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Abstract—This paper presents a metric-based matching [8], [6], [4]. These methods are fast and work quite well
algorithm to estimate the robot planar displacement by for indoor environments. However, they limit the scope
matching dense two-dimensional range scans. The contri- ot anplication to the extraction of geometric features that
bution is a geometric distance that takes into account the ) . .
translation and orientation of the sensor at the same time. '€ Not always available in unstructured environments. On
This result is used in the two steps of the matching - estimation the other hand, a great deal of work has been done to
process. The correspondences between scans are establishegoerform in any type of scenario dealing with raw data.
with this measure and the minimization of the error is  Roughly, these techniques are based on an iterative process
also carried out in terms of this distance. As a result, the 4t astimates the sensor displacement that better explains

translation and rotation are compensated in this framework th lap bet th ts. F |
simultaneously. In fact, this is the contribution with respect to € overlap between the scan measurements. For examplie

previous work that addressed only translation or translation  [3] constructs a piecewise continuous differentiable density
and rotation but separately. The new technique has been that models on a grid the probability to measure a point,
implemented and tested on a real vehicle. The experiments and then, apply the Newton’s algorithm. By converting the
lllustrate how it is more robust and accurate than prior  gcang to statistical representations, [22] iteratively compute
techn]ques. At the end of the paper, we give an extension of th lation that Its in the disol In 17
our distance measure to 3D range-data matching problems. € crosscorrelation that results in the disp acement. n.[ ]

the motion parameters are estimated using a constrained

I. INTRODUCTION velocity equation for the scanned points.

One of the key issues in autonomous mobile robots is to However, the most popular methods usually follow the
keep track its position. Usually this problem is addressetierative Closest Point (ICP) algorithm (principle borrowed
by using the on board sensors to gather information of thisom the computer vision community [2]). They are based
environment for localization and mapping purposes. Mangn an iterative process where they first compute the corre-
applications in robotics use techniques to estimate the robspondences between the scans, and then they minimize the
displacement among successive range measurements. Ttistance error to compute the sensor displacement [14],
paper presents a new method that achieves this goal. [£8], [10], [1]. This process is repeated with this new
robotics these techniques have been successfully appliedtimate until convergence. A common feature of most
to a wide range of issues as an ameliorated odometryersions of ICP is the usage of the Euclidean distance
For example to improve the performance of simultaneout® establish the correspondences and to apply the least
localization and mapping algorithms [21], [9], [11], to build squares. However, this distance does not account for the
local maps for indoor and outdoor navigation [15], [12],fact that points far from the sensor could be far from its
[16] and to implement people tracking systems for mobileorrespondent due to rotations of the sensor. To overcome
platforms [20]. Furthermore, the pattern recognition andhis limitation [14] proposed to compute two set of cor-
machine vision communities have also addressed the sengespondents, one by the Euclidean distance and other by
matching problem in the context of 3D data registrationthe angular distance (to capture the sensor rotation). The
object recognition or scene understanding [19], [13]. In thigain in accuracy is however lost in complexity and conver-
paper, we also give the perspective to apply our techniqugence since the method builds two sets of matchings and
to these communities. performs two minimizations (rotation and translation) at

The objective of the scan matching techniques is teach iteration. We understand that this is a central problem
compute the relative motion of a vehicle between two conef the ICP algorithms: to find a way to measure (to find
secutive configurations by maximizing the overlap betweethe closestcorrespondent and to apply the minimization)
the range measurements obtained at each configuration.such a way that it captures the sensor translation and
They usually assume an initial estimation of the relativeotation at the same time.
pose of the scans that is provided by the vehicle odometry. Our contribution resides in the definition of a new

One of the main differences between the existing aldistance measure in the image space of the sensor that
gorithms is the usage or not of high-level entities such atakes into account both, translation and rotation at the same
lines or planes. In structured environments, one can assurime. The distance between two points is the norm (in a
the existence of polygonal structure in the environmensense we are going to define) of the smallest rigid body



Obstade s points (p;, pi+1) of Srer [14] (Figure 1). Thus, the
o, 70 correspondent point te; is the closest poinp;
<[ Range belonging to one of the segmeriis p;1]:

measurements
min{d(c;, [pi pi+1])} (1)

The result is a se€’ of n correspondence®;, c;).
2) Compute the displacement estimatigy;,, that min-
new imizes the mean square error between pairs ofhe
Pose, criterion to minimize isq:

Py

sensor relative displacement between poses using the range information.
Due to the discrete nature of the data it is assumed local structure in the
reference scan (a segment that joins successive points). If there is convergence the estimationglg ., oth-

erwise we iterate again with, 1 = ¢min-

] ) The ICP uses the Euclidean distance in both steps of the
transformation that leads a point to the other one. 1.6 0ufyqrithm The contribution of this work is a distance that
distance naturally depends on translation and rotation. Wees into account translation and rotation simultaneously.
use this distance in both steps of the ICP algorithm: In order to use this new concept in the ICP we need to

1) matching of each point of a scan with the closestefine the distance, give the expression of distance point
feature of the other scan in terms of our distance, to segment, and formulate the least squares in terms of the
2) computation of relative displacement by least squar@ew distance. In the next section we address these issues.

minimization of the errors (in terms of our distance).
. . . . . [1l. DISTANCE MEASURE AND TOOLS ASSOCIATED
With this formulation we obtain results that amelio-

rate the algorithm that we were using [14] (the most In this section, we introduce first our distance measure
used algorithm for scan matching) in terms of robustnesd? the plane, defined as the minimum norm among the rigid

convergence and precision. Furthermore, we present RPdy transformations that move a point to another one.

the paper the extension to the 3D problem, which coulg\ pistance point to point
be used_ _by the robotics, computer_V|S|on and graphics A rigid body transformation in the plane is defined
communities that use the ICP algorithm to address sen- . "

: L ) - -~ Py a vectorq = (x,y,0) representing the position and
sor motion estimation, location and map building, object’. : .

" o : . orientation 7 < 6 < w) of the scanner sensor in the
recognition, pattern analysis, image registration, and scen , )

! plane. We define the norm qfas :
understanding among others.
The paper is distributed as follows: in Section Il we llgll = V&% + y? + L26? (3)

describe the ICP algorithm. In Section 11I-C we show how herel i i | ber h o0 a lenath
to use our distance to match points of two laser scang. erel 1S a posilive real number homogeneous to a length.

and we express the least square criterion we minimizeye" WO pointspy = (P12, P1y) @Ndp2 = (p2a, p2y) I
, we define a distance betwegn andp, as follows:

based on this distance measure. In Section IV, we discu
thg gxperimental reSl_JIts and we compare our met_hod V\_/ith dp(p1,p2) = min{||q|| such thatg(p;) = p2}  (4)
existing methods. Finally we draw our conclusions in
Section V and we discuss possible extensions and fututé1ere
work in Section VI. x +cost) pip —sinf py
= . 5
q(p1) ( y +sin6 pi, + cosf pyy ()

n
Fig. 1. This Figure depicts the scan-matching problem: to compute the Edist((]) _ Z d(pj, q(cj))2 (2)
i=1

Il. THE ITERATIVE CLOSESTPOINT (ICP) ALGORITHM . . . o
( ) It can be easily checked thd} is a real distance satisfying

Given a reference scaf,.r, the new scanS,., and for any p; andps:
a rough estimationy, of the relative displacement of the 1) dy(p1,p2) = dy(po, p1)
sensor between the scans, the objective is to estimate thez) dy(p1,p2) = 0 implies p; = ps
real displacement = (x,y, 9) between them (Figure 1). 3) dy(p1,p3) < dp(p1,p2) + dp(p2, p3)

Tthe ICP algopthtm adtd ressii, thlshplrtoblizg rt\r/1wth an It'Unfortunately, there is no closed form expression of the
crative [r)]roiess in two j €ps. b ?ac ! et[wa . etre '? b ove distance w.r.t. the coordinates of the points. However,
a search of correspondences between the points o can compute an approximation valid when the mini-

scans. Then the estimation Of. relative displacemgnis mum norm transformation is small, by linearizing (5) about
improved thrpugh a minimization process. The process 8 _ 0. The set of rigid-body-transformations satisfying
repeate_d until convergence._ ) q(p1) = p2 can be approximated by the set of solutions
1) First let place each point; of S,,.,, in the system of (z,y,0) of the following system:
referencesS,.; using the estimationy, c¢; = qx(p}).
Then, due to the discrete nature of the data, it is T+ Pz — 0 pry = P2
assumed a local structure 3.y between successive Y+ 60 pig + p1y = P2y



The set of solutions is infinite and can be expressed by:

T = P2z —Plz T 0 P1y 4t ‘ |—

Yy = P2y —DPiy— 0 P

35F
where ¢ is a parameter for the set of solutions. Let us Euclidean
recall that according to (4), we need to find the solutior distance=0.3L
that minimizes the norm of = («x, y, 9). For a givery, this
norm is given by the following equation, after substituting
the above expressions efandy into (3): 2F

llall = (0. + 0 ply)2 + (6, — 0 plgv)2 + L%6? 15F

whered, = ps, — p1, andéd, = pay — p1,. Expanding the 1t
above expression, we obtain a polynomial of degree 2 i
0:

w
T

lqll* = ab® + b6 + ¢ o distance=0.3L

with a = p2, + p2y + L2, b = 2(6up1y — 6,p1e) and 4l X ]
¢ = 63+ 0. Notice thata > 0 implies that this expression
has a unique minimum fof = —b/(2a) and the value of Lo s 1 15 2 25 3 35 4 s
this minumum is given by

H(I||2 . —b% + 4dac Fig. 2. The iso-distance curves df” are ellipses centered qn .
o 4da
—(0ap1y = dyp12)? + (p3, +p1, + L?)(67 +07) _ _ _ _
= 2 2 12 parameter\. Following the same reasoning as in previous
ply + Pig + . . . . .
9 Section, we can approximate this distance by:
_ 52 +52 o (6zp1y — 5yp1:c) 5. (A 5.0\ 9
TR R a2 5,007 + 8,07 — LR =W g
Finally, the distance betweem and p, is approximated Py T Pla
by: where
02D1y — OyP1e)? O(A) = (02(A),0y(N) =81 —p1 + A(s2 — s 9
dgp(pl’pg):\/égwg_(zply ) o) () = (3:(X). 6, (V) = 51 = pr +Asz = 1) (9)
piy +pip + L Substituting (9) into (8), we get a polynomial of degree 2
Notice that as expected, our distance is smaller than tHe A: ) )
Euclidean distance, since this latter is the norm of the d(A)* maX” +bA+c

translation betweep; andp, and therefore is bigger than
the minimum norm.
To better understand the properties of this distance

with the following coefficients:

(plyUQw - plwu2y)2

2 2
measure, let us compute the iso-distance curves. Again, = Ugp Uy P2, +p%y + L2
we do not have the exact expression of the iso-distance ; _ (U014 + Usyb1y)
curves but if we use approximation (6), we can prove that (Prytize — Prating ) (S12P1y — S1yPie)
the iso-distance curves relative dg?: —g ¥ T Ty Ty vz

pi, + i, + L2

(51xp1y - 51yp1x)2

{p2 € Rl2 SUCh thatdgp(p17p2) = C}
i, +0i, + L2

¢ = 07, +6%, -

are ellipses centered gn with principal axes(pis, p1y)

whereus = (UQI7U2y) = 59 — 81 andd; = (51175111) =

s1 — p1. Coefficienta is positive and therefore the above

expression has a unique minimum Jnfor A = ;—f with

B. Distance point to segment value#ﬁ“. The expression of the approximation of the
In this subsection we give an expression of the distancéistanced,s(p1, [s1 s2]|) for small rotations is thus given

point to segment (1). Let us consider a pgintand a line  by:

segment defined by two points and s,. The distance

betweenp, and segmenfs; so] is defined by:

and (—p1,,p1.) and lengthse and ¢y/1 + 122° (see
Figure 2).

dp(pl,Sl) if A<O
' dps(p1, [51 82]) ~ dp(p1,s2) ifA>1
dps(p1; [51 92]) = min, dy(pr, (1= A)s1+As2)  (7) VS ifo< A<

Let us denote byd(\) = d,(p1,(1 — N)s1 + As2) the and the closest point tp; on [s; sq] in these three cases
distance betweep; and the point on segmeffi¢; so] of is respectivelys;, so ands; — %UQ.



C. Least Square Minimization . b/fct; L
To compute they that minimizes the criterion proposed 0 Soor \\

in (2), we use the following notation: the coordinategppf \

(reference points) and, (new points in reference system,

meters
I
w

qx(p})) are respectivelyp;,, p;y) and(c;g, ¢iy). Using the -4
approximate distance (6), we get the following expression: :2
. 1
(5130]7: - 52 pzw)2 """""
Eaist(q) = 85 + 07y — — (10) S
18 ; 1r Y p?y +pgx + L2
where \ Sy
6iz = Cigz — Ciyg + T — Pig 2 N
Oiy = Cipg+ciy+Yy—Diy ggo E"“_" ¢ . /
1
(10) is quadratic w.r.tq: -4 ~ e
Egist(q) = ¢" Ag+2b"q + ¢ 2 g 8 8w

Fig. 3. Scans used in the experiment: one in a semi-structured with low
density of obstacles and another in an unstructured with high density.

wherec is a constant numbed is a symmetric matrix

A=| @z axn axp the ICP and the MbICP algorithm. In order to show a

1 - T

. n
a1l = pPi=1 i
a0 = 1 PizPiy

12 — pPi=1 ki
n Pi
a1s = =) —Ciy + 7L (CiaPia + CiyPiy)
p3
k

x

a — n ]
22 P i=1
%’L

e

28 = oy Ciz — 5% (CiaPiz + CiyDiy)
n 2 2 1 2
ass =, Ciz + Ciy — 3 (CiaPia + CiyPiy)
and

P” Piy

Pi=1 Cixz — Pixz — Tl(czzpzy - Czypzz)
n Pix

b= pPi=1 Ciy — Piy + (Ciapiy — CiyDiz)

" [ (Ciapiz + ciapiy) — 1](Cizpiy — Ciypiz)

fair comparison, we used the same values for common
parameters (actually we used our IDC previous parameters
for the ICP and MbICP), and we only tuned the metric
length in the MbICP (the onlyad hocparameter). In the
experiments, we found thdi = 3 gave the best results.

We outline next two types of experiments. The first eval-
uates the properties of the MbICP algorithm by matching
a pair of scans for random location errors. The second one
evaluates the global algorithm performance with a run with
the vehicle within our university (Figures 5 and 6).

The first experiment consisted on matching two different
scans acquired in the same sensor location. Thus, the scans

’ are different due to the sensor noise and we know precisely
wherek; = p7, + p;, + L?. The value ofq that minimizes the ground truth(0, 0,0). We added random noise to the
FEiist(q) is thus initial location estimate up t®.2m in z and y, and up
to 45° in 6. Notice how large are the maximum errors
especially in rotatiort. Convergence of the algorithm was

) . ] ] achieved when the error ratio was bel6w001% and the
In this Section we outline the experimental results. Wenaximum number of iterations wa®0. We perform this

tested the method with data obtained with a wheelchajest in two different scenarios (Figure 3). The scans were
mobile robot equipped with a Sick laser scanner. taken in a place where the range information was more or
In order to compare our method (metric-based ICRess equally distributed in all directions, which is a well-
MDICP in short) with existing scan matching techniquescongitioned situation for the methods. We repeated each
we used the standard ICP and the widely known IDGexperiments500 times for each scenario (a total of 1000
algorithm [14]. The IDC algorithm uses two types of ypg).
correspondences (translation and rotation) and interpolates,:igure 4a depicts the final estimates of the MbICP, IDC
in both between successive range points (local structure),q |cp. The MbICP and IDC converged all the £imes
This method is designed to deal with large rotation eranq 4 the estimates concentrate around the true solution
rors. We did not implement this last methad hocfor ) ¢ () |n other words, all the results of the MbICP
the comparison, since we have this tool working in outyhq |pC wereTrue Positive(see Table below). On the
laboratory [17], [15], [16]. In our implementation, We oiher hand, inl.1% of the trials the ICP did not converge
reject outliners _using visibility criteria [14] and range jea4ing to negatives. Another measure of robustness is

criterions [18]. Furthermore we use a trimmed version ofpat some of the ICP positives weFalse PositivesThey
the ICP to manage the correspondences [5] that improves

the least squares m'mm'zat!on' and a smooth criterion qf Iprevious comparisons of scan matching [18] use maximum rotation
convergence [18]. We also implemented these features émrors up to6°.

dmin = _A_lb

IV. EXPERIMENTAL RESULTS
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Fig. 4. (a) Estimations of both algorithms. (b) Convergence rate (without the ICP negatives). (c) Zoom on the estimations around the ground truth

projected in theXY plane. (d) Computation time (without the ICP negatives), where the horizontal line is the mean time.

corresponded to situations were the ICP converged band ICP. They tend to concentrate in two different clusters
towards a local minimum that did not correspond to thdor each scan and algorithm. Next table depicts the mean
real solution (Figure 4a). and standard deviation of the error in both coordinates (we

TABLE | only use theTrue positivel

MBICP vs IDC AND ICP (%) TABLE Il

MBICP vs IDC AND ICP ERROR

Positive | False Positive| Negative | False Negative
MbiCP vy 0 0 0 X error Yy error th error
IDC 100 0 0 0
ICP 929 6 11 0 p] o pl o [u]o
MbICP (10 3) || 0.3 ] 0.001] 0.4 | 0.31] 0.0 | 0.0
—3
These results show that the MbICP and the IDC are 'I‘?;‘,i ((118_3)) 8:; 8:% 8:2 8:12 8;8 8:8

more robust than the ICRi) all the results of the MbICP

and IDC wereTrue Positivesvhile the ICP hadVegatives When the algorithm converges to the right solution, the

(they correspond to large errors in orientation that could dhedium and covariance of the errors are very similar. The
not be compensated). Ardi) the ICP hadl.1% of False MbICP seems more accurate than IDC, but the errors are

Positives(also due to large errors in orientation) which are
so small (sub millimetre precision) that are not significant.

really bad for these methods since the estimate is wrong
Figure 4b depicts the number of iterations for each trial.

although the result is positive. The MDICP is as rObuSII'he converge rate is better in the MbICP than in the IDC

as the IDC facing large errors in rotation (our method
performs as good as methods designed to deal with thegnd ICP. Figure 4d shows the computation time of the

2
situations). ?gorlthms The MDbICP takes half time than the IDC.

Figure 4c depicts a zoom on Figure 4a projected on the
XY pIane. All the solutions of the Mbl(?P CcmC(:"ntrateour C implementation of the IDC (on the vehicle) runs at a medium of
closer to the ground truth than the solutions of the ID®.020sec (the ratio is aboy;).

2Although the times displayed were obtained off-line using Matlab,
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Fig. 5. This Figure depicts the odometry data of a trial of 70 meters
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This is because the IDC performs two sets of associatio
and two minimizations while the MbICP and ICP only one
Also, the MbICP is faster than the ICP since it alway 191
converges before. »
We remark that this test was carried out with large erro g
in translation and rotation. This experiment illustrates ho E
the MbICP is as robust and precise as methods desigr 5F
to have good performance under these conditions, anc
is better than the standard ICP. Furthermore, the MbIC o
converges more rapid and is faster than previous metho
Although we have tried to give the maximum generalit % 5

with the scans selected, the conclusions given are valid
these scans. To confirm these results we present next
experiment with real motion in a real scenario.

meters

Fig. 6. (Top) Visual map obtained with the MbICP. (Bottom) Visual
The second experiment corresponds to a run in ounap of the IDC.

University with the wheelchair vehicle. The robot travelled
70 meters getting out of an office, travelling around a V. CONCLUSIONS
corridor and coming back to the office. The experiment is
difficult because the floor was very polished and the vehicle This paper presents a metric-based matching algorithm
slipped constantly with a poor effect on the odometryto estimate the robot planar displacement by matching
(Figure 5). In addition, the scenario was full of chairs,dense two-dimensional range scans. The contribution is a
tables, baskets which are non structured, and the corridgeometric distance that takes into account the translation
is quite long and thus there was not many frontal structurand orientation of the sensor at the same time.
to correct the location in this direction. We have implemented and tested the technique in a
Figure 6 depicts the results obtained with the MblCFeal vehicle and compared with the widely used Iterative
and the IDC. We see how the visual result of the MbICP i$ual Corresponce scan matching (IDC) algorithm and the
better than the IDC since it is able to align the corridor angtandard ICP. The results demonstrate that we improve
the office when it comes back. The rotational accumulatedrevious methods in robustness, precision, convergence rate
error is lower for the MbICP than for the IDC. Moreover, and computation time. This is because we compensate
note how the error in translation is also quite small. Inat the same time the three variables of the minimization
this experiment the scans changed from one iteration tdwo of translation and one of rotation). Another important
another (involving issues as spurious and new parts of tH@nsequence is that our method is able to deal with large
scenario). The mean convergence rate was 27 iterations fedometry errors especially in rotation, which is the diffi-
the MbICP and 33 for the IDC. Thus, these experimentsulty of most of the existing approaches and has deserved
show how under more realistic conditions the behavior of lot of discussion in this discipline.
the MbICP is globally better than in the IDC (robustness, Finally we address in the next Section how this technique
accuracy and convergence). could be extended to be used in other contexts.



VI. DIScUsSION ANDFUTURE WORK

In this Section we describe extensions of this metric[1]
based scan matching technique. The first issue to address
is how to extend the metric to deal with more complex
systems (with crossrelations in the coordinates). This coukj
be done by extending the norm to be:

- (3]
lal|* = q" Aq (11)
where A = {a;;,i,j = 1...3} is a symmetric and [4]
semipositive matrix. The expression of the distance is then:
dr = 16" Qa|z (12) B
whered = (6, 4,)7 and: ]
k3 kaks
a11 — 55, Q12 —
Q= ORI
a2 =GRt Q22 — gt (7]
ki = anp; + azp; — 2012p2py— (8]
— 2a93p; + 2a33py + ass
ko = 2(a11py — a12p. + ass) 9]

ks = 2(a12py — a22ps + a23)

This expression of the distance is the generalization dfo]
the distance presented in this paper. This would allow to
address the same problem but describing more compley;
systems.

Another important matter is the extension of the distance
formulation to three dimensions. Up to now we have
demonstrated that the distance is also a distan&’iand  [12]
the expression given two pointg andps is:

||p1 ® pal|?

|lpa|* + L2
This result allows to address scan matching problems in 334l
workspaces and to use it in other communities that use the
ICP algorithm to address sensor motion estimation, locgss)
tion and map building, object recognition, pattern analysis,
image registration, and scene understanding among others.
Up to our knowledge the idea of a unified framework toj16]
take into account translation and rotation in the ICP has
not been explored in these communities yet [19].

Finally, we are exploring how this distance relates with17]
an statistical distance called the Mahalanobis distance.
More precisely, by associating the matrit with the (18]
information matrix of vectorg, and transforming it to
the point location using the Jacobian @f we obtain a
matrix C' defining the uncertainty of the point location. The[19
Mahalanobis distance using is equal to the expression
of our approximate distance. However, we remark tha0]
this is true for the approximate expression of the distance
(obtained linearizing). In any case, we stress that, to our
knowledge, the scan- matching problem has not bedAll
addressed with the Mahalanobis distance yet. The results
of this paper suggest promising research opportunities in
this direction.

AP = ||po — p1||* — (14) 3

[22]
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