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Abstract This paper addresses the modeling of the static
and dynamic parts of the scenario and how to use this in-
formation with a sensor-based motion planning system. The
contribution in the modeling aspect is a formulation of the
detection and tracking of mobile objects and the mapping
of the static structure in such a way that the nature (sta-
tic/dynamic) of the observations is included in the estima-
tion process. The algorithm provides a set of filters tracking
the moving objects and a local map of the static structure
constructed on line. In addition, this paper discusses how
this modeling module is integrated in a real sensor-based
motion planning system taking advantage selectively of the
dynamic and static information. The experimental results
confirm that the complete navigation system is able to move
a vehicle in unknown and dynamic scenarios. Furthermore,
the system overcomes many of the limitations of previous
systems associated to the ability to distinguish the nature of
the parts of the scenario.

Keywords Mobile robots · Mapping dynamic
environments · Sensor-based motion planning

1 Introduction

Autonomous robots are currently being deployed in real en-
vironments such as hospitals, schools or museums develop-
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ing help-care or tour-guide applications for example. A com-
mon characteristic of these applications is the presence of
people or other moving objects. These entities make the en-
vironment dynamic and unpredictable and have an impact
on the performance of many of the basic robotic tasks. One
of these tasks, common for many robotic applications, is
mobility. In particular, dynamic scenarios involve two as-
pects in the motion generation context: (i) to model the sce-
nario and (ii) to integrate this information within the motion
layer. This paper addresses both issues.

The majority of existing motion systems addresses dy-
namic scenarios by using the sensor observations at high
rate compared to the obstacles dynamics. In other words,
they assume a static but rapidly sensed scenario, which al-
lows fast reactions to the changes induced by the evolution
of the moving objects. Although this assumption works fine
in many cases (obstacles moving at a low speed), in realis-
tic applications is no longer valid. This is because in real-
ity the object’s motion is arbitrary and, even assuming low
speeds, in many cases these systems fail. For instance, Fig. 1
shows two common and simple situations where the static
and dynamic parts of the scenario have to be discriminated,
modeled and consequently used within the motion genera-
tion layer. To explicitly deal with dynamic objects is a must
to improve the robustness of the motion systems.

In this work we are interested in those applications where
the scenarios are dynamic and unpredictable and, thus, re-
quire rapid reactions of the vehicles. For instance, consider
a robotic wheelchair (Fig. 2). In this type of application, the
user places goal locations that the wheelchair autonomously
attains. In this context, the goals are usually in the field of
view of the user, that is, in the close vicinity of the robot.
This is important to bound the spatial domain of the motion
generation. In general, the motion task has been usually ad-
dressed from a global or local point of view (i.e. global or
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Fig. 1 These figures depict two examples that illustrate the impor-
tance of modeling and using the dynamic and static parts of the sce-
nario in the motion layer. The points are laser measurements. Situa-
tions where (a) the robot and a dynamic obstacle move in a long corri-
dor, and (b) the robot moves toward a door that is temporally blocked
by a moving obstacle. Without distinction between static and dynamic
obstacles, both the corridor and the door seem to be blocked and every
motion layer using the sensor measurements without processing would
fail. To solve both situations, we need to construct a model of the static
and dynamic parts of the scenario and use them consequently in the
motion layer (adapting the motion to the object dynamics)

local motion systems). For full autonomous operation both
are required since they are complementary, however their
competences are different and related with the spatial do-
main and the reaction time. In short, the larger the spatial
domain is, the higher the reaction time due to the computa-
tional requirements (Arkin 1999).

On the one hand, global systems address solutions with
large spatial domains. In static environments, successful
global mapping and planning has been demonstrated even
though the computational requirements increase with the
size of the scenario. Dynamic scenarios impose additional
difficulties since it has been proved that the motion plan-
ning problem in the presence of dynamic obstacles is NP-
hard (Canny and Reif 1987) (even in simple cases such as
a point robot and convex polygonal moving obstacles). In
other words, global mapping and planning are time consum-
ing operations especially in dynamic scenarios. Thus, they
are not adapted to high rate perception—action operations.

Fig. 2 A child using an autonomous robotic wheelchair in a crowded
and populated scenario. The number and dynamics of the moving ob-
stacles is unpredictable. To deal with the motion aspect in these sce-
narios is the context of this work

On the other hand, in local systems the domain is usu-
ally bounded to achieve high rate perception-action schemes
(working within the control loop). Furthermore, the motion
problem in dynamic and unpredictable scenarios is local in
nature, since: (i) it makes no sense to maintain a map of
dynamic objects observed long time ago (e.g. two rooms
away from the current location); and (ii) moving obstacles
can modify the route arbitrarily (e.g. humans) constantly in-
validating plans. That is why we focus our attention on lo-
cal motion systems. These systems work within a high fre-
quency perception—action scheme. Real-time is achieved
by limiting the model size (used to plan the motions) and
alleviating some constraints of the planner (to speed it up).
The consequences of these design choices are: (i) the max-
imum reach of the motion solution is the model size, and
(ii) the system might fail in some rare situations due to the
under-constrained motion planning strategies. Despite these
limitations, local systems are able to compute robust local
motion in the large majority of cases (see Schlegel 2004 for
a discussion). Additionally, as discussed before, these local
techniques can be combined with global techniques improv-
ing the behavior in long-term missions. In particular, in the
robotic wheelchair application, the high level (global) com-
petences may rely on a human and the machine addresses
local issues. This paper focuses on the construction of local
models in dynamic environments and their integration with
local motion planning systems.

The paper is organized as follows. Section 2 describes the
related work and the contributions of this work. Section 3
presents the modeling of the static and dynamic scenarios,
and in Sect. 4 this module is integrated with a local motion
planning system. In Sect. 5 we describe the experimental
results to validate the modeling and the motion generation
in dynamic scenarios. Section 6 draws the conclusions.
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2 Related work and contributions

This paper focuses on two aspects of the design of motion
systems in dynamic scenarios: (i) to appropriately model
the scenario, and (ii) to consequently integrate and use this
model in the motion layer. Thus, we articulate this section
in these two directions and, finally, we outline the contribu-
tions of this work.

2.1 Modeling dynamic scenarios

Modeling dynamic scenarios has at least two aspects: the
modeling of the static parts of the environment and the iden-
tification and tracking of the moving objects. On one hand,
the modeling of static scenarios has been extensively stud-
ied. The proposed algorithms include incremental maximum
likelihood mapping techniques (Hähnel 2004; Gutmann and
Konolige 1999; Lu and Milios 1997a), batch mapping algo-
rithms (Hähnel et al. 2003) or online Simultaneous Local-
ization and Map Building (SLAM) (Cheeseman and Smith
1986; Castellanos and Tardós 1999; Thrun et al. 2005).
Some of this SLAM algorithms are able to deal with moder-
ate dynamic landmarks using exponential decays (Andrade-
Cetto and Sanfeliu 2002) or treating them as parameters of
a regression function and estimating their maximum like-
lihood values over time (Martinez-Cantin et al. 2007). On
the other hand, the Tracking of Moving Objects (TMO)
is also a well-studied problem (Bar-Shalom et al. 2001;
Blackman and Popoli 1999). However, a robust modeling of
dynamic environments requires to perform both tasks at the
same time. This is because the robot position error affects
the classification of the measurements and, consequently,
the map construction and the tracking of the moving objects.

The modeling techniques that address both issues simul-
taneously can be roughly divided into global or local tech-
niques. On one hand, there are global techniques that ad-
dress the mapping and tracking problem simultaneously. For
example, Wang et al. (2007) presents a rigorous formulation
of the TMO-SLAM problem assuming a known classifica-
tion of the observations into static and dynamic. The prob-
lem is factorized into an independent SLAM and an inde-
pendent tracking. In the implementation, the classification
is based on the violation of the free space in a local dense
grid map and the tracking on a set of extended Kalman fil-
ters (EKF). In (Hähnel et al. 2002) they use a feature based
approach to detect the moving objects in the range profile of
the laser scans. Next, they use Joint Probabilistic Data Asso-
ciation particle filters (Schulz et al. 2001) to track the mov-
ing objects and a probabilistic SLAM technique to build the
map. The previous methods do not take into account the un-
certainty of the robot motion in the classification step. Thus,
difficulties may arise in the presence of large odometry er-
rors due to misclassification, since these errors affect the

precision and the convergence of the previous algorithms.
Incorporating the classification process within the estima-
tion process is hard due to the combination of discrete and
continuous hidden variables and results in intensive comput-
ing algorithms. For instance, in (Hähnel et al. 2003), an Ex-
pectation Maximization based algorithm filters the dynamic
measurements that do not match the current model of the
static parts while building a map of the environment. How-
ever, this technique is not well suited for real time motion
generation because of its batch nature and because it does
not explicitly model the dynamic features. In (Biswas et al.
2002), an occupancy grid map technique was proposed to
model non-stationary environments. The focus is on learn-
ing grid representations for objects that change their posi-
tions in long periods such as chairs or tables. The algorithm
also uses the Expectation Maximization to find correspon-
dences between static maps obtained at different points in
time. The work in (Wolf and Sukhatme 2005) uses two occu-
pancy grids to model the static and dynamic parts of the en-
vironment. The localization uses landmarks extracted from
the static map to compute the robot localization. Although
the dynamic grid models explicitly the moving objects, it has
no information about their dynamics required for the naviga-
tion task. In addition to this, the approach is not well suited
for unstructured environments due to its dependency on ex-
tracted landmarks.

On the other hand, the usual strategy with the local tech-
niques is to build the map by filtering the measurements
originated by the moving objects. Many algorithms use a
scan matching technique to correct the robot position and
incrementally build a local map (Besl and McKay 1992;
Lu and Milios 1997b; Biber and Strafler 2003; Minguez et
al. 2006b). The performance of these techniques is affected
by dynamic environments due to failures in the matching
process. Several authors have extended them to minimize
the effect of the moving objects by discarding sectors with
big correspondence errors (Bengtsson and Baerveldt 1999)
or by using the Expectation Maximization (EM) method
to detect and filter the spurious measurements (Jensen and
Siegwart 2004). These type of methods are widely spread
and used, since they are well adapted to real time oper-
ation. However, they discard dynamic information and do
not explicitly track the moving objects. The lack of a model
for the dynamic parts hampers their filtering in subsequent
measurements and prevents the usage of this information for
other tasks (e.g. sensor-based motion planning).

2.2 Motion generation in dynamic scenarios

The correct way to generate motion in dynamic scenarios
is to address the motion planning with moving obstacles.
Unfortunately it has been demonstrated that this problem
is NP-hard even for the most simple cases (point robot and
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convex polygonal moving obstacles, Canny and Reif 1987).
As a result, these techniques are not well suited for real time
operation. This is because they take significant time to com-
pute the plan and often, when it is available, the scenario has
been modified invalidating the plan. The problem of motion
in dynamic scenarios is usually simplified to achieve real
time operation.

The usual simplification is to compute the motion with
reactive obstacle avoidance techniques, which reduce the
complexity of the problem by computing only the next mo-
tion (instead of a full plan). Therefore, they are very effi-
cient for real-time applications. Some reactive techniques
have been designed to deal with moving obstacles (Fior-
ini and Shiller 1998; Fraichard and Asama 2004) and have
demonstrated good performance. Unfortunately their local
nature produces trap situations and cyclic behaviors, which
is a strong limitation for realistic operation.

To overcome this limitation it has been suggested to com-
bine these reactive techniques with some sort of planning
(see Arkin 1999 for a discussion on integration schemes
and Minguez and Montano 2005 for a similar discussion
in the motion context). The more widespread way to com-
bine reaction with planning are the systems of tactical plan-
ning (Ratering and Gini 1993; Ulrich and Borenstein 2000;
Brock and Khatib 1999; Minguez and Montano 2005;
Stachniss and Burgard 2002; Philipsen and Siegwart 2003;
Montesano et al. 2006). They perform a rough planning over
a local model of the scenario, which is used to guide the ob-
stacle avoidance. The planning extracts the connectivity of
the space to avoid the trap situations. The reactive colli-
sion avoidance computes the motion addressing the vehicle
constraints. The advantage of these local motion systems is
that the combination of planning and obstacle avoidance at
a high rate assures robust collision avoidance while being
free of local minima (up to some rare cases related with the
relaxation of constraints of the planning algorithm Schlegel
2004). However, none of these systems constructs models
of the dynamic and static parts of the scenario. Thus, they
cannot correctly cope with some typical situations (such as
those depicted in Fig. 1) affecting the robustness of the sys-
tem.

2.3 Contributions

This paper contributes in two aspects of the motion genera-
tion where the dynamic obstacles affect: (i) the construction
of a model of the dynamic and static parts of the scenario
and (ii) its integration within a local system of tactical plan-
ning.

• The first contribution is an incremental local mapping al-
gorithm that explicitly solves the classification process.
The method uses the Expectation Maximization algo-
rithm to compute the robot pose and the measurement

classification, constructs a local dense grid map and tracks
the moving objects around the robot. The method could
also be seen as a scan matching algorithm for dynamic en-
vironments that includes the information about the mov-
ing objects.

• The second one is the integration of the previous mod-
eling within a local sensor-based motion system based
on a tactical planning scheme. The advantage is that
the motion is computed by selectively using the infor-
mation provided by the static and moving obstacles in
the planning—obstacle avoidance paradigm. As a conse-
quence, the system is able to drive the vehicle in dynamic
scenarios while avoiding typical shortcomings such as the
trap situations or the motion in confined spaces.

3 Modeling dynamic environments

In this section, we outline the problem of modeling dynamic
environments from a Bayesian perspective. Next, we present
a maximum likelihood algorithm to jointly estimate the ro-
bot pose and classify the measurements into static and dy-
namic; and we provide the implementation details for a laser
sensor.

The objective is to estimate the map of the static parts
and the map of the moving objects around the robot us-
ing the information provided by the onboard sensors. For-
mally, let Zk = {zk,1, . . . , zk,Nz} be the Nz observations
obtained by the robot at time k and uk the motion com-
mand executed at time k. The sets Z1:k = {Z1, . . . ,Zk} and
u0:k = {u0, . . . , uk} represent the observations and motion
commands up to time k. Let xk denote the robot location at
time k, Ok = {ok,1, . . . , ok,NO

} the state of the NO moving
objects at time k and M the map of the static environment.1

From a Bayesian point of view, the objective is to estimate
the distribution p(Ok, xk,M|Z1:k, u0:k−1). Using the Bayes
rule and marginalizing out the state variables at the previous
step, we get the recursive Bayes estimator

p(Ok, xk,M|Z1:k, u0:k−1)

= ηp(Zk|Ok,xk,M)

1The assumption here is that the map M does not change over time
(note that the map does not have a time index). The formulation states
that the world can be divided in two different types of features: static
and dynamic. The static ones are parameters (their value is fixed) while
the dynamic ones require modeling their evolution. This assumption is
common in this context and in most of the algorithms that map static
environments. Otherwise, if all features are considered dynamic, the
non-visible parts of the map become unusable after some time since
their location tends to a non informative distribution (their uncertainty
increases in an unbounded way). Furthermore, observability also be-
comes an issue due to the uncertainty in the robot displacement.
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×
∫ ∫

p(Ok, xk|Ok−1, xk−1,M,uk−1)

× p(Ok−1, xk−1,M|Z1:k−1, u0:k−2)dOk−1dxk−1 (1)

where η is a normalization factor. The term p(Zk|Ok,xk,M)

is known as the measurement model. The integral combines
the motion model p(Ok, xk|Ok−1, xk−1,M,uk−1) and the
distribution of interest at k − 1 to predict the state vector at
time k. Notice that, since the map does not change over time,
it is a constant in the integration. We have used a Markov as-
sumption to discard previous measurements and commands
and simplify both the motion and measurement models.

The motion model, p(Ok, xk|Ok−1, xk−1,M,uk−1), rep-
resents the evolution of the robot and the moving objects.
Let us assume that the objects ok,i and the robot xk move
independently. Then, the joint motion model can be factor-
ized into the individual motion models of the robot and each
moving object. If the motion does not depend either on the
map M , the motion model can be written as

p(Ok, xk|Ok−1, xk−1, uk−1)

= p(xk|xk−1, uk−1)

Nz∏
i

p(ok,i |ok−1,i ). (2)

The likelihood term, p(Zk|Ok,xk,M), measures how well
the observations match the prediction done by the motion
model. Computing this term requires to solve the data asso-
ciation problem, i.e. to establish a correspondence between
each measurement and a feature of the map or a moving ob-
ject. In order to model the data association, we introduce
a new variable ck that indicates which feature originated
each measurement Zk . Since the correspondences are unob-
served, one has to integrate over all the possible sources ck

p(Zk|Ok,xk,M)

=
∑
ck

p(Zk, ck|Ok,xk,M)p(ck|Ok,xk,M). (3)

Figure 3 shows the graphical representation of the prob-
lem. The model contains the continuous variables of (1) and
the discrete variables ck representing the source of the mea-
surements at each point in time (i.e. they represent the clas-
sification or correspondence problem into static/dynamic).

In general, it is very hard to perform exact inference
on such models due to the integration over all the possi-
ble correspondences and the mutual exclusion constraints.
Therefore, one has to use approximations. It is possible to
use sequential Monte Carlo techniques (Doucet et al. 2000;
Murphy 2002) to approximate the full distribution. The
drawback is a high computational cost due to the increasing
size of the map and the multiple hypotheses arising from dif-
ferent classifications. As described in Sect. 2, most of previ-

Fig. 3 Graphical representation of the problem including the data
associations. The circles represent the continuous variables and the
squares discrete ones. The filled nodes are the measurements whereas
the empty ones represent hidden variables

ous works simplify the problem assuming that the classifica-
tion into static and dynamic is known. In practice the classi-
fication is not available and it is usually computed based on
the distribution p(Ok, xk,M|Z1:k−1, u0:k−1) using patterns
and/or free space constraints.

In the next section, we propose an incremental mapping
algorithm that jointly computes the robot pose xk and the
correspondences ck to obtain the estimate of the map M and
the location of the moving objects Ok .

3.1 Incremental mapping of dynamic environments

A key feature of previous approaches is a high computa-
tional time due to the increasing size of the map, which
hinders its application in the context of this work (real
- time operation). One simplification of the full model-
ing problem is incremental mapping (Thrun et al. 2000;
Gutmann and Konolige 1999). The objective is to compute a
single pose x̂k of the vehicle at each point in time k (instead
of a distribution). Thus, the representation of the map and
the moving objects, which can be probabilistic, are condi-
tioned on this deterministic trajectory.

Incremental mapping estimates at each point in time
k the robot pose x̂k that maximizes the likelihood term
p(Zk|Ok,xk,M)

x̂k = arg max
x

p(Zk|Ok,xk,M)p(xk|x̂k−1, uk−1). (4)

The additional term p(xk|x̂k−1, uk−1) introduces the uncer-
tainty of the last robot motion uk−1 to constraint the pos-
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sible solutions of the optimization algorithm. Furthermore,
the map M and the state of the objects Ok are computed
from the set of measurements Z1:k−1 and poses x̂1:k−1 up to
time k − 1,

Mk = fM(x̂1:k−1,Z1:k−1), (5)

Ok = fO(x̂1:k−1,Z1:k−1). (6)

The robot trajectory x̂1:k−1 used by functions fM and fO is
the deterministic set of maximum likely poses. The detailed
description of functions fM and fO is given in the next sec-
tions. However, let us advance that for computational rea-
sons, they are incremental functions that use the estimates at
k − 1, the new pose and the last set of measurements.

The advantage of this framework is that the classifi-
cation of the measurements can be included within the
maximum likelihood optimization using the Expectation-
Maximization (EM) algorithm. This is addressed in the next
section.

3.2 Expectation maximization (EM) maximum likelihood
approach

So as to solve (4) the term p(Zk|Ok,xk,M) has to be max-
imized, which requires to consider all the possible sources
(static map or a dynamic object) for each observation (see
(3)). The resulting expression has no closed-form solution
and it is difficult to maximize since the classification vari-
ables ck are unknown in general (Fig. 3). This subsection
describes how to use the Expectation Maximization (EM)
(Dempster et al. 1977; McLachlan and Krishnan 1997) for-
mulation to address the static/dynamic classification process
and solve (4) to obtain x̂k .

The EM technique is a maximum likelihood approach to
solve incomplete-data optimization problems. Initially, it in-
troduces some auxiliary variables to convert the incomplete-
data likelihood into a complete-data likelihood Lc which is
easier to optimize. Then, there is a two step maximization
process: (i) the E-step computes the conditional expecta-
tion Q(x,x(t)) = Ex(t)[logLc|Zk] of the complete-data log-
likelihood given the measurements Zk and the current esti-
mate x(t) of vector x to be maximized; and (ii) the M-step
computes a new estimate x(t+1) that maximizes the function
Q(x,x(t)). This process is repeated until the change in like-
lihood in the complete-data likelihood is arbitrarily small.
The original incomplete likelihood is assured not to decrease
after each iteration and, under fairly regular assumptions the
algorithm converges to a local maximum (McLachlan and
Krishnan 1997).

In the remainder of this section, we describe the appli-
cation of the EM technique to maximize the likelihood term
p(Zk|Ok,xk,M) of (4). The second term, p(xk|x̂k−1, uk−1),
is just a prior over the robot poses. Since it does not depend

on the measurements, it only affects the M-step (Sect. 3.3.3)
acting as a regularization term.2

Initially, we define some extra variables to build the
complete-data likelihood function. Although, in general the
extra variables in the EM do not require to have any phys-
ical meaning, in our case we use the correspondence vari-
able ck . This is because if this variable is known, the result-
ing likelihood is much simpler and its maximization has a
closed form solution (given that we linearized the measure-
ment equation).

Let the correspondence variable ck be a vector of binary
variables cij with j ∈ 0..No + 1 defined for each observa-
tion zk,i , i ∈ 1..Nz of Zk . So as to ease the notation, we
drop the time index k from the binary variables cij . The pos-
sible sources are represented by the index j , where j = 0
for static measurements, j ∈ 1..NO for the tracked objects,
j = NO + 1 for the unknown sources. The value cij = 1
indicates that zk,i was originated by source j , and cij = 0
otherwise.

Assuming that a single observation only belongs to one
source (i.e.

∑
j cij = 1) and that the measurements zk,i are

independent, the complete-data likelihood model is

Lc = p(Zk, ck|xk,Mk,Ok)

=
M∏
i=1

[
ps(zk,i |xk,Mk)

ci0pu(zk,i)
ciNO+1

×
N∏

j=1

pd(zk,i |xk, ok,j )
cij

]
(7)

where ps(.), pd(.) and pu(.) are the likelihood models for
observations originated from the map (static), each of the
tracked moving objects (dynamic) and new discovered areas
(unknown), respectively. Note that the binary variables cij

select the likelihood model according to the origin of the
measurements. The complete-data log likelihood function is

logLc =
Nz∑
i=1

[
ci0 logps(zk,i |xk,Mk) + ciNO+1 logpu(zk,i )

+
NO∑
j=1

cij logpd(zk,i |xk, ok,j )

]
. (8)

The function Q(xk, x
(t)
k ) is the conditional expectation of

the complete-data log likelihood logLc. As logLc is lin-
ear in the unobservable data ck , in the computation of
Q(xk, x

(t)
k ) we replace each cij by its conditional expecta-

2Under Gaussian assumptions, the inclusion of this term in the mini-
mization still has a closed form solution.
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tion given the current measurements Zk and the current es-
timates of xk , Mk and Ok ,

Q(xk, x
(t)
k ) = E

x
(t)
k

{logLc|Zk,Mk,Ok}

=
Nz∑
i=1

[
ĉi0 logps(zk,i |xk,Mk)

+ ĉiNO+1 logpu(zk,i)

+
NO∑
j=1

ĉijpd(zk,i |xk, ok,j )

]
(9)

where

ĉi0 = E
x

(t)
k

{ci0|Zk,Mk,Ok}, (10)

ĉiNO+1 = E
x

(t)
k

{ciNO+1|Zk,Mk,Ok}, (11)

ĉij = E
x

(t)
k

{cij |Zk,Mk,Ok}. (12)

3.3 Implementation for range sensors

In this section we provide the implementation of the previ-
ous method for a range sensor, e.g. laser range finder. First,
we present the measurement models associated to each type
of measurement (static, dynamic, unknown). Based on these
models, we derive the equations for the E-Step and M-Step
of the EM algorithm based on the function Q(xk, x

(t)
k ) of

the previous section. Finally, we describe how to update the
map Mk and the moving objects Ok using the new pose x̂k .
Algorithm 1 summarizes the steps of the algorithm.

3.3.1 Models

We next address the implementation of the functions fM(·)
and fO(·) (see (5)), which compute the current estimates of
the map Mk and the moving objects Ok conditioned over the
set of robot poses x̂1:k−1. Next, we will describe the likeli-
hood terms ps(.), pd(.) and pu(.) of (7).

For the static map fM(·), we use a two dimensional prob-
abilistic grid (Moravec and Elfes 1985) to represent the
workspace. Each cell has associated a random binary vari-
able mi , where mi = 1 when it is occupied by a static obsta-
cle, and mi = 0 if it is free space. The probability of the grid
cells is computed using the Bayesian approach proposed in
(Elfes 1989). This map representation is convenient in our
navigation context since: (i) it contains information of oc-
cupied and free space, and (ii) it is suitable for unstructured
scenarios.

We implement the function fO(·) using an independent
extended Kalman filter to track each of the moving objects.
The state vector for each moving object contains its posi-
tion, its velocity and its size. The latter is computed from

Algorithm 1 : Algorithm Summary
INPUT: xk−1, uk−1, Zk , Mk−1, Ok−1
t = 0,
% Prediction step

Compute the initial x
(0)
k

using xk−1 and uk−1
Predict moving objects locations Ok|k−1
% Estimation of the robot pose
repeat

E-Step:
for each zi,k , do

Select the nearest occupied grid cell gi ∈ Mk−1 using
the Mahalanobis distance
Compute the Mahalanobis distance to each oj ∈
Ok|k−1, j ∈ 1..NO

Compute ĉi0, ĉij , ĉiNO+1 to form Q(xk, x
(t)
k

)

end for
M-Step:
Compute x(t+1) = arg maxxk Q(xk, x

(t)
k

)

t = t + 1
until convergence or t > MaxIter
% Update models using xk = x(t)

Classify measurements into Zstatic,Zdynamic

Update Mk with static measurements Zstatic

Update filters Ok with dynamic measurements Zdynamic

OUTPUT: xk , Mk , Ok

the main axis associated to the measurements. The func-
tion fO(·) computes the predicted positions of the moving
objects at time k based on the vehicle trajectory x̂1:k and
the measurements Z1:k−1. We use a constant velocity model
with acceleration noise to predict the positions of the mov-
ing objects between observations and a random walk model
for the size of the object.

The complete-data likelihood function of (7) represents
how well the observations fit the current estimate of the
environment. This expression explicitly reflects the differ-
ent possible sources for each measurement with the mod-
els ps(.), pd(.) and pu(.) and the classification variables
ck . The definition of the measurement models depends on
the previous representations and on the sensor used (for in-
stance, see Hähnel et al. 2003; Thrun et al. 2005 for laser
range sensors ). We use a correspondence oriented model
where each likelihood term of (7) is computed based on
the Mahalanobis distance between each observation and its
model conditioned on ck . We model the uncertainties using
Gaussian distributions and linearize the models to compute
the Mahalanobis distance as in (Montesano et al. 2005) (see
Appendix A).

This framework is convenient since: (i) the Mahalanobis
distance takes into account the measurement noise and
the error of the last robot displacement, which may have
a big impact on the classification of each measurement
(Fig. 4a); and (ii) the use of a probabilistic metric im-
proves the correspondences computed in the E-step result-
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(a) (b)

Fig. 4 (a) This figure illustrates how the error in the robot pose hinders
the classification of the measurements. In particular, the effect of rota-
tion error increases for points far away from the sensor. The figure also
shows how the information of the object predicted position helps to
improve the correspondences. (b) This figure illustrates the differences

between an end-point model and a complete one. In the case of an end
point model, both beams have the same probability. On the other hand,
a complete model will assign a lower likelihood to the top ray due to
the fact that it traverses an obstacle before reaching the final obstacle

ing in a better convergence and robustness (Montesano et al.
2005).

In the previous model, we implicitly make two simpli-
fications to decrease the computational requirements of the
algorithm: (i) we use an End Point model (Thrun et al. 2005),
which ignores the path traversed by the ray and only consid-
ers the end point (Fig. 4b); (ii) instead of taking into ac-
count all the possible correspondences between the mea-
surements and the map of static obstacles in (7), we se-
lect the nearest neighbor occupied cell of the map for each
measurement. Although this is a simplification, nothing pro-
hibits the usage of more sophisticated techniques such as
(Jensen and Siegwart 2004; Montesano 2006) in the frame-
work.

We next describe the models for each type of measure-
ments ps(.), pd(.) and pu(.). The likelihood of a measure-
ment associated to a cell of the static map is modeled as a
Gaussian,

ps(zk,i |xk,Mk) = N(zk,i;f (xk, qi),Pi0) (13)

where qi is the location of the correspondent point associ-
ated to the measurement zk,i , f (xk, qi) is the transformation
between the map and the robot reference systems. The co-
variance matrix Pi0 takes into account the uncertainty in the
last robot motion, the position of the point in the map and the
measurement noise. The computation of Pi0 is described in
Appendix A. We refer the reader to (Montesano et al. 2005)
for further details.

We use the same model as the likelihood function for
every dynamic object,

pd(zk,i |xk, ok,j ) = N(zk,i;f (xk, ok,j ),Pij ),

∀j ∈ 1..NO (14)

where the function f (·, ·) and the covariance matrix Pij are
the same as in (13) but applied to the estimated position of
the moving object ok,j (see Appendix A). Since the filter
only contains an estimate of the centroid, we take into ac-
count the estimated size of the object when computing the
distance between the object and the measurement.

Finally, the classification variable ciNO+1 includes spuri-
ous observations and those corresponding to unexplored ar-
eas and new moving objects. The likelihood of such a mea-
surement is difficult to quantify. It depends on the spurious
rate of the sensor and on where the measurement is,

pu(zk,i ) =
{

punexplored if zk,i /∈ Mk,

pspurious if zk,i ∈ Mk.
(15)

The value pspurious is an experimental value measuring the
spurious rate of the sensor and punexplored is typically set to a
higher value to avoid those observations placed in unknown
areas to influence the optimization process.

3.3.2 E-Step

The E-Step requires the computation of the expectation of
the classifications variables ĉij defined in (10–12),
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ĉij = E
x

(t)
k

{cij |Zk,xk,Mk,Ok}

=
∑
cij

cijp(cij |Zk,xk,Mk,Ok)

= p(cij = 1|Zk,xk,Mk,Ok) (16)

where i = 1..Nz and j = 0..NO +1. The expectation is con-
ditioned on the predicted position of the objects Ok , the last
map estimate Mk and the current estimate of xk . Using the
Bayes rule, we obtain

p(cij = 1|Zk,xk,Mk,Ok)

= p(zk,i |cij = 1, xk,Mk,Ok)p(cij = 1|xk,Mk,Ok)

p(zk,i |xk,Mk,Ok)

= p(zk,i |cij = 1, xk,Mk,Ok)p(cij = 1)∑
l p(zk,i |cil = 1, xk,Mk,Ok)

. (17)

The previous derivation assumes a constant value for the
prior over the classification variables p(cij = 1|xk,Mk,Ok)

and computes the probability of the observation, p(zk,i |xk,

Mk,Ok), as the sum of all its potential sources. The specific
likelihood model to be used (ps(·), pd(·) or pu(·) defined in
(13), (14) or (15)) depends on the source of the measurement
indicated by the variable cij .

3.3.3 M-Step

The M-Step computes a new robot pose x
(t+1)
k such that

Q(x
(t+1)
k , x

(t)
k ) ≥ Q(xk, x

(t)
k ). (18)

Given the models introduced in Sect. 3.3 and (9), the cri-
terium to minimize is,

Q(xk, x
(t)
k )

=
Nz∑
i=1

[
ĉi0 log(−2π

√|Pi0|)

+ ĉi0(f (xk, qi) − zk,i)
T P −1

i0 (f (xk, qi) − zk,i)

+ ĉiNO+1 logpu(zk,i ) +
NO∑
j=1

[ĉij log(−2π
√|Pij |)

+ ĉij (f (xk, ok,j ) − zk,i)
T P −1

ij (f (xk, ok,j ) − zk,i)]
]
.

(19)

Grouping all the terms that do not depend on xk we get

Q(xk, x
(t)
k )

= cte +
Nz∑
i=1

[
ĉi0(f (xk, qi) − zk,i)

T

× P −1
i0 (f (xk, qi) − zk,i))

+
NO∑
j=1

ĉij (f (xk, ok,j ) − zk,i )
T

× P −1
ij (f (xk, ok,j ) − zk,i)

]
(20)

which has no closed form solution due to the nonlinear func-
tion f (·, ·). Appendix B describes how to compute the solu-
tion x

(t+1)
k by linearizing f (·, ·).

Notice that, since the moving objects are included in the
classification (E-Step), they also influence the computation
of xk . Their influence is reflected in the Pij term. When the
location of the moving objects is uncertain (due to the pre-
diction of this position, for instance), the value of Pij is high
and does not affect the solution.

3.3.4 Updating the map and the moving objects

In this section, we describe how to update the probabilistic
grid map and the set of Kalman filters with the last measure-
ments Zk after convergence of the EM algorithm.

In addition to the maximum likelihood pose of the robot
x̂k , the EM also provides an estimate of the values of the cor-
respondence variables ck . We use this estimate to distinguish
between static, dynamic and unknown measurements. Ex-
cept in those situations where there exist ambiguities, once
the robot position is corrected all the weight is assigned to a
single source. A simple threshold on the probabilities of the
correspondences allows us to classify the measurements in
three different sets Zstatic

k , Z
dynamic
k or Zunknown

k ,

zk,i ∈

⎧⎪⎨
⎪⎩

Zstatic
k , if ĉi0 > α,

Z
dynamic
k , if

∑NO

j=1 ĉij > α,

Zunknown
k , otherwise

(21)

where the value of the threshold α > 0.5 ensures that a mea-
surement only belongs to one of the sets Zstatic, Zdynamic or
Zunknown.

The update of the probabilist map is done as in (Elfes
1989), but the process is adapted to deal with the different
types of measurements (static,dynamic or unknown). On the
one hand, all the measurements of a scan contribute to up-
date the free space traversed by their corresponding laser
beams (see Fig. 4). On the other hand, only those measure-
ments classified as static provide information about the sta-
tic parts. So as to initialize new static areas, we keep a sec-
ond grid map with the unknown measurements Zunknown

k in
the frontiers of the explored workspace. If a cell is detected
consecutively a given number of time steps, it is included
as static in the probabilistic grid map. This type of delayed
initialization increases the robustness of the algorithm. For
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instance, a dynamic object moving in the frontier of the ex-
plored space will be treated as unknown until it enters pre-
viously mapped areas. A static one, on the other hand, will
not be included in the map until it has been detected several
times.

In the case of the filters that track the moving objects, we
use a segmentation algorithm based on distances to cluster
the dynamic measurements Z

dynamic
k . Then, we use a Joint

Probabilistic Data Association (Bar-Shalom and Fortmann
1988) scheme to update the set of Kalman filters.3 So as to
deal with new objects, we initialize a filter for those clusters
of points that are not assigned to any filter. Furthermore, fil-
ters without support, e.g. those out of the field of view of the
sensor, are removed after a fixed number of steps.

In summary, we have described in this section an EM al-
gorithm to incrementally compute the maximum likelihood
trajectory of the vehicle. Based on this trajectory, the algo-
rithm also computes a map of static obstacles and a map of
dynamic obstacles.

4 Integration of the modeling within the motion layer

Local sensor-based motion systems combine modeling and
planning aspects. On the one hand, we have proposed in the
previous section a technique to model the static and dynamic
features of the scenario. On the other hand, the planning
aspect in these systems usually combines tactical planning
with obstacle avoidance.4 In this section we outline the tools
used in our system (Montesano et al. 2006) and we describe
the interactions of the modeling with the rest of the modules
in a general framework. We address next the tactical plan-
ning and the obstacle avoidance modules.

• Tactical planning: computation of the main cruise to drive
the vehicle (used to avoid the cyclical motions and trap
situations). This module uses the D∗Lite planner (Koenig
and Likhachev 2002) to compute a path to the goal and to
extract the main cruise. The principle of this planner is to
locally modify the previous path (available from the pre-
vious step) using the changes in the scenario. The module
has two different parts: (i) the computation of the obstacle
changes in configuration space (notice that the grid repre-
sents the workspace), (ii) the usage of the D∗Lite planner
over the changes to recompute a path (if necessary). The

3We could use the final weights provided by the EM algorithm to solve
the data association problem between the moving objects and the dy-
namic measurements. However, this strategy is prone to lose track of
the moving objects in the presence of ambiguities (Montesano 2006).
4These systems are usually referred as systems of tactical planning
(Ratering and Gini 1993; Ulrich and Borenstein 2000; Brock and
Khatib 1999; Minguez and Montano 2005; Stachniss and Burgard
2002; Philipsen and Siegwart 2003).

Fig. 5 Overview of the local sensor-based motion system that com-
bines modeling and planning aspects

planner avoids the local minima and is computationally
very efficient for real time implementations.

• Obstacle avoidance: computation of the collision-free
motion. We chose the Nearness Diagram Navigation
(Minguez and Montano 2004). This technique employs
a “divide and conquer” strategy based on situations to
simplify the difficulty of the navigation. At each time, a
situation is selected and the corresponding action com-
putes the motion for the vehicle. This method has been
shown to perform well in scenarios that remain trouble-
some for many existing methods. Furthermore, a tech-
nique to take into account the shape, kinematics and dy-
namic constraints is used to address the local issues of the
vehicle (Minguez and Montano 2002).

We next describe the interaction between the modules of
the system (Fig. 5) focusing on the modeling module. Re-
call that this last module computes both a map of the static
structure of the scenario and a map of dynamic obstacles
with their locations and velocities.

• Modeling—tactical planning: The map of the static struc-
ture5 is the input data to the planner. This is because the
role of the tactical planner is to determine at each cycle
the main cruise to direct the vehicle. A cruise depends
on the permanent structure of the scenario (e.g. walls and
doors) and not on the dynamic objects moving around
(e.g. people). Notice that using only the static structure
overcomes situations that other systems would interpret

5The modeling module also includes those dynamic objects with zero
velocity for a predefined period of time in the map of static structure
passed to the planner.
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as trap situations or blocked passages due to the temporal
presence of moving objects.

• Modeling—obstacle avoidance: Both maps are the inputs
of the obstacle avoidance technique. While the map of the
static structure is directly used as computed by the mod-
eling module, the map of dynamic obstacles is processed
to compute an alternative map based on the predicted col-
lision point (Foisy et al. 1990). This new map of obstacles
is the other input of the obstacle avoidance. We use a lin-
eal model for the velocities of the robot and the obstacle.
For each obstacle i the collision point pi

c = (pi
cx,p

i
cy) is

computed by

pi
c = pi

o + vi
ot

i
c (22)

where pi
o is the obstacle location in the robot reference

system6 and vi
o is the velocity vector of the obstacle. The

collision time t ic represents the time when the robot and
obstacle i intersect along the motion direction of the ro-
bot,

t ic = pi
ox

− (Rr + Ri
o)

vrx − vi
ox

(23)

where vrx is the linear velocity of the robot and Rr and Ri
o

are the radius of the robot and the obstacle respectively.
Figure 6 illustrates the computation of the predicted

collision. Notice that the obstacle avoidance receives a
map of predicted collision locations pi

c. Let us remark
that the predicted location of the obstacle depends on the
current obstacle location but also on both the vehicle and
obstacle relative velocities. Furthermore, if the obstacle
moves further away from the robot (t ic < 0), it is not taken
into account. This approach to avoid the moving obstacle
implies: (i) if there is a potential collision, the obstacle
avoidance method starts the avoidance motion before than
if the obstacle was considered static; and (ii) if there is no
potential collision, the obstacle is not taken into account.

• Tactical planning—obstacle avoidance: In the systems of
tactical planning, the obstacle avoidance module gener-
ates the collision-free motion to align the vehicle toward
the cruise computed by the planner. More specifically, the
cruise is computed as a subgoal using the direction of the
initial part (predefined distance) of the path.

Globally the system works as follows (Fig. 5): given a
laser scan and the odometry of the vehicle, the model builder
incorporates this information into the existing model. Next,
the static and dynamic information of obstacles in the model
is selectively used by the planner module to compute the
cruise to reach the goal (tactical information). Finally, the

6The X-axis of the robot reference system is aligned with the instanta-
neous robot velocity vr .

Fig. 6 The object location used by the obstacle avoidance is pc , which
is the predicted collision point according to the current vehicle and
object velocities

obstacle avoidance module uses the planner tactical infor-
mation together with the information of the obstacles (static
and dynamic) to generate the target oriented collision-free
motion. The vehicle controller executes the motion and the
process restarts with a new sensor measurement. It is im-
portant to stress that the three modules work synchronously
within the perception—action cycle.

5 Experimental results

This section describes some of the tests that we have car-
ried out to validate the modeling technique (Sect. 3) and its
integration within the motion layer (Sect. 4). The robot is
a commercial wheelchair equipped with two on-board com-
puters and a SICK laser. The vehicle is rectangular (1.2×0.7
meters) with two tractor wheels that work in differential-
driven mode. We set the maximum operational velocities to
(vmax,wmax) = (0.3 m

s ,0.7 rd
s ) due to the application con-

text (human transportation). All the modules work synchro-
nously on the on board Pentium III 850 MHz at the fre-
quency of the laser sensor (5 Hz).

We have intensively tested the system with our mobile ro-
bot in and out of our laboratory with engineers and with the
intended final users of the wheelchair. In this paper, we de-
scribe two experiments that we understand will give insight
into the performance and benefits of the proposed approach.
Firstly, we describe a real run where a child explored our
department building. Here, we will focus on the properties
of the modeling module. Secondly, we outline a controlled
experiment in our laboratory to illustrate the performance of
the local sensor motion system.

5.1 Experiment 1: user guided experiment

We describe next a test where a cognitive disabled child
drove the vehicle during rush hour at the University of
Zaragoza. By using voice commands, he placed goal loca-
tions that the motion system autonomously attained. Notice
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(a) (b)

Fig. 7 Two snapshots of Experiment 1. (a) moving in an office like scenario and (b) traveling along a corridor

that in this case, the user is responsible for the global as-
pects of the motion task while the motion system is locally
generating the motion.

In the experiment, the child drove the vehicle out of the
laboratory (Fig. 7a), explored the department (long corridor,
Fig. 7b) and came back to the initial location without colli-
sions. The time of the experiment was around 20 minutes
(including a break of five minutes to calm and relax the
child) and the traveled distance was 110 meters. From the
motion generation point of view, the performance was very
good since the vehicle achieved all the goal locations with-
out collisions. Notice that navigation under these circum-
stances is not easy since the scenario was unknown and not
prepared to move a wheelchair (in many places there was
little room to maneuver). In addition, people turned the sce-
nario into a dynamic and unpredictable place and sometimes
modified the structure of the environment creating difficult
motion situations.

Let us focus on the performance of the modeling mod-
ule. We implemented the map of static features with a
20 m × 20 m grid map with a 5 cm resolution cell centered
in the robot location. This spatial domain is large enough
to include the goal locations required for the motion. We
selected a 5 cm map resolution since experimentally we ob-
served that it is enough for obstacle avoidance. The size of
the map, 400 × 400, is close to the limit for the planner to
comply with the (worse case) real-time requirements.

Figure 8 shows the raw data of the experiment. From this
data, at each point in time, the modeling module computed
a map of dynamic objects, including their velocities, and a
map of static obstacles. Figure 9 shows the blueprint of the
scenario, the trajectory of the vehicle and the models (sta-
tic and dynamic) computed at two given times in two dif-
ferent places. Notice how despite the odometry errors the

Fig. 8 This figure shows the raw laser data integrated using the vehicle
odometry and the trajectory of the vehicle

local maps of the static structure were correct for the pur-
poses of motion generation. Furthermore, notice how the dy-
namic objects do not appear in the static map and vice versa.
In other words, the static and dynamic structures are sepa-
rated. There were more than 100 moving objects (people)
detected by the system during this experiment. The majority
of them corresponded to people moving, however, some of
them were false moving objects. These rare situations oc-
curred when the laser beams were almost parallel to the re-
flected surface and produced specular reflections, or when
the beams missed an object because its height was similar to
the height at which the laser scan is placed (around 70 cm).
In the latter case, due to the motion of the wheelchair, the
laser oscillates and sometimes misses the obstacle. As a re-
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Fig. 9 The right part of the
figure shows the trajectory of
the experiment within the
blueprint of the building. The
left part shows the map of
moving objects and the map of
static obstacles at two different
points in time. In the dynamic
maps, the rectangles represent
the estimated location of the
moving objects being tracked
containing the observations
associated to each of them. The
straight lines represent the
estimated velocity of the
moving object. In the static grid
maps, white represents free
space, black the obstacles and
gray is unknown space

(a) (b)

Fig. 10 (a) Number of iterations until convergence for each step of Experiment 2 and (b) the corresponding computation time

sult, these objects were located in the free space area, clas-
sified as dynamic and tracked accordingly.

For real-time operation, it is worth mentioning the low
computational requirements of the proposed technique. Fig-
ures 10a, b show the number of iterations and the compu-
tation time at each step. Despite the clock resolution of the
computer (10 ms), the figures reflect that the cost per itera-
tion is constant. This depends on the number of points of the
scan, the grid resolution (number of static points) and the
number of moving objects. The mean values for the whole
process are 14.1 iterations and 21 ms. The time spent in the

update of the map and in the prediction and update of the
filters is negligible and is below the clock resolution. The
proposed method provides a fast solution to the local mod-
eling problem, which is important to integrate it with the
other modules of the architecture for real-time operation.

Although it is beyond the application and context of the
paper, we understand that it is interesting to discuss the
performance of the technique facing larger scenarios. To
test this situation, we processed offline the previous dataset
(Fig. 8) but using a grid map of 80 m × 80 m to represent
the whole area covered by the experiment. In this mapping
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Fig. 11 (a) Map of the static
structure, the robot trajectory
and the blueprint of the building
(notice that the architect original
plan was modified during
construction). (b) Trajectories of
the dynamic obstacles and the
blue print. (c) Effect of moving
obstacles on the map. The figure
shows the map obtained
considering all the obstacles as
static. Note how the dynamic
objects affect the displacement
estimation along the corridor.
As a result, the estimated final
vehicle location is far from the
original one and the map is
corrupted.

(a) (b) (c)

context, this experiment is not easy since the laboratory (first
room) is very unstructured due to the presence of chairs, ta-
bles and other people; and the corridor is very large and does
not contain much information in the direction of the corridor
(which makes it difficult to correct the robot displacement in
the presence of moving people).

The performance of the mapping technique was very sat-
isfactory since it was still able to separate the 100 dynamic
obstacles from the static structure (map of static parts) and
thus they did not affect the estimated vehicle pose. Figu-
res 11a and b show the final map of the static structure and
the trajectories of the dynamic objects tracked with the ref-
erence of the blueprint. Notice that the map of static ob-
jects fits perfectly with the blueprint, which is an indicator
of the quality of the map. In the bottom part of the blue-
print, the trajectories go through a wall. This is because the
final building was modified after the architect did the plan.
Furthermore, the map of the dynamic structure shows 100
trajectories that correspond to the people that moved around.
Notice how all the trajectories are in free space which is also
a good indicator for the dynamic map quality.

To check the influence of the dynamic objects, we used
our method without considering the moving objects (i.e.
considering all the measurements as static). The results
strongly affected the resulting map not only in the motion
along the corridor, but also in the other directions. For in-
stance, the corridor of Fig. 11c is slightly curved due to ori-
entation errors accumulated when exploring it and the final
location error is big. This result is consistent with the diffi-
culty that many researchers have reported related with map
building in the presence of dynamic obstacles (Hähnel et al.
2002) and stresses the advantage of the proposed technique.

5.2 Experiment 2: fully autonomous experiment

We next describe a more academic experiment to derive
conclusions for the local sensor-based motion system but
focusing on navigation performance. The objective of the
experiment was to get the wheelchair out of the labora-
tory (Fig. 12a). All the scenario was initially unknown and
only the target location was given in advance to the sys-
tem. Initially, the vehicle proceeded toward the Passage 1
avoiding collisions with the people that move around. Then,
we blocked the passage creating a global trap situation that
was detected by the system. The vehicle moved backwards
through Passage 2 and then traversed the Door exiting the
room and reaching the goal location without collisions. The
time of the experiment was 200 s and the distance traveled
around 18 m.

As in the previous example, the performance of the mod-
eling module was good enough for the other modules of the
architecture. Figure 12b shows the raw laser data using the
odometry readings and Fig. 12c shows the final map pro-
duced by the modeling module when the vehicle reached the
goal location. The trajectories of the moving objects tracked
during the experiment are shown in Fig. 12d. Most of them
correspond to people walking in the free space of the office.
There were also some false positives due to misclassifica-
tion that occurred mainly in the same situations as in Exper-
iment 1. Regarding navigation, the motion system reliably
drove the vehicle to the final location without collisions. Re-
call that the maps generated by the modeling module are
the basis for planning and obstacle avoidance. In general, a
rough model or only odometry readings are not enough and
likely would lead to navigation mission failures. The qual-
ity of the model and the localization is specially relevant to
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(a) (b)

(c) (d)

Fig. 12 (a) Snapshot of Experiment 2. The objective was to drive
the vehicle out of the office through the Door. (b) Real laser data
and trajectory of Experiment 2 using the raw odometry readings.
(c) The map built during the experiment and the vehicle trajectory.

The map shows the occupancy probability of each cell. White corre-
sponds to a probability of zero (free cell) and black to a probability of
one (occupied cell). (d) The trajectories of the detected moving objects
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(a) (b)

Fig. 13 (a) A moving obstacle placed in the area of passage and (b)
robot avoiding a trap situation. The figures show the tracked moving
objects (rectangles), the dynamic observations associated to them and

the estimated velocities. The two arrows on the vehicle show the cruise
computed by the planner module and the direction of motion computed
by the obstacle avoidance one

Fig. 14 (a) Moving obstacle
going toward the robot. The
figure shows the tracked moving
objects (rectangles), the
dynamic observations
associated to them and the
estimated velocities. The two
arrows on the vehicle show the
cruise computed by the planner
module and the direction of
motion computed by the
obstacle avoidance one.
(b) Detail of the robot maneuver
to cross the Door

(a) (b)

avoid obstacles no longer perceived with the sensor due to
visibility constraints; to deal with narrow passages where
accumulated errors can block the passage even if there is
enough space to maneuver; or to approach the vehicle to
the desired final position with enough precision. All these
situations were correctly managed due to the quality of the
models generated with the proposed modeling technique.

We next describe several situations where the selective
use of the static and dynamic information improved the mo-
tion generation.

The planner computed at every point in time the tactical
information needed to guide the vehicle out of the trap sit-
uations (the cruise) using only the static information. The
most representative situations happened in the Passage 1.
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While the vehicle was heading along this passage, people
were crossing it. However, since the humans were tracked
and labeled dynamic they were not used by the planner and
thus the cruise pointed toward this passage (Fig. 13a) and the
vehicle aligned with this direction. Notice that systems that
do not model dynamic obstacles would consider the human
static and the vehicle trapped within a U-shape obstacle.7

Next, a human placed an obstacle in the passage when the
vehicle was about to reach it. The vehicle was trapped in
a large U-shape obstacle. After a given period, the model-
ing module included this obstacle in the static map passed
to the planner. Immediately, the planner computed a cruise
that pointed toward the Passage 2. The vehicle was driven
toward this passage avoiding the trap situation (Fig. 13b).

The obstacle avoidance module computed the motion
taking into account the geometric, kinematic and dynamic
constraints of the vehicle (Minguez and Montano 2002;
Minguez et al. 2006a). The method used the static infor-
mation included in the map and also the predicted collision
locations of the objects computed using the obstacle veloci-
ties. Figure 14a depicts an object moving toward the robot,
and how the predicted collision creates an avoidance ma-
neuver. Note that, although the Nearness Diagram does not
consider dynamic objects, the predicted collision location
allows it to anticipate the maneuver. Furthermore, obstacles
that move further away from the robot are not considered.
In Fig. 13b the two dynamic obstacles were not included in
the avoidance step (whereas systems that do not model the
dynamic objects would consider them).

The performance of obstacle avoidance module was de-
terminant in some circumstances, especially when the ve-
hicle was driven among very narrow zones. For example,
when it crossed the door (Fig. 14b), there were less than
0.1 m at both sides of the robot. The movement computed
by the obstacle avoidance module was free of oscillations
and, sometimes, was directed toward zones with great den-
sity of obstacles or far away from the final position. All the
robot constraints were considered by the obstacle avoidance
method generating feasible motions in the different situa-
tions. That is, the method achieved robust navigation in dif-
ficult and realistic scenarios.

In summary, the modeling module was able to model
the static and dynamic parts of the environment. The selec-
tive use of this information allows the planning and obsta-
cle avoidance modules to avoid the undesirable situations
that arise from false trap situations and improve the obsta-
cle avoidance task. Furthermore, the integration within the
architecture allows to fully exploit the advantages of hy-
brid sensor-based navigation systems that perform in diffi-
cult scenarios avoiding typical problems such as trap situa-
tions.

7This situation is similar to the situation depicted in Fig. 1b.

6 Discussion and conclusions

In this paper we have addressed two issues of great rele-
vance in local sensor-based motion: how to model the static
and dynamic parts of the scenario and how to integrate this
information with a local sensor-based motion planning sys-
tem.

Regarding the modeling aspect, most of previous works
(Schulz et al. 2003; Wang and Thorpe 2002; Wang et al.
2003; Hähnel et al. 2002) assume a known classification
within the optimization process. This means that the classifi-
cation is done prior to the estimation of the vehicle location.
They focus on the reliable tracking of the moving objects
or on the construction of accurate maps. The algorithm pro-
posed in (Hähnel et al. 2003) iteratively improves the clas-
sification via an EM algorithm. This is a batch technique
that focuses on the detection of spurious measurements to
improve the quality of the map. The approach presented in
(Modayil and Kuipers 2004a; Modayil and Kuipers 2004b)
applies learning techniques but does not improve the vehi-
cle localization and does not use probabilistic techniques to
track the moving objects. Our contribution in the model-
ing aspect is to incorporate the information about the mov-
ing objects within a maximum likelihood formulation of the
scan matching process. In this way, the nature of the ob-
servation is included in the estimation process. The result
is an improved classification of the observations that in-
creases the robustness of the algorithm and improves the
robot pose estimation, the map and the moving objects lo-
cation.

However, the drawback of this type of techniques is that
they do not consider the uncertainties and the correspond-
ing correlations of the robot poses, the map and the mov-
ing objects. Moreover, the set of poses is fixed and cannot
be modified in subsequent steps. This represents a problem
when closing loops if the accumulated error is big. Also,
although the algorithm has some tolerance to wrong classi-
fications, they will produce errors that will accumulate in
the local models. In the case of sensor based navigation,
the spatial domain of the problem is small and, thus, allows
us to obtain enough accurate models for real-time opera-
tion.

In any case, all the mapping methods assume a hard
classification between static and dynamic objects. This is
clearly a simplification of the real world since there are ob-
jects that can act as static or dynamic; for instance, doors,
chairs, tables, cars, etc. Although there exist some prelimi-
nary work on the estimation of the state of some of these ob-
jects (Stachniss and Burgard 2005; Biber and Duckett 2005),
we believe a prior on the behavior of the objects will greatly
simplify the problem. This can be done using another type
of sensors as cameras or 3D range sensors.
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The second issue is the integration of the modeling mod-
ule in a local sensor-based motion system taking advan-
tage of the dynamic and static information. The system se-
lectively uses this information in the planning and obsta-
cle avoidance modules. As a result, many problems of ex-
isting techniques (that only address static information) are
avoided without sacrificing the advantages of the full hybrid
sensor-based motion schemes. Notice that the planning—
obstacle avoidance strategy relies on the information pro-
vided by the modeling module. Since our model assumes a
constant lineal velocity model, the predicted collision could
not be correct when this assumption does not hold. How-
ever, this effect is mitigated since the system works at a
high rate rapidly reacting to the moving obstacle velocity
changes.

One thing to remark is that the local planning strategy
is an approximation of the full motion-planning problem
with dynamic obstacles (recall that this problem is NP-hard
in nature). In this paper we have addressed it with a hy-
brid system made up of a tactical planning module and an
obstacle avoidance technique (a simplification). Although
there exist reactive techniques that are designed to explic-
itly deal with dynamic obstacles (Fiorini and Shiller 1998;
Fraichard and Asama 2004; Owen and Montano 2005), we
have selected one that does not account for this informa-
tion (this is the reason why we use the collision prediction
concept). The selection of the reactive techniques is a trade
off between performance facing very dynamic scenarios or
places where it is very difficult to maneuver. This is because
it is well known that the techniques that address the motion
planning under dynamic obstacles are conservative in the
motion search space (losing maneuverability in constrained
spaces). In our case, due to the wheelchair application, we
used a method designed to maneuver in environments with
little room to maneuver (such as doors or narrow corridors)
and we improved the behavior in dynamic situations with
the collision prediction concept. However, for other applica-
tions, nothing prohibits the use of other method in the pro-
posed framework.

The experimental results confirm that the modeling
method is able to deal with dynamic environments and pro-
vide enough accurate models for sensor-based navigation.
The integration with a sensor-based planner system allows
to drive the vehicle in unknown, dynamic scenarios with lit-
tle space to maneuver. The system avoids the typical trap
situations found under realistic operation and, in particular,
those created by moving obstacles.

Acknowledgements This work was supported in part by the FCT
Programa Operacional Sociedade de Informação (POSC) in the frame
of QCA III and PTDC/EEA-ACR/70174/2006 project, by the Spanish
projects DPI2006-07928a and DPI2006-15630-C02-02 and by the Eu-
ropean project IST-1-045062.

Appendix A: Likelihood models

This appendix describes the computation of the mean and
covariance of the Gaussian likelihood models ps(.) and
pd(.) of Sect. 3.3.1. So as to obtain an analytical expression,
we assume Gaussian uncertainties in the robot pose and in
the location of the static and dynamic objects and Gaussian
noise in the measurement process,

x ∼ N(xtrue,P ), (A.1)

q ∼ N(qtrue,Q), (A.2)

z ∼ N(ztrue,R). (A.3)

Note that here we use q as a generic correspondence point
for the measurement z. Although the computations are the
same for static and dynamic correspondences, the covari-
ance matrix for each type of association is different. We use
a fixed covariance matrix for grid cells and the uncertainty
of the Kalman filter prediction for moving objects.

The function f (x, q) is the transformation of the point
q = (qx qy)

T through the relative location x = (tx, ty, θ)T ,

f (x, q) =
(

cos θqx − sin θqy + tx
sin θqx + cos θqy + ty

)
. (A.4)

Linearizing the function f (x, q) using a first order Taylor
series approximation, we define the likelihood term as

p(z|x, q) =
∫ ∫

p(z|x, q)︸ ︷︷ ︸
N(f (x,q),R)

p(x)︸︷︷︸
N(x,P )

p(q)︸︷︷︸
N(q,Q)

dxdq

= N(z;f (x, q),C) (A.5)

where the covariance matrix C is

C = R + JxPJT
x + JqQJT

q . (A.6)

The matrices Jx and Jq are the Jacobians of f (x, q) with
respect to x and q evaluated at the current estimates,

Jx ≡ ∂f (x, q)

∂x

∣∣∣∣∣
x,q

=
(

1 0 −qx sin θ − qy cos θ

0 1 qx cos θ − qy sin θ

)
,

Jq ≡ ∂f (x, q)

∂q

∣∣∣∣∣
x,q

=
(

cos θ − sin θ

sin θ cos θ

)
.

In addition to this, using the function f (·, ·) we can define
the Mahalanobis distance between z and q to select the ap-
propriate static obstacle from the grid map

D2
M(z, q) = [f (x, q) − z]T C−1[f (x, q) − z]. (A.7)
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Appendix B: M-Step minimization

This appendix addresses the minimization of the function

Q(xk, x
(t)
k )

=
Nz∑
i=1

[
ĉi0(f (xk, qi) − zk,i)

T P −1
i0 (f (xk, qi) − zk,i))

+
NO∑
j=1

ĉij (f (xk, ok,j ) − zk,i)
T

× P −1
ij (f (xk, ok,j ) − zk,i)

]
. (B.1)

Due to the nonlinear function f (·, ·), one should use an it-
erative method to minimize Q(xk, x

(t)
k ). However, since the

correspondences change at each iteration of the EM algo-
rithm, we rather use a single iteration to improve the current
estimate. This is known as generalized EM (McLachlan and
Krishnan 1997) and the algorithm still converges to the local
minimum.

Based on the linearization of f (·, ·) presented in appen-
dix A, the estimate of the parameter vector xLS is,

xLS = [HT C−1H ]−1HT C−1E (B.2)

where the matrices E and H are formed by the contributions
of each measurement zk,i to the function Q(xk, x

(t)
k )

H =
⎡
⎢⎣

H1
...

HNz

⎤
⎥⎦ , E =

⎡
⎢⎣

E1
...

ENz

⎤
⎥⎦ ,

C =
⎡
⎢⎣

C1 · · · 0
...

. . .
...

0 · · · CNz

⎤
⎥⎦

with

Hi =

⎡
⎢⎢⎢⎣

Jx(x
(t), qi)

Jx(x
(t), ok,1)
...

Jx(x
(t), ok,NO

)

⎤
⎥⎥⎥⎦ ;

E =

⎡
⎢⎢⎢⎢⎣

−(f (x
(t)
k , qi) − zk,i) + Jx(x

(t), qi)x
(t)

−(f (x
(t)
k , ok,1) − zk,i) + Jx(x

(t), ok,1)x
(t)

...

−(f (x
(t)
k , ok,NO

) − zk,i) + Jx(x
(t), ok,NO

)x(t)

⎤
⎥⎥⎥⎥⎦ ,

(B.3)

Ci =

⎡
⎢⎢⎣

1
ĉi0

Pi0 · · · 0
...

. . .
...

0 · · · 1
ĉiNO

PiNO

⎤
⎥⎥⎦ (B.4)

with Nz is the number of measurements and NO is the num-
ber of moving objects.
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