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ABSTRACT static inference. Following the general framework detailed in [7] [8],

Continuous-time marked point processes appear in many areas W Propose a principled way to design efficient sampling strategies

science and engineering including queuing theory, seismology, neyithin the trans-dlme.nsmnal SMC framework. Our methodology.al-

roscience and finance. In numerous applications, these point pré2Ws the user to design and combine complex moves in an optimal
ay.

cesses are unobserved but actually drive an observation proterss. ) o

we are interested in optimal sequential Bayesian estimation of such e demonstrate our methodology on optimalfiltering for queues.
partially observed point processes. This class of filtering problemd e problem consists of reconstructing the state of a queue (number
is non-standard as there is typically no underlying Markov structur®f customers waiting, number of dropouts etc.) based uniquely on
and the likelihood function relating the observations to the point prodeparture data. Under restrictive assumptions on the interarrival and
cess has a complex form. Hence, except in very specific cases it fVIC€ times dlstrlb_utlons, this pr_oblem gdmlts a closed-form solu-
impossible to solve them in closed-form. We develop an originafion Whose complexity grows cubically with time [12]. However as
trans-dimensional Sequential Monte Carlo method to address thRP0N as these assumptions are relaxed, there is no longer an analytic

class of problems. An application to partially observed queues i§°!ution [14]. Our methodology allows us to address realistic queu-
presented. ing models including general arrival and service times distributions,
random dropouts and queues of finite capacity.

The paper is organized as follows: In Section Il we formalize
the optimal filtering problem. In Section Il we describe the SMC
Point processes have found many applications in many areas of Sg.lz_ampler methodology and its applications to the trans-dimensional

A ; . . . Case. In Section IV we describe the queuing application.
ence including queuing theory [2], nuclear science [1] [17], seismol-
ogy [5] and finance [16]. When the point process is directly ob-
served, there has been much work on developing efficient statistical?: OPTIMAL FILTERING FOR PARTIALLY OBSERVED
methods to perform inference. However, in many realistic applica- POINT PROCESSES
tions the point process of interest is unobserved. Estimation of such )
partially observed point processes is much more complicated. In paf-l- Point ProcessModels
ticular, in this case “the number of unknowns” (the number of points\e consider the following marked point process
“is something you don't know” [13]. In a Bayesian framework,
analysis of such problems has become possible thanks to the intro- M (dr,du) = dek,yk (dr, du)
duction of trans-dimensional Markov chain Monte Carlo (MCMC) E>1
methods [13]; e.g. [1]. Unfortunately, these iterative batch methods ith >0 h d
are not adequate when massive datasets and/or real-time constrai\ﬁvgere{7-’“}’621 with i > Tkl = are the random occur.rence
are present. times and{Uk}k21 the associated random marks with taking

We present here an original simulation-based approach for on/alues int.

line Bayesian inference in partially observed point processes. Our.
methodology relies on Sequential Monte Carlo (SMC) methods ity
which the sequence of posterior distributions of interest is approxi- n
mated by a cloud of random samples termed particles which evolve frio (T1k) = fry (11) I_IJ”U_|T1:J_71 (75| T1:5-1) -

over time using sampling and resampling mechanisms. SMC is now j=2

routine_ly used to solve optimal filtering problems in non-lin_ear NON-Eor example, if the arrival procegsy },.-., is a Poisson process of
Gaussian state-space models [10]. However, we emphasize that "t‘ensity)\ then =

filtering problems addressed here are of a completely different nature

and cannot be solved using standard SMC methods. In this article, ij|T1:j_1 (5] T1:5-1) = Aexp (= (15 — T5-1)) .

we develop an efficient trans-dimensional SMC method to achieve o )

this. Simple trans-dimensional algorithms have appeared recentfyor the sake of simplicity we will assume that the mafks. }, .,
either implicitly [3] [6] [15] or explicitly [4] [18] in the literature. ~ are independent ofrx}, ., and independent and identically dis-
Here we make use of the fact that trans-dimensional SMC methiributed according to a densitfiy (-) . However, it is possible to
ods are actually a subset of SMC methods developed recently famonsider more complex models if necessary.

1. INTRODUCTION

The procesg s}, .., admits the following joint probability den-



2.2. Likelihood Function 3.1. SMC Samplers

The processV/ (dr, du) is unobserved and we only have access atWe use interchangeably measures and densities in this section. SMC
time ¢ to a (possibly random) number of observations dendfed samplers are a generalization of SMC methods introduced in [7],

We assume here that the likelihood function satisfies [8]. Essentially if we consider two successive target distributions
_ Tn—1 (Tn—1) @andm, (x,) defined respectively on two arbitrary (mea-
p (Yt‘ {7 “k}kz1) = P (Ye| Tuiky, v, ) @ surable) spaceB,, _; andE,, then SMC samplers methods allow us

where K, is an integer-valued stopping time satisfyihg: > K, to define valid moves between these spaces. We introduce a gen-
(almost surely) for’ > t. Broadly speaking a stopping time is a €ralized Markov kernell,, : E,_1 — B(En) (where B (E,)
random variable determined entirely by and {7x, Uy },.,. The IS & Sigma-algebra). Assume,_. ~ m,—1 and X,| Xn_1 ~

stopping time definition depends on the problem of interest. T (Xn-1, ) then the marginal distribution of, is given by
Example. Noisy Shot Noise Process. Consider the discrete time
observationdY (t)}, ., i (dzy) = / Tn—1 (dTn—1) Tn (Tn—1,dxn) .
Ep—1

Y (tn) = /“h (tn — ) M (dr, du) + b (tn) WhenE, = E,_1 x F, the Markov kernell’,, is usually built by

iid _ introducinggy, : En—1 — B (F,) and setting
whereb (t,) "~ N (0,0°) andh () = 0 for ¢ < 0. In this case we
haveY: = {Y (t,) : t, <t} and Th (Tn-1,dzn) = qn (Tn-1,dvy) 5(%71””) (dzn) .
K, = argmax{k : 7, <argmax{t, : t, < t}}. ) o ) o
k In this case, it is possible to compuytg (dz,) pointwise (up to a

Example. Randomly Delayed Process. Consider the observation normalizing constant) and then reweight the resulting particles with
process respect to the target distribution of interest using

Y (dt) = Z 67’k+Uk (dt) T (m’n) Tn ((xn_1, 'Un))
k>1 Wn (xn) = = . (2)
.. . Hn (-Tn) Tn—1 (-Tnfl) Adn ($n71, Un)
where{Ux}, ., are positive random variables then

However in the general case it is impossible to compui€z,,)
pointwise and hence to compute (2). In [7], [8], it is shown how
to weight these particles consistently with respecttqz, ) with-
2.3. Optimal Filtering out having to computg:, (z,). To this aim we introduce another

) ) . o ) Markov kernelL,—1 : E, — B(E,—1) and we define the new
We are interested in the optimal estimation\df(dr, du) given the  jcremental weight

observations available at any timeHence the posterior distribution

of interest is W (Tnt, Tn) = Tn (2n) Ln—1 (Tn, Tn-1) : 3)
P({m, i}z [Y2) 0 pOVE] {7y s )70, i} =1 (@n-1) Tn (En-1, 2n)

Clearly it is impossible to estimate this posterior distribution as iti.e. we are performing importance sampling with a new artificial

includes an infinite number of variables. Because of (1), it is morgarget distributionr, (z) Ln—1 (2, zn—1) Which admitsr,, (x,,)

sensible to restrict ourselves to the estimatiop 0f1.x, , u1:x,| Y2). as a marginal by construction.

The variableK being an integer-valued stopping time, the distribu-  Clearly the performance of this method is going to be highly

tionp (71.x,, u1:x, | Y) is defined on a space of the fots), Dy, xU* dependent on the choice bf,—1. In [7], [8] it is established that the

whereDr={71., : 0 <7 <7 < --- < 71 }. Typically, this dis-  optimal choice for,,_; (with respect to the variance of the weights)

tribution does not admit a closed-form. dfwas fixed, it would is given by

be possible to approximate this distribution using trans-dimensional

K; =argmax {k : 7o + Uy < t}.
k

MCMC [13]. However, we are here interested in estimating a se- L (o, 2) = T (@n) Tn (Tn, Tn-1) @
quence of posterior distribution§p (T1.x,, , w1k, | Ye, )} Where nolAmme pin (Tn_1)
tho1 < tn.

This result is actually intuitive as in this case (3) is equal to (2).
Clearly we cannot usé&°™ , if in practice ., () cannot be eval-

uated pointwise but it suggests that to obtain good performance we

- . opt . -
Standard SMC methods are algorithms designed to sample from‘c’at]OUIId select,,, as an approximation af,,, . The key point is

sequence of distributiongr, } -, wherer,, is defined oniZ, and ~ that evenifL, —; # LY, then the algorithm remains th(teor.etically
E, = E,_1 x Fy; i.e. the spaces are of “increasing dimension”. valid. The price to pay for using sonig, . differenttoL;” , is an
Clearly these methods are inadequate in the point process case whiterease in the variance of the weights.

this condition is not satisfied. Indeed in the point process case all dis- WhenT., is an MCMC kernel of invariant distribution.,, an
tributions are typically defined on the same space- [+2° D, x  approximation ofL;”"; which will prove very useful in applications
U* but have positive masses only on a sulfgebf Ewith S, ; € 'S () T ( )

S,,. For example in the shot noise process example described earlier Ln-1(Tn-1,7n) = Tn \Tn) Zn {Tns Tn—1 (5)

o o Tn (Tn-1)
the posterior distribution ({rk, Uk} cp<h, Ytn) is defined on
E but its support is restricted 8, = [4;°, D¢, x U* where

3. TRANS-DIMENSIONAL SEQUENTIAL MONTE CARLO

and in this case

T (Tn-1)

Dk,tn:{Tl:k 0< < < <71 < tn}. Wn (Trn—1,Tn) = m



In practice, we are typically interested in using not one single(3) is given by
move but a combination gf moves described b¥7’, .} and se-
lected with probability{c, m (zn—1)} wherem = 1,...,p. The
total kernel is given by

/
p (ﬁl:ktnfL’ﬁktn,l—L-Hiktn Yt"’ﬁltkfnflfL)
p(ﬂltktn,1 Kn—l)

Y;fn—l > 19117%”,17L)

P

T, (1‘77,717 Ztn) = Z An,m (xnfl) Tn,m (mnflmrn) . ﬁ

(ﬂkt7171—L+1:kt7z -1
m=1 X

. L P (0, AR )
In this case, the reverse artificial kernel should be selected as follows p ( Rty — L1k, | o VLR, —p
P This strategy is very useful when the discrepancy between suceessiv
Lo (Tn-1,20) = Y Bo-tm (Tn-1) Ln—1,m (Tn—1,20) distributions is high [11].

m=1 Local moves. In this case we perturb a parameter by some incre-
ments on a discrete grid; say if we want to modify, _

1

where{L, ..} are Markov kernels and3,, .. (z»—1)} are proba-
bilities. The importance weight can be computed using (3) but this ,
is prohibitive if p is large and in this case it can be shown that the T tocal (191:1%,1 ) d191;ktn) =

following expression is also valid , - )
PR CUNV 5 LS (/o B
i=

Wn (xnfl y Ty mn) -
In this case it is possible to compute (2) [hence (4)].
T (Zn) Bn—1,mn (Tn) Ln—1,mp (Tn, Tn-1) Birth move. In a birth move, we propose to add one or several
Tn—1 (Tn—-1) @n,my, (Tn-1) Tn,m, (Tn-1,7n) points to the current state. For ease of presentation, we suppose here
when at timen the movem,, € {1, ..., p} has been selected. In this that we just add some points at the end of the current path when
case, the expressions for the optimal kerddls 1 .., } and proba- ~ Ft,_, < kz,. We have
bilities {8r.—1,m,, } Minimizing the variance ofv,, (zn—1, Tn, Mn)
can also be established. T birth (191‘,“ vy, ) =
’ Htp 17 Ftp

5191;,%"_1 <d19,1;k,,”,1) an <191:kf,n,1adﬁ;ﬂn_lﬂ:ktn) :

3.2. Trans-dimensional SMC Samplers

We now consider here the trans-dimensional problem appearing foh this case it is also possible to compute (2) [hence (4)]. The pro-
point processes; i.e. all distributiops 1.1, , u1.k,, | Yz, ) are de- posalg, minimizing the conditional variance of the weight is given
fined onE = 452 Dy x U but their supportsS,, are growing by

over time; i.e. S,—1 C S,. We propose a combination of vari- P (ﬁ;tmﬂzktn

Yoo D1k, ) -
ous generic moves and for ease of presentation we assume here that ' )
Qnymy, (xn71) = Qn,m,, so that the opt|ma| kernel is equa| to (4) Death move. Assume one wants to remove one pOInt; say the

To simplify notation we writed1.x,, = (T, , Uty ) - We em- last one we added for ease of presentation then

phasize that the applicability of these moves depends on the problem

under study. _ _ _ Toacarn (910, @01, ) =bors, 1 (@0hr,,) -
Update move. This move consists of using ’

In this case, it is usually impossible to compute (2) because
Tn,update ('ﬂlzktn71 ) dﬂ/l:k:tn) = 5191:;%"71 (d’&/l:ktn) .

Hn ('lylzkt") = /p (ﬁllzktn_l ‘ }/tn—l) dl%ctn_l

does not admit a closed-form expression. However dependent on
applications it might be possible to come up with sensible approxi-
mations of (4).

Solit and Merge moves. Similarly to trans-dimensional MCMC,

This move cannot be used alone&Sif_1 C S, as the support of the
resulting importance distribution would not include the support of
the target.

Optimal updating moves. In light of new observations, the gen-
eral framework proposed earlier allows us to update say the last

points it is possible to develop split and merge moves. However contrary
, to MCMC we emphasize that it is not necessary to design reversible
Tn.optupdate (1911‘%71 dﬁl:ktn) moves. Moreover although one might be tempted to mimic MCMC
5 (dﬁ’ ) (19 ey ) proposals this will usually yield unbounded importance weights. It
B T e R N e AL is recommended that the user always follows (4).

Trans-dimensional MCMC moves. It is always possible to use a
kernelT,,, arc e Of invariant distributiorp (19’1:,% ‘ Ytn) ;thatisa

trans-dimensional MCMC kernel [13]. However, it has to be applied
9 Y, 9 after other moves have been used and the particles resampled so that
P\ Uk —rgribe, | Ttns Vlike |1

they are approximately distributed accordingptéﬁ’l:ktn ‘ Yt) LIf

We cannot typically sample from it but we can approximate it by sayit is not the case, the problem is that it is very difficult to approximate
p. In this case, it is also possible to approximate (4) and the weighfd) and (5) is not valid in this case.

The optimal importance distributiofy, minimizing the conditional
variance of the importance weights is given by
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Hence this procedure could be extended to obtain the maximum like-
lihood estimates of the parameters of the inter-arrival, service and
dropout distributions.

(1]

(2]
(3]

Fig. 1. The figure shows the number of customers in the queue (top),
number of customers not accepted due to full buffer (middle) and [4]
number of customers that dropped the queue (bottom). Solid lines
are the true number and dotted ones are the conditional expectations

according to the estimated distributions. We D&e= 500 particles,

A=2 pu=1,w=0.2andC = 5. The results obtained are similar

for a higher number of particles.

4. APPLICATION TO PARTIALLY OBSERVED QUEUES

(5]
(6]

We consider the following problem. Some customers are arriving to [7]

a queue at random timgsy }, - ,. We assume that the interarrival

times are independent and identically distributed according(-),
that is
/

wilrrg o (Til T1g=1) = far (75 = 75-1) -

(8]

Customers are served on a first in first out basis and the service times
{Sk};>, are independent and identically distributed according to [9] A. Doucet A., S.J. Godsill and C. Andrieu, “On sequential

/s (). However, the queue has a finite capacityotlients. Finally,

if the ™ customer is in the queue but has been waiting to be served

longer thanUj, then it drops out of the queue. Hef€}, ., are
independent and identically distributed according#a(-)

(10]

We only have access to the departure times of customers who

have been served; that is the observation process is also a point pﬁ'l]

cess

Y (dt) = or, (dt)

E>1
where the departures timgd’ },-, are a deterministic function
of {7k }>1) {Sk}s; and{Ux},~,. The stopping timé<, corre-

sponds to the index of the customer associated with the last departu[rle3

observed before or at tinte
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