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Abstract— This paper presents a method to cooperatively
localize pairs of robots fusing bearing-only information pro-
vided by cameras and the motion of the vehicles. The
algorithm uses the robots as landmarks to estimate their
relative location. Bearings are the simplest measurements
directly obtained from the cameras, as opposed to measuring
depths which would require knowledge or reconstruction of
the world structure.

We present the general recursive Bayes estimator and three
different implementations based on an extended Kalman filter,
a particle filter and a combination of both techniques. We
have compared the performance of the different implementa-
tions using real data acquired with two platforms equipped
with omnidirectional cameras and simulated data.

I. INTRODUCTION

In the last years cooperative robotics has received con-

siderable attention. Teams of robots are able to overcome

the limitations of single robots and allow to attack more

difficult tasks. Furthermore, they increase the degree of

autonomy and robustness by introducing redundancy. How-

ever, the use of teams of robots increases the complexity of

the system. New challenges appear providing new research

areas. In this context cooperative localization is considered

one of the basic capabilities required for autonomous

operation of teams of robots.

In this paper we address the problem of cooperatively

localizing two robots using vision-based bearing-only mea-

surements and the motion of the robots. Exteroceptive

sensors, such as vision, allow relating the independent

referential frames created and maintained by the robots’

proprioceptive sensors (e.g. odometry) [17]. Omnidirec-

tional cameras give bearing (azimuthal) locations of robots

in a 360o field-of-view. As compared to vision-based

SLAM ([3], [18]), stereo matching and reconstruction ([4]),

ground-plane based navigation, or other depth reconstruc-

tion techniques, extracting bearings is a simple process,

close to obtaining raw data. Advantageously, the tracked-

robot is considered a single point, and therefore there are

no assumptions of rigidity or smoothness of a multi-point

structure.

As the robots are moving the bearing measurements do

not contain enough information to estimate their relative

location. We propose to use the motion of the vehicles

(odometry readings or motion commands) together with the

bearing observations. Combining both types of information

allows us to estimate the initial relative location of the

platforms and keep track of it. In order to take into ac-

count heterogeneous pairs of robots and possible hardware

failures we have implemented our localization algorithm

for two different configurations. In the first one only one

robot has detection capabilities while in the second both

robots are equipped with sensors providing the bearing of

the other robot. For each configuration we have evaluated

three implementations of the classical Bayes filter: an

extended Kalman filter, a particle filter and a combination

of both techniques. We have performed several tests in our

laboratory to validate the method. The results suggest that

we can fuse the motion of the platforms with the bearing

measurements to estimate their relative location.

This paper is organized as follows. Next Section presents

the related work. Section III describes the problem. In

Section IV and V we derive the Bayesian estimator for

our problem and we describe our implementation. The

experimental results are presented in Section VI.

II. RELATED WORK

In a computer vision framework the relative localization

of two robots corresponds to an object-pose estimation

problem. Seminal work on object-pose estimation assumed

known geometrical object-structures useful both for object

detection and tracking [10], [9]. The most recent works

show that an object can be tracked, without knowing its

structure, using other object-features such as image corners,

contours, patterns, color patches, etc ([13], [2], [15]). Many

of the proposed tracking methods do not provide pose

estimation, due to the fact that feature models do not

contain structure information. However they obtain the

location of the object within the image. In the present work,

we extract only bearings from the images and combine

them with the motion of both platforms to estimate their

relative localization.

On the other hand, cooperative localization has been

an active research area during the last years in the

robotic community. There exist different approaches de-

pending on several aspects as the information used

(map availability, static/dynamic features) or the multi-

robot architecture (communication capabilities, central-

ized/decentralized). Related to this paper several authors

have used the robots as landmarks ([17], [8], [12]). In

the absence of static references these methods estimate the

relative pose among the robots instead of their location on a
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Fig. 1. Interpretation of the relative location between two moving
platforms. (a) world fixed reference system (b) robocentric approach.

global reference system. However, all these algorithms use

range-bearing sensors that provide an accurate estimation

of their relative positions.

Some authors have used bearing-only measurements to

estimate the location of the robots or the objects around

them [19], [16]. The proposed algorithms usually use

probabilistic techniques to fuse the information obtained at

the same time by different sources with known uncertain

locations. Bearing-only information has also been studied

to track constant velocity targets using Kalman filters [1]

or particle filters [14]. Our method, instead of restricting

the motion of the robots with a known model, uses the

measurements of their displacements to turn the problem

observable.

III. PROBLEM DESCRIPTION

We are interested on estimating the relative location

x of two moving platforms. As we do not have any

static reference we use a robocentric approach [8]. We

choose one of the platforms as the reference system, the

observer, and compute the relative pose of the other one,

the target, with respect to it. In this reference system

the observer remains static while the target motion is the

composition of the motion of both platforms. Figure 1(a)

depicts the relations between the locations of two moving

platforms. The observer and target motion is uo and ut

respectively. When the reference system moves with the

observer (Figure 1(b)) the final location of the target is

the result of the combination of the movements of both

platforms uot.

According to the previous description our problem is

equivalent to estimating the position of a moving target

from a stationary platform. Bearing-only measurements of

a moving target do not contain enough information to

estimate its position [1]. Let pt = (xt, yt) be the position

of the target and po = (xo, yo) the position of the observer.

We will denote po(k) to the position of the target at time

step k. The observations are bearings with respect to a

reference direction of the target at different points in time,

zk = tan−1 yt(k) − yo(k)

xt(k) − xo(k)
+ wk

where wk is the measurement noise at time k. Due to

the relative motion of the target, which is a combination

of its own motion and that of the observer, there exist

infinite possible locations of the platform satisfying the

measurement equation.

One, therefore, needs to incorporate some more infor-

mation to be able to compute the relative pose of the

platforms. If one knows the relative motion of the target,

its location can be estimated using three measurements

and triangulation techniques. The relative motion restricts

the set of possible trajectories to a single one. In order

to incorporate the motion of the target one must estimate

not only its position but the whole location including the

orientation xt = (xt, yt, θt). There exist some degenerated

cases due the combination of the motion of the vehicles

(parallel trajectories, moving along the line joining both

platforms or just rotating).

Finally, the method has to deal with the uncertainties

and noises in the system. In the next Section we present a

Bayesian estimation technique to estimate the relative pose

of two moving vehicles using bearing measurements and

the trajectories of both vehicles.

IV. RELATIVE POSE ESTIMATION

We assume that the robots are able to measure their

own displacement and at least one of them is equipped

with sensors that provide bearing measurements z of the

position of the other robot. Let uk be the motion of

a robot between time k − 1 and k and zk the bearing

obtained at time k. Let ro be the observer robot. We

will denote zk
o the observations and uk

o the odometry

readings obtained by ro at time k. Zk
o = {z1

o , ..., zk
o}

and Uk
o = {u1

o, ...,u
k
o} represent the observations and

odometry readings of the observer up to time k. The target

observations and motion measurements up to time k are

Zk
t = {z1

t , ..., zk
t } and Uk

t = {u1
t , ...,u

k
t } respectively. Our

objective is to estimate the relative location x = (x y θ)
of robot rt, the target, with respect to robot ro based on

the information available up to time k. Thus, the posterior

distribution we are estimating is p(xk|Z
k
o , Uk

o , Zk
t , Uk

t ) and

the corresponding recursive Bayes filter is,

p(xk|Z
k
o , U

k
o , Z

k
t , U

k
t ) ∝ p(zk

o |xk)p(zk
t |xk) (1)

p(xk | xk−1, Z
k−1

o , U
k
o , Z

k−1

t , U
k
t )

where p(xk | xk−1, Z
k−1
o , Uk

o , Zk−1
t Uk

t ) is obtained from

the posterior of the previous step and the motions given by

uk
o and uk

t ,

p(xk | xk−1, Z
k−1

o
, U

k

o
, Z

k−1

t
, U

k

t
) =

∫

p(xk|xk−1, uk

o
, uk

t
)p(xk−1|Z

k−1

o
, Uk−1

o
, Z

k−1

t
, U

k−1

t
)dxk−1

The previous formulation assumes independent Markov

measurement processes for each platform and a Markov

process for the evolution of x. Equation (1) estimates the

posterior at time k using the posterior computed at time

k − 1, a motion model p(xk | xk−1,u
k
o ,uk

t ) and the

measurement models p(zk
o |xk) and p(zk

t |xk).



V. IMPLEMENTATIONS OF THE BAYES ESTIMATOR

In this Section we provide three different implementa-

tions for Equation (1): the classical Extended Kalman Filter

(EKF), a sampled based approach known as particle filters

(PF) and a combination of both techniques (PF-EKF).

The EKF assumes Gaussian distributions and noises and

requires to linearize the process and measurement models.

The lack of an accurate initial relative location together

with the use of bearing-only measurements makes the EKF

unappropriated for the first stages of the estimation process.

On the other hand particle filters do not require any of

the previous assumptions and are able to represent any

kind of distribution given a sufficient number of particles.

However, they are computationally more expensive and

introduce a discretization error which depends on the

number of particles used. Therefore, we propose an hybrid

approach (PF-EKF) that uses a particle filter in the first

steps and switches to an EKF when the distribution of the

particles is close to a Gaussian.

The movement of the target platform seen from the

observer is a combination of the movements of each

platform ut = (dxt, dyt, dθt) and uo = (dxo, dyo, dθo)
(see Figure 1(a)),

xk = f(xk−1,u
k
o ,uk

t ) = ⊖uk
o ⊕ xk−1 ⊕ uk

t (2)

Note that uk
t and uk

o are noisy measurements of the true

displacement of the robot corrupted with noises vk
t and

vk
o respectively. The operators ⊕ and ⊖ represent the

composition and inversion of locations,

x1 ⊕ x2 =





cos θ1x2 − sin θ1y2 + x1

sin θ1x2 + cos θ1y2 + y1

θ1 + θ2



 (3)

⊖x1 =





− cos θ1x1 − sin θ1y1

sin θ1x1 − cos θ1y1

−θ1



 (4)

On the other hand the observation models for each robot

are,

zk
o = ho(xk) + wk

o = tan−1 y(k)

x(k)
+ wk

o (5)

zk
t = ht(xk) + wk

o = π + tan−1 y(k)

x(k)
− θ(k) + wk

t

where wk
o and wk

t are the measurement noises. The mea-

surement models illustrate the difference between obtaining

observations from both platforms or just from a single one.

In the latter case there is no information about the relative

localization of the platforms. The filters presented below

incorporate the observations provided by the platforms

as they become available given that the motion of the

platforms is known.

A. Extended Kalman filter implementation

In this Section we implement Equation (1) using an

EKF. The EKF framework models x with a Gaussian

distribution and approximates the nonlinear process and
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Fig. 2. (a) particles initial distribution according to the measurement
model, (b) the distribution after some steps is close to a Gaussian

measurement equations using the partial derivatives of the

nonlinear functions. We denote x̂k|k to the current estimate

of the state vector x at time k and Pk|k to the associated

covariance matrix. The odometry readings, uk
t and uk

o ,

and the bearing measurements, zk
o and zk

t , are corrupted

by independent zero-mean white Gaussian noises with

covariance matrices Vtk
, Vok

, Rok
and Rtk

respectively.

We use a first order approximation of the process and

measurement models (Equations (2) and (5)):

f(x,uo,ut) ≈ f(x̂,uo,ut) + Fx(x − x̂) + Fuo
vo + Fut

vt

hi(x) ≈ hi(x̂) + Hi(x − x̂) + wi, i ∈ [o, t]

where Fx, Fuo
and Fut

are the Jacobians of the function

f with respect to x, uo and ut and Hi is the Jacobian of

the function hi (i ∈ {o, t}) with respect to the state vector

x evaluated at the current state x̂k and motions uk
o and uk

t .

Using the previous Jacobians we provide next the re-

sulting Kalman filter equations for time k. The predicted

relative location x̂k|k−1 and its associated covariance ma-

trix Pk|k−1 using the linearized process model are,

x̂k|k−1 = f(x̂k−1|k−1,u
k
o ,u

k
t )

Pk|k−1 = FxPk−1|k−1Fx

T + Fuo
Vok

Fuo

T + Fut
Vtk

Fut

T

with Fx, Fuo
and Fut

evaluated at x̂k−1, uk−1
o

and uk−1

t
.

On the other hand the update step is preformed sequentially

for each available observation,

Sk = HiPk|k−1Hi

T + R, Wk = Pk|k−1Hi

T
S
−1

k

x̂k|k = x̂k|k−1 + Wkvk, Pk|k = Pk|k−1 − WkSkW
T
k

where the innovation is vk = zk
i − hi(x̂k|k−1) and the

Jacobian Hi is evaluated at the current estimate of x using

the appropriated function hi. When both observations are

available, the x̂k|k and Pk|k obtained from the first update

step are used to perform the second one.

B. Particle filter implementation

Particle filters are sequential Monte-Carlo techniques

to estimate posterior distributions [5]. They represent the

distributions by a set of M samples S = {x
[1]
k , ...,x

[M ]
k }.

The usual way to implement the recursive Bayes estimator

of Equation (1) is to use the posterior obtained in the

previous step k − 1 and the motion model to guess the

distribution at time k. For each sample x
[i]
k−1 a new sample
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Fig. 3. (a) Images acquired by the robots. (b) Labmate and Scout robots.

x
[i]
k is generated from the possible locations described by

uk
o and uk

t ,

sample x
[i]
k from p(xk | x

[i]
k−1,u

k
o ,uk

t ) (6)

The set of all these samples conforms what is known as

the proposal distribution. For each robot we use a motion

model similar to the one described in the Carnegie Mel-

lon Navigation toolkit [11]. Note that we are composing

two uncertain motions. The number of particles must be

sufficient to sample all the possible locations induced by

both motions requiring more particles than a single one.

The samples from the proposal are distributed according

to p(xk | Zk−1
o , Uk

o , Zk−1
t , Uk

t ) and do not include the

information of the last observations zk
o and zk

t . To take

into account the difference between the proposal distribu-

tion and the target distribution p(xk|Z
k
o , Uk

o , Zk
t , Uk

t ) the

samples are weighed according to their likelihood,

α[i] =
target

proposal
∝ p(zk

o |x
[i]
k )p(zk

t |x
[i]
k ) (7)

The new set of particles approximating

p(xk|Z
k
o , Uk

o , Zk
t , Uk

t ) is then generated by sampling

from the proposal distribution according to the importance

factors α[i].

The measurement model is the likelihood of the obser-

vation given the current state. We model the noise of each

bearing as an independent zero mean Gaussian distribution

with a standard deviation σw,

p(zk
o |x

[i]
k ) = N(zo;ho(x

[i]
k ), σwo

)

p(zk
t |x

[i]
k ) = N(zt;ht(x

[i]
k ), σwt

)

C. Combining both approaches

In order to benefit from the advantages of each im-

plementation we propose to use a combination of both

techniques. As we do not have any prior information about

the relative location of the platforms, we use the measure-

ments to initialize the filters. According to the measurement

Equations (5) we do not have any information about the

distance between the platforms. Information about their

relative orientation is only available when both robots

observe each other. During the first steps of the estimation

process a Gaussian distribution does not approximate well

the uncertainty of the relative pose. Therefore we use a

particle filter to sample all the possible initial locations

(Figure 2(a)).

After a certain variable number of steps the particles

converge to an unique mode corresponding to the truth

relative pose. We periodically try to fit a Gaussian to the

current particles of the filter. When the particles are close

to a Gaussian distribution we switch to an EKF to track

the relative pose of the robots (Figure 2(b)).

The complexity of the EKF is O(m2) where m =
dim(x). On the other hand the complexity of the PF is

O(N) with N the number of particles. As m remains

constant and is much smaller than the required number

of particles N , the EKF implementation is computation-

ally much more efficient for our problem. This strategy

combines the more powerful representation capabilities

of the PF needed in the initial steps of the algorithm

due to the use of bearing-only measurements with the

computational efficiency of the EKF when the particles

concentrate around the true location.

VI. EXPERIMENTS

To evaluate the method we have implemented it on two

robots equipped with omnidirectional cameras. We have

considered two different configurations: only one robot

has detection capabilities (heterogeneous robots, hardware

failures, use of non omnidirectional cameras) (1-OBS),

and both robots have detection capabilities (2-OBS). We

also conducted an extensive test of the algorithm using

simulated data to analyze the performances of the EKF, the

PF and the PF-EKF in terms of robustness and precision

for each configuration. In this Section we first present

our experimental setup, then the results obtained with

simulated data and finally those obtained with real data.

A. Setup

The robots, a TRC Labmate from HelpMate Robotics Inc

and a Nomadic’s Scout, are equipped with omnidirectional

cameras based on a spherical mirror and on a hyperbolic

mirror, respectively (see Figure 3(b)).

The images acquired by the omnidirectional cameras are

dewarped to 360o-wide panoramic views. The dewarping

is just a Cartesian to polar transformation when the camera

and the mirror are vertically aligned [7], [6]. Both cameras
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Fig. 4. Estimated trajectories using observations from both robots. (a) EKF implementation, (b) PF implementation (c) PF-EKF implementation.

produce 768×576 [pix] omnidirectional images, which are

dewarped to 1091 × 148 [pix] (labmate) and 1014 × 197
[pix] (scout) panoramic views (see Figure 3(a)).

The panoramic views allow each robot to track the other

platform and measure its azimuthal location (bearing). This

process is simplified as the robots carry a light that can be

easily detected in a region of interest. At the same time the

robots acquire an image, the odometry is also observed.

The data acquisition rate is 2Hz.

The ground truth of the trajectories of the robots is

obtained using an external camera placed in a corner of

the room close to the ceiling. The perspective view of

the room is transformed to an orthographic view of the

ground plane using an homography. The robots are tracked

by hand, marking in the image of the ground plane their

locations. The heading of the labmate is obtained from the

orientation of its square-shaped footprint.

B. Simulations

We first tested our algorithm using simulated data.

The main objective of these tests was to evaluate the

accuracy and robustness of the EKF, the PF and the PF-

EKF implementations. We generate 200 datasets where

the robots moved at random speeds inside a 10x10[m]
squared room. Both the bearing measurements and the

odometry readings were corrupted with Gaussian noise.

We limited the detection of the other robot to a maximum

range of 8 meters and generate observations at 2Hz to

be consistent with our platform capabilities. The PF and

PF-EKF implementations used 1000 particles.

The KF implementation is very sensitive in the first steps

due to the big uncertainty in the initial relative location

when only one observation is available (1-OBS). It does

not always converge to the correct solution (only 60%

of the simulated runs succeded). In the 2-OBS case, the

EKF converged to the right solution in all the simulations

due to the extra orientation information provided by the

measurements of the target robot. On the other hand, the

PF and PF-EKF implementations converged to the solution

for all the datasets in both cases. Table I summarizes the

results for the EKF, the PF and PF-EKF.

When they converged all the implementations estimate

the relative position with similar accuracy. The differences

µx σx µy σy µθ σθ

[m] [m] [m] [m] [rad] [rad]
1-OBS PF 0.11 0.11 0.10 0.16 0.07 0.08

PF-EKF 0.10 0.15 0.11 0.18 0.05 0.06

EKF 0.09 0.11 0.08 0.09 0.01 0.01
2-OBS PF 0.10 0.15 0.11 0.14 0.02 0.02

PF-EKF 0.10 0.12 0.11 0.14 0.02 0.02

TABLE I

MEAN AND STD OF THE ERRORS USING SIMULATED DATA

obtained are not statistically significant. The mean execu-

tion times per iteration are 109 milliseconds for a particle

filter step and around 0.1 milliseconds for a Kalman filter

one. These times correspond to a Matlab implementation

on a Pentium IV at 1.2 Ghz and illustrate the different

complexities of each implementation.

The results suggest that the particle filter is necessary

only in the first steps of the algorithm to cope with the non

Gaussian uncertainty that arises from the first observations.

Once the filter has converged around the true location, the

EKF is able to track the position with less computational

cost. The number of steps needed to switch to the EKF

depends on the relative motion of the robots. Those tra-

jectories that induce changes on the relative bearing are

best suited for the localization task while those without

changes provide less information. Furthermore, one can

rely on the EKF implementation when both platforms

provide observations of the other robot.

C. Real data

We also tested our method with real data obtained using

the setup presented above. In the experiments the vehicles

were driven manually during approximately 400 seconds.

The algorithm computes relative locations between the

moving platforms. To plot the results we used the ground

truth trajectory of the Labmate and the relative location

estimation at each point in time to compute the trajectory of

the Scout. Then we compare this trajectory with the Scout

ground truth trajectory. The Labmate was the observer

platform and the Scout the target one.

Figures 4(b) and (c) show the results of the PF and

the PF-EKF implementations for the 1-OBS and the 2-

OBS cases. As in the simulated runs the results obtained

for each configuration are slightly better for the 2-OBS

case. The results of the EKF implementation in the 2-OBS



0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

iteration

m
e
te

rs
KF

PF

PF−EKF

Fig. 5. Error evolution using observations from both robots

configuration are shown in Figure 4(a). Table II shows the

mean and the standard deviation of the error between the

estimated position and the ground truth after convergence

(no orientation information is available from the ground

truth due to the Scout symmetries).

µx[m] σx[m] µy [m] σy [m]
1-OBS PF 0.08 0.06 0.12 0.09

PF-EKF 0.11 0.07 0.15 0.10

EKF 0.07 0.05 0.12 0.09
2-OBS PF 0.07 0.05 0.11 0.09

PF-EKF 0.07 0.06 0.11 0.09

TABLE II

MEAN AND STD OF THE ERRORS USING REAL DATA

Figure 5 shows the evolution of the position error for

each implementation in the 2-OBS case. Once the method

has converged the maximum error is around 0.4 meters

for all the implementations. The error peaks correspond to

those parts of the trajectory where the robots are further

away (up to five meters). The further the robot is, the

less informative is the observation in terms of possible

x − y positions. This increased the estimation error and

the uncertainty of the relative location when the platforms

moved away one from the other.

The results show that the PF implementation is more

robust than the EKF to estimate the initial relative location.

This is specially important when only one observation is

available. Once the filter converges to the true relative

location, all the methods provide similar results. The PF-

EKF implementation provides the best compromise be-

tween robustness and efficiency.

VII. CONCLUSIONS

We have presented a method to relatively localize pairs

of robots fusing bearing measurements and the motion of

the vehicles. Bearings are obtained as direct readouts of the

omnidirectional cameras. This is convenient as compared

to measuring depth, which would require knowledge or

reconstruction of the world / robot structure. The method

process the bearing measurements as they become available

from each robot. A single camera is enouth to estimate the

relative pose allowing heterogeneous teams and increasing

the robustness against failures.

We have proposed three different implementations of the

recursive Bayes filter based on an Extended Kalman filter,

a particle filter and a combination of both techniques. The

latter combines the benefits of each type of filter resulting

in a robust and fast algorithm. We have shown several

experimental results validating the solution to the problem

and evaluating the different implementations.

As future work we plan to study the observability of

the system and the generation of motions that improve the

accuracy of the relative localization. We are also integrating

a general tracker to acquire the bearings using pattern

recognition techniques.
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