10cm at
both sides of the robot. In addition, during the passage, the
obstacle avoidance method computed motion between very
near obstacles, and this movement was free of oscillations,
and at the same time was directed toward zones with great
density of obstacles or far away form the final position. That is,
the method achieves robust navigation in difficult and realistic
scenarios avoiding the technical limitations of many other
existing techniques.

In summary, the modeling module is able to model the static
and dynamic parts of the environment. The selective use of
this information allows the planning and obstacle avoidance
modules to avoid the undesirable situations that arise from
false trap situations and improve the obstacle avoidance task.
Furthermore, the integration within the architecture allows
to fully exploit the advantages of an hybrid sensor-based
navigation system that performs in difficult scenarios avoiding
typical problems as the trap situations.

VII. ACKNOWLEDGMENTS

This work has been partialy supported by the spanish
projects MCYT-DPI2003-7986 and DGA-2004T04.

VIII. CONCLUSIONS

In this paper we have addressed two issues of great rele-
vance in sensor-based navigation: how to model the static and
dynamic parts of the scenario and how to make use of this
information within a real sensor-based navigation system.

Our contribution in the modeling aspect is to formulate the
DATMO and SLAM in such a way that the nature of the
observation is included in the estimation process. The result
is an improved classification of the observations that increases
the robustness of the algorithm improving the resulting model.

The second issue is the integration of the modeling module
in a real system taking advantage of the dynamic and static
information. Our sensor-based navigation uses selectively this
information in the planning and obstacle avoidance modules.
As a result, many problems of existing techniques (that only
address static information) are avoided without sacrificing the
advantages of the full hybrid sensor-based navigation schemes.
The experimental results confirm that the system is able to
drive the vehicle in difficult, unknown and dynamic scenarios.

REFERENCES

[1] R. Arkin. Towards the unification of navigational planning and reactive
control. In Working Notes of the AIII Spring Symposium on Robot
Navigation, pages 1–6, Stanford University, 1989.

[2] K. Arras, J. Persson, N. Tomatis, and R. Siegwart. Real-time Obstacle
Avoidance for Polygonal Robots with a Reduced Dynamic Window.
In IEEE Int. Conf. on Robotics and Automation, pages 3050–3055,
Washington, USA, 2002.

[3] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
Mathematics in Science and Engineering. Academic Press., 1988.

[4] J. A. Castellanos and J. D. Tardós. Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. Kluwer Academic Publishers,
Boston, 1999.

[5] A. Elfes. Occupancy grids: A probabilistic framework for robot
perception. PhD thesis, 1989.

[6] P. Fiorini and Z. Shiller. Motion planning in dynamic environments
using velocity obstacles. Int. Journal of Robotic Research, 17(7):760–
772, 1998.

[7] D. Hahnel, D. Schulz, and W. Burgard. Map building with mobile robots
in populated environments. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002.

[8] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun. Map building
with mobile robots in dynamic environments. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2003.

[9] H. Koyasu, J. Miura, and Y. Shirai. Recognizing moving obstacles
for robot navigation using real-time omnidirectional stereo vision. Int.
Journal of Robotics and Mechatronics, 14:to appear, 2002.

[10] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4:333–349, 1997.

[11] F. Lu and E. Milios. Robot pose estimation in unknown environments by
matching 2d range scans. Intelligent and Robotic Systems, 18:249–275,
1997.

[12] J. Minguez and L. Montano. Robot navigation in very dense and
cluttered indoor/outdoor environments. In Int.Federation of Automatic
Control IFAC 15th World Congress, Barcelona, Spain, 2002.

[13] J. Minguez and L. Montano. Nearness diagram navigation (nd):
Collision avoidance in troublesome scenarios. IEEE Transactions on
Robotics and Automation, 20(1), 2004.

[14] J. Minguez, L. Montesano, and L. Montano. An architecture for sensor-
based navigation in realistic dynamic and troublesome scenarios. In
IEEE Int. Conf. on Intelligent Robot and Systems, Sendai, Japan, 2004.

[15] E. Prassler, J. Scholz, and P. Fiorini. Navigating a robotic wheelchair
in a railway station during rush hour. International Journal of Robotics
Research, 18:711–727, 1999.

[16] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking Multiple
Moving Targets with a Mobile Robot using Particle Filters and Statistical
Data Association. In IEEE Int. Conf. on Robotics and Automation, Seoul,
Korea, 2001.

[17] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel,
editors, Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002.

[18] C.-C. Wang, C. Thorpe, and S. Thrun. Online simultaneous localization
and mapping with detection and tracking of moving objects: Theory and
results from a ground vehicle in crowded urban areas. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
2003.

