
Metric-Based Scan Matching Algorithms for
Mobile Robot Displacement Estimation

Javier Minguez
I3A, Dpto. de Informática e Ing. de Sistemas

Universidad de Zaragoza, Spain
jminguez@unizar.es

Florent Lamiraux
LAAS-CNRS

Toulouse, France
florent@laas.fr

Luis Montesano
I3A, Dpto. de Informática e Ing. de Sistemas

Universidad de Zaragoza, Spain
montesano@unizar.es

Abstract— This paper presents a metric-based matching
algorithm to estimate the robot planar displacement by
matching dense two-dimensional range scans. The contri-
bution is a geometric distance that takes into account the
translation and orientation of the sensor at the same time.
This result is used in the two steps of the matching - estimation
process. The correspondences between scans are established
with this measure and the minimization of the error is
also carried out in terms of this distance. As a result, the
translation and rotation are compensated in this framework
simultaneously. In fact, this is the contribution with respect to
previous work that addressed only translation or translation
and rotation but separately. The new technique has been
implemented and tested on a real vehicle. The experiments
illustrate how it is more robust and accurate than prior
techniques. At the end of the paper, we give an extension of
our distance measure to 3D range-data matching problems.

I. I NTRODUCTION

One of the key issues in autonomous mobile robots is to
keep track its position. Usually this problem is addressed
by using the on board sensors to gather information of the
environment for localization and mapping purposes. Many
applications in robotics use techniques to estimate the robot
displacement among successive range measurements. This
paper presents a new method that achieves this goal. In
robotics these techniques have been successfully applied
to a wide range of issues as an ameliorated odometry.
For example to improve the performance of simultaneous
localization and mapping algorithms [21], [9], [11], to build
local maps for indoor and outdoor navigation [15], [12],
[16] and to implement people tracking systems for mobile
platforms [20]. Furthermore, the pattern recognition and
machine vision communities have also addressed the sensor
matching problem in the context of 3D data registration,
object recognition or scene understanding [19], [13]. In this
paper, we also give the perspective to apply our technique
to these communities.

The objective of the scan matching techniques is to
compute the relative motion of a vehicle between two con-
secutive configurations by maximizing the overlap between
the range measurements obtained at each configuration.
They usually assume an initial estimation of the relative
pose of the scans that is provided by the vehicle odometry.

One of the main differences between the existing al-
gorithms is the usage or not of high-level entities such as
lines or planes. In structured environments, one can assume
the existence of polygonal structure in the environment

[8], [6], [4]. These methods are fast and work quite well
for indoor environments. However, they limit the scope
of application to the extraction of geometric features that
are not always available in unstructured environments. On
the other hand, a great deal of work has been done to
perform in any type of scenario dealing with raw data.
Roughly, these techniques are based on an iterative process
that estimates the sensor displacement that better explains
the overlap between the scan measurements. For example
[3] constructs a piecewise continuous differentiable density
that models on a grid the probability to measure a point,
and then, apply the Newton’s algorithm. By converting the
scans to statistical representations, [22] iteratively compute
the crosscorrelation that results in the displacement. In [7]
the motion parameters are estimated using a constrained
velocity equation for the scanned points.

However, the most popular methods usually follow the
Iterative Closest Point (ICP) algorithm (principle borrowed
from the computer vision community [2]). They are based
on an iterative process where they first compute the corre-
spondences between the scans, and then they minimize the
distance error to compute the sensor displacement [14],
[18], [10], [1]. This process is repeated with this new
estimate until convergence. A common feature of most
versions of ICP is the usage of the Euclidean distance
to establish the correspondences and to apply the least
squares. However, this distance does not account for the
fact that points far from the sensor could be far from its
correspondent due to rotations of the sensor. To overcome
this limitation [14] proposed to compute two set of cor-
respondents, one by the Euclidean distance and other by
the angular distance (to capture the sensor rotation). The
gain in accuracy is however lost in complexity and conver-
gence since the method builds two sets of matchings and
performs two minimizations (rotation and translation) at
each iteration. We understand that this is a central problem
of the ICP algorithms: to find a way to measure (to find
the closestcorrespondent and to apply the minimization)
in such a way that it captures the sensor translation and
rotation at the same time.

Our contribution resides in the definition of a new
distance measure in the image space of the sensor that
takes into account both, translation and rotation at the same
time. The distance between two points is the norm (in a
sense we are going to define) of the smallest rigid body
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Fig. 1. This Figure depicts the scan-matching problem: to compute the
sensor relative displacement between poses using the range information.
Due to the discrete nature of the data it is assumed local structure in the
reference scan (a segment that joins successive points).

transformation that leads a point to the other one. I.e our
distance naturally depends on translation and rotation. We
use this distance in both steps of the ICP algorithm:

1) matching of each point of a scan with the closest
feature of the other scan in terms of our distance,

2) computation of relative displacement by least square
minimization of the errors (in terms of our distance).

With this formulation we obtain results that amelio-
rate the algorithm that we were using [14] (the most
used algorithm for scan matching) in terms of robustness,
convergence and precision. Furthermore, we present in
the paper the extension to the 3D problem, which could
be used by the robotics, computer vision and graphics
communities that use the ICP algorithm to address sen-
sor motion estimation, location and map building, object
recognition, pattern analysis, image registration, and scene
understanding among others.

The paper is distributed as follows: in Section II we
describe the ICP algorithm. In Section III-C we show how
to use our distance to match points of two laser scans
and we express the least square criterion we minimize,
based on this distance measure. In Section IV, we discuss
the experimental results and we compare our method with
existing methods. Finally we draw our conclusions in
Section V and we discuss possible extensions and future
work in Section VI.

II. T HE ITERATIVE CLOSESTPOINT (ICP) ALGORITHM

Given a reference scanSref , the new scanSnew and
a rough estimationq0 of the relative displacement of the
sensor between the scans, the objective is to estimate the
real displacementq = (x, y, θ) between them (Figure 1).

The ICP algorithm addresses this problem with an it-
erative process in two steps. At each iterationk, there is
a search of correspondences between the points of both
scans. Then the estimation of relative displacementqk is
improved through a minimization process. The process is
repeated until convergence:

1) First let place each pointp′i of Snew in the system of
referenceSref using the estimationqk, ci = qk(p′i).
Then, due to the discrete nature of the data, it is
assumed a local structure inSref between successive

points (pi, pi+1) of Sref [14] (Figure 1). Thus, the
correspondent point tocj is the closest pointpj

belonging to one of the segments[pi pi+1]:

min{d(cj , [pi pi+1])} (1)

The result is a setC of n correspondences(pj , cj).
2) Compute the displacement estimationqmin that min-

imizes the mean square error between pairs ofC. The
criterion to minimize isq:

Edist(q) =
n∑

i=1

d(pj , q(cj))2 (2)

If there is convergence the estimation isqmin, oth-
erwise we iterate again withqk+1 = qmin.

The ICP uses the Euclidean distance in both steps of the
algorithm. The contribution of this work is a distance that
takes into account translation and rotation simultaneously.
In order to use this new concept in the ICP we need to
define the distance, give the expression of distance point
to segment, and formulate the least squares in terms of the
new distance. In the next section we address these issues.

III. D ISTANCE MEASURE AND TOOLS ASSOCIATED

In this section, we introduce first our distance measure
in the plane, defined as the minimum norm among the rigid
body transformations that move a point to another one.

A. Distance point to point

A rigid body transformation in the plane is defined
by a vectorq = (x, y, θ) representing the position and
orientation (−π < θ < π) of the scanner sensor in the
plane. We define the norm ofq as :

‖q‖ =
√

x2 + y2 + L2θ2 (3)

whereL is a positive real number homogeneous to a length.
Given two pointsp1 = (p1x, p1y) and p2 = (p2x, p2y) in
R2, we define a distance betweenp1 andp2 as follows:

dp(p1, p2) = min{‖q‖ such thatq(p1) = p2} (4)

where

q(p1) =
(

x + cos θ p1x − sin θ p1y

y + sin θ p1x + cos θ p1y

)
(5)

It can be easily checked thatdp is a real distance satisfying
for any p1 andp2:

1) dp(p1, p2) = dp(p2, p1)
2) dp(p1, p2) = 0 implies p1 = p2

3) dp(p1, p3) ≤ dp(p1, p2) + dp(p2, p3)
Unfortunately, there is no closed form expression of the
above distance w.r.t. the coordinates of the points. However,
we can compute an approximation valid when the mini-
mum norm transformation is small, by linearizing (5) about
θ = 0. The set of rigid-body-transformations satisfying
q(p1) = p2 can be approximated by the set of solutions
(x, y, θ) of the following system:

x + p1x − θ p1y = p2x

y + θ p1x + p1y = p2y



The set of solutions is infinite and can be expressed by:

x = p2x − p1x + θ p1y

y = p2y − p1y − θ p1x

where θ is a parameter for the set of solutions. Let us
recall that according to (4), we need to find the solution
that minimizes the norm ofq = (x, y, θ). For a givenθ, this
norm is given by the following equation, after substituting
the above expressions ofx andy into (3):

‖q‖ = (δx + θ p1y)2 + (δy − θ p1x)2 + L2θ2

whereδx = p2x − p1x andδy = p2y − p1y. Expanding the
above expression, we obtain a polynomial of degree 2 in
θ:

‖q‖2 = aθ2 + bθ + c

with a = p2
1y + p2

1x + L2, b = 2(δxp1y − δyp1x) and
c = δ2

x + δ2
y. Notice thata > 0 implies that this expression

has a unique minimum forθ = −b/(2a) and the value of
this minumum is given by

‖q‖2 =
−b2 + 4ac

4a

=
−(δxp1y − δyp1x)2 + (p2

1y + p2
1x + L2)(δ2

x + δ2
y)

p2
1y + p2

1x + L2

= δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2

Finally, the distance betweenp1 and p2 is approximated
by:

dap
p (p1, p2) =

√
δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2
(6)

Notice that as expected, our distance is smaller than the
Euclidean distance, since this latter is the norm of the
translation betweenp1 andp2 and therefore is bigger than
the minimum norm.

To better understand the properties of this distance
measure, let us compute the iso-distance curves. Again,
we do not have the exact expression of the iso-distance
curves but if we use approximation (6), we can prove that
the iso-distance curves relative todap

p :

{p2 ∈ R2 such thatdap
p (p1, p2) = c}

are ellipses centered onp1 with principal axes(p1x, p1y)

and (−p1y, p1x) and lengthsc and c
√

1 + ‖p1‖2
L2 (see

Figure 2).

B. Distance point to segment

In this subsection we give an expression of the distance
point to segment (1). Let us consider a pointp1 and a line
segment defined by two pointss1 and s2. The distance
betweenp1 and segment[s1 s2] is defined by:

dps(p1, [s1 s2]) = min
λ∈[0,1]

dp(p1, (1− λ)s1 + λs2) (7)

Let us denote byd(λ) = dp(p1, (1 − λ)s1 + λs2) the
distance betweenp1 and the point on segment[s1 s2] of
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Fig. 2. The iso-distance curves ofdap
p are ellipses centered onp1.

parameterλ. Following the same reasoning as in previous
Section, we can approximate this distance by:

d(λ)2 ≈ δx(λ)2 + δy(λ)2 − (δx(λ)p1y − δy(λ)p1x)2

p2
1y + p2

1x + L2
(8)

where

δ(λ) = (δx(λ), δy(λ)) = s1 − p1 + λ(s2 − s1) (9)

Substituting (9) into (8), we get a polynomial of degree 2
in λ:

d(λ)2 ≈ aλ2 + bλ + c

with the following coefficients:

a = u2
2x + u2

2y −
(p1yu2x − p1xu2y)2

p2
1x + p2

1y + L2

b = 2(u2xδ1x + u2yδ1y)

−2
(p1yu2x − p1xu2y)(δ1xp1y − δ1yp1x)

p2
1x + p2

1y + L2

c = δ2
1x + δ2

1y −
(δ1xp1y − δ1yp1x)2

p2
1x + p2

1y + L2

whereu2 = (u2x, u2y) = s2 − s1 and δ1 = (δ1x, δ1y) =
s1 − p1. Coefficienta is positive and therefore the above
expression has a unique minimum inλ, for λ = −b

2a with
value−b2+4ac

4a . The expression of the approximation of the
distancedps(p1, [s1 s2]) for small rotations is thus given
by:

dps(p1, [s1 s2]) ≈





dp(p1, s1) if λ < 0
dp(p1, s2) if λ > 1√
−b2+4ac

4a if 0 ≤ λ ≤ 1

and the closest point top1 on [s1 s2] in these three cases
is respectivelys1, s2 ands1 − b

2au2.



C. Least Square Minimization

To compute theq that minimizes the criterion proposed
in (2), we use the following notation: the coordinates ofpi

(reference points) andci (new points in reference system,
qk(p′i)) are respectively(pix, piy) and(cix, ciy). Using the
approximate distance (6), we get the following expression:

Edist(q) =
n∑

i=1

(
δ2
ix + δ2

iy −
(δixpiy − δiypix)2

p2
iy + p2

ix + L2

)
(10)

where

δix = cix − ciyθ + x− pix

δiy = cixθ + ciy + y − piy

(10) is quadratic w.r.t.q:

Edist(q) = qT Aq + 2bT q + c

wherec is a constant number,A is a symmetric matrix

A =




a11 a12 a13

a12 a22 a23

a13 a23 a33




a11 =
Pn

i=1 1− p2
iy

ki

a12 =
Pn

i=1

pixpiy

ki

a13 =
Pn

i=1−ciy +
piy

ki
(cixpix + ciypiy)

a22 =
Pn

i=1 1− p2
ix
ki

a23 =
Pn

i=1 cix − pix
ki

(cixpix + ciypiy)

a33 =
Pn

i=1 c2
ix + c2

iy − 1
ki

(cixpix + ciypiy)2

and

b =



Pn

i=1 cix − pix − piy

ki
(cixpiy − ciypix)Pn

i=1 ciy − piy + pix
ki

(cixpiy − ciypix)Pn
i=1[

1
ki

(cixpix + cixpiy)− 1](cixpiy − ciypix)




whereki = p2
ix + p2

iy + L2. The value ofq that minimizes
Edist(q) is thus

qmin = −A−1b

IV. EXPERIMENTAL RESULTS

In this Section we outline the experimental results. We
tested the method with data obtained with a wheelchair
mobile robot equipped with a Sick laser scanner.

In order to compare our method (metric-based ICP,
MbICP in short) with existing scan matching techniques,
we used the standard ICP and the widely known IDC
algorithm [14]. The IDC algorithm uses two types of
correspondences (translation and rotation) and interpolates
in both between successive range points (local structure).
This method is designed to deal with large rotation er-
rors. We did not implement this last methodad hoc for
the comparison, since we have this tool working in our
laboratory [17], [15], [16]. In our implementation, we
reject outliners using visibility criteria [14] and range
criterions [18]. Furthermore we use a trimmed version of
the ICP to manage the correspondences [5] that improves
the least squares minimization, and a smooth criterion of
convergence [18]. We also implemented these features in

−2 0 2 4 6 8
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

meters

m
et

er
s

Sensor

−2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

meters

m
et

er
s

Sensor

Fig. 3. Scans used in the experiment: one in a semi-structured with low
density of obstacles and another in an unstructured with high density.

the ICP and the MbICP algorithm. In order to show a
fair comparison, we used the same values for common
parameters (actually we used our IDC previous parameters
for the ICP and MbICP), and we only tuned the metric
length in the MbICP (the onlyad hocparameter). In the
experiments, we found thatL = 3 gave the best results.

We outline next two types of experiments. The first eval-
uates the properties of the MbICP algorithm by matching
a pair of scans for random location errors. The second one
evaluates the global algorithm performance with a run with
the vehicle within our university (Figures 5 and 6).

The first experiment consisted on matching two different
scans acquired in the same sensor location. Thus, the scans
are different due to the sensor noise and we know precisely
the ground truth(0, 0, 0). We added random noise to the
initial location estimate up to0.2m in x and y, and up
to 45◦ in θ. Notice how large are the maximum errors
especially in rotation1. Convergence of the algorithm was
achieved when the error ratio was below0.0001% and the
maximum number of iterations was500. We perform this
test in two different scenarios (Figure 3). The scans were
taken in a place where the range information was more or
less equally distributed in all directions, which is a well-
conditioned situation for the methods. We repeated each
experiment500 times for each scenario (a total of 1000
runs).

Figure 4a depicts the final estimates of the MbICP, IDC
and ICP. The MbICP and IDC converged all the times
and all the estimates concentrate around the true solution
(0, 0, 0) . In other words, all the results of the MbICP
and IDC wereTrue Positive(see Table below). On the
other hand, in1.1% of the trials the ICP did not converge
leading to negatives. Another measure of robustness is
that some of the ICP positives wereFalse Positives. They

1Previous comparisons of scan matching [18] use maximum rotation
errors up to6◦.
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Fig. 4. (a) Estimations of both algorithms. (b) Convergence rate (without the ICP negatives). (c) Zoom on the estimations around the ground truth
projected in theXY plane. (d) Computation time (without the ICP negatives), where the horizontal line is the mean time.

corresponded to situations were the ICP converged but
towards a local minimum that did not correspond to the
real solution (Figure 4a).

TABLE I

MBICP VS IDC AND ICP (%)

Positive False Positive Negative False Negative
MbICP 100 0 0 0

IDC 100 0 0 0
ICP 92.9 6 1.1 0

These results show that the MbICP and the IDC are
more robust than the ICP:(i) all the results of the MbICP
and IDC wereTrue Positiveswhile the ICP hadNegatives
(they correspond to large errors in orientation that could
not be compensated). And(ii) the ICP had1.1% of False
Positives(also due to large errors in orientation) which are
really bad for these methods since the estimate is wrong
although the result is positive. The MbICP is as robust
as the IDC facing large errors in rotation (our method
performs as good as methods designed to deal with these
situations).

Figure 4c depicts a zoom on Figure 4a projected on the
XY plane. All the solutions of the MbICP concentrate
closer to the ground truth than the solutions of the IDC

and ICP. They tend to concentrate in two different clusters
for each scan and algorithm. Next table depicts the mean
and standard deviation of the error in both coordinates (we
only use theTrue positives):

TABLE II

MBICP VS IDC AND ICP ERROR

x error y error th error
µ σ µ σ µ σ

MbICP (10−3) 0.3 0.001 0.4 0.31 0.0 0.0
IDC (10−3) 0.4 0.22 0.8 0.16 0.0 0.0
ICP (10−3) 0.3 0.13 0.4 0.16 0.0 0.0

When the algorithm converges to the right solution, the
medium and covariance of the errors are very similar. The
MbICP seems more accurate than IDC, but the errors are
so small (sub millimetre precision) that are not significant.

Figure 4b depicts the number of iterations for each trial.
The converge rate is better in the MbICP than in the IDC
and ICP. Figure 4d shows the computation time of the
algorithms 2. The MbICP takes half time than the IDC.

2Although the times displayed were obtained off-line using Matlab,
our C implementation of the IDC (on the vehicle) runs at a medium of
0.020sec (the ratio is about1

1000
).
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Fig. 5. This Figure depicts the odometry data of a trial of 70 meters.

This is because the IDC performs two sets of associations
and two minimizations while the MbICP and ICP only one.
Also, the MbICP is faster than the ICP since it always
converges before.

We remark that this test was carried out with large errors
in translation and rotation. This experiment illustrates how
the MbICP is as robust and precise as methods designed
to have good performance under these conditions, and it
is better than the standard ICP. Furthermore, the MbICP
converges more rapid and is faster than previous methods.
Although we have tried to give the maximum generality
with the scans selected, the conclusions given are valid for
these scans. To confirm these results we present next an
experiment with real motion in a real scenario.

The second experiment corresponds to a run in our
University with the wheelchair vehicle. The robot travelled
70 meters getting out of an office, travelling around a
corridor and coming back to the office. The experiment is
difficult because the floor was very polished and the vehicle
slipped constantly with a poor effect on the odometry
(Figure 5). In addition, the scenario was full of chairs,
tables, baskets which are non structured, and the corridor
is quite long and thus there was not many frontal structure
to correct the location in this direction.

Figure 6 depicts the results obtained with the MbICP
and the IDC. We see how the visual result of the MbICP is
better than the IDC since it is able to align the corridor and
the office when it comes back. The rotational accumulated
error is lower for the MbICP than for the IDC. Moreover,
note how the error in translation is also quite small. In
this experiment the scans changed from one iteration to
another (involving issues as spurious and new parts of the
scenario). The mean convergence rate was 27 iterations for
the MbICP and 33 for the IDC. Thus, these experiments
show how under more realistic conditions the behavior of
the MbICP is globally better than in the IDC (robustness,
accuracy and convergence).

!t

Fig. 6. (Top) Visual map obtained with the MbICP. (Bottom) Visual
map of the IDC.

V. CONCLUSIONS

This paper presents a metric-based matching algorithm
to estimate the robot planar displacement by matching
dense two-dimensional range scans. The contribution is a
geometric distance that takes into account the translation
and orientation of the sensor at the same time.

We have implemented and tested the technique in a
real vehicle and compared with the widely used Iterative
Dual Corresponce scan matching (IDC) algorithm and the
standard ICP. The results demonstrate that we improve
previous methods in robustness, precision, convergence rate
and computation time. This is because we compensate
at the same time the three variables of the minimization
(two of translation and one of rotation). Another important
consequence is that our method is able to deal with large
odometry errors especially in rotation, which is the diffi-
culty of most of the existing approaches and has deserved
a lot of discussion in this discipline.

Finally we address in the next Section how this technique
could be extended to be used in other contexts.



VI. D ISCUSSION ANDFUTURE WORK

In this Section we describe extensions of this metric
based scan matching technique. The first issue to address
is how to extend the metric to deal with more complex
systems (with crossrelations in the coordinates). This could
be done by extending the norm to be:

||q||2 = qT Aq (11)

where A = {ai,j , i, j = 1 . . . 3} is a symmetric and
semipositive matrix. The expression of the distance is then:

dap = |δT Qδ| 12 (12)

whereδ = (δx δy)T and:

Q =

(
a11 − k2

2
2k1

a12 − k2k3
4k1

a12 − k2k3
4k1

a22 − k2
3

2k1

)
(13)

k1 = a11p
2
y + a22p

2
x − 2a12pxpy−

− 2a23px + 2a33py + a33

k2 = 2(a11py − a12px + a33)
k3 = 2(a12py − a22px + a23)

This expression of the distance is the generalization of
the distance presented in this paper. This would allow to
address the same problem but describing more complex
systems.

Another important matter is the extension of the distance
formulation to three dimensions. Up to now we have
demonstrated that the distance is also a distance inR3 and
the expression given two pointsp1 andp2 is:

dap = ||p2 − p1||2 − ||p1 ⊗ p2||2
||p1||2 + L2

(14)

This result allows to address scan matching problems in 3D
workspaces and to use it in other communities that use the
ICP algorithm to address sensor motion estimation, loca-
tion and map building, object recognition, pattern analysis,
image registration, and scene understanding among others.
Up to our knowledge the idea of a unified framework to
take into account translation and rotation in the ICP has
not been explored in these communities yet [19].

Finally, we are exploring how this distance relates with
an statistical distance called the Mahalanobis distance.
More precisely, by associating the matrixA with the
information matrix of vectorq, and transforming it to
the point location using the Jacobian ofq, we obtain a
matrixC defining the uncertainty of the point location. The
Mahalanobis distance usingC is equal to the expression
of our approximate distance. However, we remark that
this is true for the approximate expression of the distance
(obtained linearizing). In any case, we stress that, to our
knowledge, the scan- matching problem has not been
addressed with the Mahalanobis distance yet. The results
of this paper suggest promising research opportunities in
this direction.
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