Improving User Interface Usability Using Mobile
Agents*

Nikola Mitrovié! and Eduardo Mena?

! 1IS Department, University of Zaragoza, Maria de Luna, 3,
50018 Zaragoza, Spain
mitrovic@prometeo.cps.unizar.es
http://www.cps.unizar.es/“mitrovic
2 1IS Department, University of Zaragoza, Maria de Luna 3,
50018 Zaragoza, Spain
emena@posta.unizar.es
http://www.cps.unizar.es/“mena

Abstract. Adapting graphical user interfaces (GUI) to meet higher
level of usability for users is one of the most interesting questions of to-
day’s mobile computation. Users should have GUI constructed to meet
their needs, habits and expectations. In this paper, we discuss existing
solutions and present a solution based on mobile agents. Mobile agents
'learn’ users’ habits, cooperate with other agents and construct the GUI
in order to meet the users’ expectations. Mobile agents move from host
to host and are able to 'learn’ about GUI usability by observing multiple
users using the GUI. In addition, mobile agents cooperate with Personal
Agents in order to apply personalized changes to the GUI. The result is
an adaptable GUI platform that strives to predict user behaviour and
to be more usable. We show the application of this approach by imple-
menting a simple business application.

1 Introduction

Adapting graphical user interfaces (GUIs) to meet usability is one of the most
challenging questions in the user interfaces area. Main problems are raised from
the fact that the usability is hard to measure and analyse, and that measured
data are often not available to multiple instances of the program.

Solutions in this area mainly focus on web-site usage metrics [11], user behav-
iour prediction and simulation [2], or usability patterns [5], [3]. Collected metrics
are often hard to analyse and implement. Collected data could be easily misin-
terpreted due to varied levels of user expertise or external factors that influence
users (fatigue, distraction, etc.). Some solutions aim to collect metrics on web
GUI usability [11] so the data could be used to analyse the usability, and more
advanced approaches [2] try to predict user behaviour and to propose measures

* This work was supported by the DGA project P084/2001.

2 Nikola Mitrovié et al.

that could increase GUI’s usability. Usability patterns try to create general rec-
ommendations on how to construct GUIs to achieve better usability. All these
solutions aim to provide an off-line analysis and not a run-time solution.

The idea of this work is to transparently predict user behaviour and to adapt
accordingly graphical user interface by using mobile agent systems [12]. Agents
are highly mobile, autonomous and intelligent. They can cooperate with other
intelligent agents in order to exchange information and maximise performance.

In our previous work [1] we demonstrated the capability of mobile agents
to autonomously adapt user interfaces to various resources and to collect vari-
ous types of data. Agents can also collect usability metrics and autonomously
decide how to adapt user interface for each user in order to improve usability.
In contrast, solutions not using mobile agents often find run-time user interface
adaptation and collection of usage metrics of multiple program instances dif-
ficult. With classic approach, new user interface (or program) updates lead to
reinstalling client programs on every user device, which does not happen when
using mobile agents.

Our prototype adapts user interface using mobile agents [12] that process
user interface definition described in Extensible User-interface Language (XUL)
[1], [15]. XUL interpretation to a standard Swing interface is done by jXUL
platform [9]. Agents automatically adapt the interface definition to the clients’
interface, making user interface dynamic and multiple interface implementations
unnecessary.

The rest of this paper is as follows. Section 2 gives an overview of state of the
art and the related work. In section 3 we give brief overview of Markov models,
longest repeating subsequence, hybrid solutions and their evaluation. Section 4
introduces mobile agents and extensible user interface language (XUL) and gives
an overview of user interface generation. In section 5 we introduce our motivating
example and explain bound between mobile agents, GUI and prediction models.
Section 6 describes sample scenario that shows the presented technique. Section
7 explains in detail the learning process. Section 8 concludes the paper and
discusses the future work.

2 State of the Art and Related Work

Measuring user interfaces and predicting user behaviour is based on several con-
cepts. We will focus on three main approaches: user interface metrics, data min-
ing — user behaviour prediction and the usability patterns.

2.1 User Interface Metrics

The basic concept is to collect user interface metrics for a web site [11]. Usually,
collected data are used to perform traffic-based analysis [14] (e.g., pages-per-
visitor, visitors-per-page), time-based analysis (e.g., page view durations, click
paths) or number of links and graphics on the web pages. Similarly, the web
pages are frequently checked against predefined guidance, e.g. if the images have

Improving User Interface Usability Using Mobile Agents 3

ALT tags or if the pages have titles. Some approaches [11] tend to empirically
validate metrics against expert ratings (e.g. PC Magazine TOP 100 web sites).

From these methods one can get some of the web site properties: the usual
time that users spend on the page, how many users navigated to some page, how
many pages were visited by a single user. Furthermore, one can learn if the site
is built properly, does it have ALT tags, page titles and if there are broken links.
However, these methods fail to give prediction of user behaviour, and results
that they give can be influenced by many factors.

2.2 Data Mining and User Behaviour Prediction

The following concepts provide concrete methods to predict and simulate user
behaviour in order to test different designs.

Many models that treat to predict user behaviour are based on Markov chains
[6], [7]. Predictions are made basing on the data from the usage logs. Generally,
more complex, high-order Markov models give better predictions than simpler
first-order models. This is because first-order models do not look enough into the
history. Sometimes, even higher-order models do not provide good predictions.
We will describe Markov models in more detail in section 3.1.

More advanced models, like Longest Repeating Subsequence (LRS) [2] or
Information Scent [4] perform data mining seeking to analyse navigation path
based on server logs, similarity of pages, linking structure and user goals. These
models incorporate parts of Markov models in order to give better results.

Presented models help in improving design and usability. But still, there is
an evident lack of run-time support for systems that are being analysed, and
authors aim to create design-time analysis tools like WUFIS [4] or WebCriteria
SiteProfile [13] for web sites.

2.3 Usability Patterns

Usability patterns describe successful solutions to recurring design problems. In
HCI community, usability patterns [3] are relatively new concept, although it is
successfully implemented in Object-Oriented design and architecture. The idea
is to document and share successful solutions that improve usability between de-
signers. Usability patterns define common design patterns such as "Web Toolbar’,
"Contact Us’, 'Site Map’, etc. Implementing such patterns improves usability of
user interfaces.

Porting usability patterns to different platforms and resources is not an easy
task [3], documenting patterns [5] still remains an open issue.

3 Longest Repeating Subsequence Method and its
modifications

Longest Repeating Subsequence (LRS) is as we described earlier, one of the
methods that try to predict user behaviour. This method was developed by

4 Nikola Mitrovié et al.

Pitkow and Pirolli, and published in [2]. The method can be seen as evolution
of Markov methods for predicting user behaviour [6], [7] and the Path Profiles
method developed by Schechter, Krishnan and Smith [25].
We have decided to use this method because in comparison with Markov
models it endorses simplicity while retaining prediction rates of Markov models.
In the following paragraphs, we will describe briefly this methodology.

3.1 Markov models

Markov models have been used for studying and understanding stochastic processes,
and therefore for predicting users’ behaviour while browsing web sites [6]. Se-
quences obtained from web site logs are used to predict what page is most likely
to be accessed next by the user.

The simplest Markov model is first-order Markov model [7]. This model
predicts next user action by only looking to the last performed action. Evolution
of this model leads to looking the last two performed actions — second-order
model, and that leads to generalised form: K'"-order model [6].

3.2 Longest Repeating Subsequence - LRS

A longest repeating subsequence [2], [29] is a longest repeating sequence of items
where the number of consecutive items repeats more than some threshold T (T
usually equals one). To help illustrate, suppose that we have a web site containing
pages A, B, C and D, where A contains link to B, and B contains links both to
C and D (Fig. 1).

LRS: ° LRS:

AB AB

e 0w
o O & ®)

Casel Case 2 Case 3 Case 4

Fig. 1. Formation of longest repeating subsequence (LRS) example

If we suppose that all users go from page A to page B, and one user navigates
to C and one to D (as in Case 1, Fig. 1), the longest repeating subsequence (LRS)
will be AB. If more than one user navigates to page D, then the longest repeating
subsequence will be AB and ABD, as in Case 2. In Case 3, both ABC and ABD
are LRS, since both page C and D were visited more than once — AB is no longer
LRS. Similarly in Case 4, only the page D is visited.

Improving User Interface Usability Using Mobile Agents 5

LRS has several interesting properties. First, low probability transitions are
automatically excluded which in some cases will result in prediction not being
made. For example, in Case 1, with threshold T=1, the penultimate match for
LRS AB is A, and prediction after pages A and B will not be possible [2]. In
addition, case of any single page-to-page transition is always repeated as part of
a larger sequence is not included in LRS.

3.3 Hybrid LRS-Markov models

Pitkow et al propose two hybrid LRS-Markov models [2]. First, authors propose
one-hop LRS model that consists of: extraction of LRS from the sample data,
and then using these for estimating first-order Markov models. That is creation
of one-hop n-grams [2] out of LRS, for example if the LRS is ABCD, the result
would be: AB, BC, CD.

The second method is All-K*"*-Order LRS model. This model decompresses
extracted LRS subsequences to all possible n-grams. With this model we can
predict for all orders of k.

Empirical evaluation of hybrid models and Markov models [2] shows that one-
hop LRS model reduces the space necessary for storing models thus satisfying
the complexity reduction principle. The prediction rate in Pitkow’s experiments
were very close which means that one-hop LRS model preserves predicting ability
while reducing complexity. Comparison of All-K** models gives similar results.

We have chosen to implement hybrid LRS-Markov models because we found
it more suitable for our prototype. The prediction rates of hybrid models are
sufficiently good while the complexity is reduced.

4 Generating User Interfaces with Mobile Agents

In our prototype we use eXtensible User Interface Language (XUL) and Mobile
Agents in order to create user interface. We have chosen the same technology
as we used in our previous work [1] since it enables us to create flexible user
interface that is able to adapt and move trough network.

4.1 Extensible User-interface Language - XUL

Extensible User interface Language [1], [15], [9] is designed for cross-platform
user interface definition. This language is incorporated in Mozilla project [16],
acting as an user interface definition language. Being part of Mozilla project,
XUL is open and connectable to other Mozilla projects. The format is organized
with modern user interface definition in mind, supporting variety of available
controls.

XUL lacks the abstraction layer of interface definition, and is restricted to
window-based user interface. It is capable of referencing Cascading Style Sheets
(CSS) [17] to define the layout of elements. User actions, property access and

6 Nikola Mitrovié et al.

functionality can be stored in JavaScript (ECMAscript) [24] files. Similar ap-
proaches include XIML [27] or UIML [22]. However, we found XUL to be suitable
open source solution for our purpose.

4.2 Mobile Agents and Agent Platforms

A mobile agent [12], [10], [23] is a program that executes autonomously on a
set of network hosts on behalf of an individual or organization. The agent visits
the network hosts to execute parts of its program and may interact with other
agents residing on that host or elsewhere [8], while working towards a goal.
During their lifetime agents travel to different hosts that can have distinct user
interface possibilities. Agents typically possess several (or all) of the following
characteristics; they are:

— Goal oriented: they are in charge of achieving a list of goals (agenda).

Autonomous: they are independent entities that pursue certain objectives,

and decide how and when to achieve them.

— Communicative/collaborative: to achieve their goal they can cooperate.

— Adaptive/learning: agents ’learn’ from their experience and modify their

behaviour respectively.

Persistent: agent’s state (should) persist until all the goals are achieved.

— Reactive: they react to their environment which also could change their
behaviour.

— They can stop their own execution, travel to another host and resume it
once there.

They do not, by themselves, constitute a complete application. Instead, they
form one by working in conjunction with an agent host and other agents. Many
agents are meant to be used as intelligent electronic gophers — automated errand
boys. Tell them what you want them to do — search the Internet for informa-
tion on a topic, or assemble and order a computer according to your desired
specifications — and they will do it and let you know when they have finished.
Some agents are used as Personal Agents that store user preferences, certificates,
policies or perform actions on the behalf of the user (e.g. enforcing security poli-
cies [8]). Mobile Agent Systems (MAS) are the middleware that allows creating
and executing mobile agents. For this project, we choose Grasshopper [18] as
the most intuitive and stable mobile agent platform, which supports standards
such as FIPA [19], CORBA [20] and RMI [21]. In addition, the Grasshopper’s
feature Webhopper [18] that enables mobile agents for web is a significant plus
comparing with other platforms, like Voyager and Aglets [26].

5 Using Mobile Agents to Improve Usability

In our previous work [1], we demonstrated possibilities and benefits of adapting
user interfaces to various user devices using mobile agents. The idea of this paper

Improving User Interface Usability Using Mobile Agents 7

was to extend our previous work and to build the prototype that adapts user
interface aiming to improved usability.

Other approaches (see [4], [14], [2], [6]) try to gather user interfaces metrics,
and then to analyse these data in order to redesign user interface to meet higher
usability. Although tools that help analysing these data exist (see [4], [14]), this
process is manual and performed on off-line data. After applying new design to
user interface, applications should be deployed again in order to have new version
of user interface. Our leading idea was to design and build a system that will
enable real-time analysis of such data and that will try to improve usability by
trying to predict the next most probable user action. The system should be able
to ’push’ new versions of user interface to users as well.

Mobile Agents are particularly suitable for adapting user interfaces and learn-
ing [1]. Agents are autonomous, communicative, they work towards their goal,
and can decide of their actions based on the environment and external factors
[10]. Mobile agents endorse ’push’ technology — agents can travel to any host or
user without prior invitation. They can provide transparent resolution of many
environment errors (e.g. network errors).

In our prototype we use mobile agents to create Swing interfaces, and we plan
to use this technology to improve user interface usability for various user devices
(e.g. HTML clients, WAP clients, etc.). We created specialised mobile agents
that learn user behaviour. These agents examine usage data in order to predict
next probable user action. They exchange data, learn from user actions and
keep in mind user’s preferences. Furthermore, re-designed user interface could
be pushed to users (using mobile agents) at any time since GUI designers can
also learn from the usage data.

We present a sample application for invoice composition and manipulation.
The application has basic options, such as opening, saving, closing and printing
an invoice, adding items and taxes and selecting a customer. Sample application
is mobile and it communicates with other agents and application instances. User
interface is adapted to user’s preferences and the application has interactive help
that guides users to achieve goals. We will describe the sample application in
detail in section 6.

5.1 Implemented Technology

We built a prototype that adapts user interfaces to user needs in transparent
manner to both designer and user. We extended eXtensible User Interface lan-
guage to support demarcation of design patterns. Using extended tags we are
able to determine content and position of different design patterns within the
user interface definition and therefore to adapt user interface according to user’s
preferences.

In order to enhance their applications with the functionality of the prototyped
agents, the developers should only extend the appropriate class, connect the
classes and user interface definition files should be created as described previously
in [1].

8 Nikola Mitrovié et al.

In addition, we implemented All-K*"-order LRS model and adjusted it for
run-time use with applications based on mobile agents. We use more complex
hybrid LRS-Markov model in order to give better predictions of user behaviour.

5.2 Specialised Agents

Applications based on mobile agents typically consist of several agents that per-
form different tasks. These agents are specialised to perform these tasks, and
contain expert knowledge on how to achieve their goals. Agents learn and re-
act to their environment and autonomously provide functionality to the system,
application or other agents.

We have created several specialised agents that work together and help the
adaptation and learning process:

— User Interface Agent: this agent was developed in our previous work [1],
and it serves as a bridge between user and mobile agents. This agent is
capable of transforming user interfaces to meet capabilities of various user
devices, and it uses XUL as user interface definition language. This agent
is fully extendible and connectable to other agents.

— Helper Agent: using this agent, our prototype is able to learn. Helper analy-
ses data that is being collected from all users and suggests the next most
probable action.

— Wanderer Agent: this agent is a specialised agent that wanders trough all
clients and collects usage data. Its goal is to exchange data between all
Helper agents.

— Personal Agent: users can store their preferences (e.g. font sizes, colours,
etc.) with this agent. Additionally, this agent can store other relevant data:
accessibility preferences, preferences on usability patterns or user certifi-
cates.

In Fig. 2 we can observe the composition of the sample application and its
network topology. While User Interface, Personal and Helper Agent are mainly
static, Wanderer agent travels through network and distributes usage data and
updates. Functionality of these agents will be described in following sections.

6 Sample Scenario

In our sample scenario, Invoicing application is an application based on mobile
agents and is retrieved from network, from the nearest host. In Fig. 3 we can see
that sample application has several windows:

— Main window: from this window, user can execute some of the options, e.g.
'new invoice’, ’open invoice’, etc.

— Invoice window: whether invoice is new or loaded from the database, this
window fits into the main window and gives additional options, e.g. ’save
invoice’, ’print invoice’, ’edit items’, etc.

Improving User Interface Usability Using Mobile Agents 9

Helper Agent

A
Y

Host 1
GUIAgent | qgym| Helper Agent
—_
V) Wanderer
Personal Agent
Agent
Host 3 /
Host 2 GUI Agent
GUI Agent | qgym| Helper Agent]

Fig. 2. Sample application structure

Confirm Window

Edit Customer

edit

Invoice Window

customer

edit items

Edit Items Window

deleteinvoice
[OK]
new invoice
MainWindow |__———— |
open ifyoice

saveinvoice

FileOpen Window

FileSave Window

print
yoice

Fig. 3. Sample application structure

print item
details

Select Printer
Window

— Edit items window: this window enables user to add or remove items from
invoice or to print item details

Mobile agents (in our case, specialised agents) autonomously collect usage
data from all users and ’learn’ user habits using All-Kt"-order LRS model.

10 Nikola Mitrovié et al.

Helper agents then predict the next action to be performed by the user, and
display available actions in order of probability in the specialised toolbar (see
Fig. 4). Additionally, agents cooperate and adjust user interface to suite user’s
preference.

M

7] N Viemm

L

Tiiibear | Hleljer)

Skabus bar

I Faay

Fig. 4. Main window: basic layout and patterns.

In Fig. 4 we can observe that user interface consists of several design patterns:
Menu, Status bar and Toolbar. As we mentioned earlier, this toolbar (Helper
toolbar) serves as front-end of the Helper Agent to users, giving a hint of the
next most probable action. Action that is predicted as the most probable next
action will be the first action in the Helper toolbar, and the last one will be
the action with least chances to be selected by the user. User can click the icon
that appears on the Helper toolbar to perform the action. We decided to use
Helper toolbar to display prediction instead of modifying the user interface itself.
Modifying the user interface in run-time could be very confusing for the users.

7 The Learning Process

Learning is implemented in specialised Helper Agent. This agent relies on All-
Kth_order LRS model. If the application did not have training, prediction cannot
be made. Once users start using the application, the Helper Agent collects the
necessary data to try to predict the next hop. However, learning is not limited
just to data collected by the Helper agent from a single user. The Wanderer
Agent collects the usage data from all Helper agents, and creates one unique

Improving User Interface Usability Using Mobile Agents 11

usage log that is distributed to all Helper agents for analysis. Wanderer acts
as a push service, and it is completely autonomous. This means that Wanderer
agents chooses what should be the next host to visit, what data are relevant or
not and who should receive updated data and when.

This process could lead to less efficient predictions, because of different user
experiences and expertise. However, this could also help in increasing overall
user expertise, since users with more expertise could influence predictions by
supplying better sequences. Therefore, the Helper Agent would provide better
predictions for users with less expertise and show them how to use application
more efficiently.

In Fig. 3 we can observe that Select Printer window can be reached both
from Edit Items window (in order to print item details) and Invoice window
(in order to print invoice). In the Invoicing application, Select Printer window
serves for generating requested report and sending it to the desired printing
device. Therefore, if we offer to user more than next-hop prediction, we could
have a case in which on the Helper toolbar user is suggested to go from FileOpen
window directly to Select Printer window. This would lead to application crash
— because there is no sufficient input data to perform code in Select Printer
window (i.e. what report to prepare and for what invoice or item).

E sreEy By hrbor

x5 - e fe il: Bt Cap - - e e | ABS BeBwine Cam
] [A Toal B i L] b
1 N g] 11083 1 AL] WA
2 T el] 5
vitiiiard | i WEET b rusd 1

E.:w. E_Lm

Fig. 5. Helper Agent predicts next action

12 Nikola Mitrovié et al.

7.1 Interaction between specialised agents

Here is how the training process goes. When the application is created, it has
no usage data. Helper agent’s repository and Wanderer’s repository are empty.
In Fig. 6 you can see interaction and processes map of the application. In this
case (Fig. 5, left window) the Helper toolbar should be empty, as no prediction
can be made. It is expected that the application designer will provide some basic
training to Helper agent so the application could have some initial predictions.

Personal Agent User Interface Agent Helper Agent Wanderer Agent
Load initial
Process Ul
Definition daia)
i Exchagge
usage data
Gather Usage L7
Info —
Process Ul
Definition
Exchange User Exchange data Ll Get usage data
Preferences with other Agents [| from Ul Agent

Travel to the
next host

Send hint to
Modify User
Interfa:::e Ul Agent

Predict next most
probable action

Fig. 6. Agent processes and interaction

When the application is requested from one of the hosts, the Wanderer agent
is informed that one of the instances of application is about to depart. Wanderer
registers this instance (so it can be visited or updated later), and loads the
initial snapshot of usage data to Helper Agent. After being loaded with data,
application moves to the destination host, and starts.

While in use, application collects usage data and learns. In Fig. 5 (on the
right) we can see that the Helper toolbar displays most probable predictions.
Occasionally, the application is visited by the Wanderer agent. The Helper agent
and Wanderer agent exchange usage data, and the Helper agent’s experience
gets richer. The Helper toolbar is dynamically updated with new predictions.
Classic desktop applications would probably base its learning on the current
user’s data only: we use the benefit of mobile agent’s push feature to expand
our training data. Wanderer agent is pushed to the user and not requested by
the user or application. In addition, Wanderer agent can also update the user
interface definition if the user interface has been redesigned to improve usability.
After the Helper agent was updated with the latest data snapshot, it continues
to operate normally — fresh usage data are collected and mixed with the snapshot
of all users’ data. Learning process continues.

Improving User Interface Usability Using Mobile Agents 13

We can also observe from the Fig. 5 that one of the options (’delete invoice’)
will not be suggested, since it has never been used by the users in our example.
Other actions have been ordered by probability of occurrence: item control, save
invoice, print invoice and client control. Training period of Helper Agents never
stops.

" Freiis
iU
|'|_:.|| # [

Fig. 7. Helper Agent adapts user interface to meet user’s preferences

7.2 Adapting to personal preferences with Personal Agents

One of the features of Helper Agent is to communicate with user’s Personal Agent
(see Fig. 6). Personal Agent stores user’s preferences and supplies information
about user’s habits to the Helper Agent. We can see in Fig. 7 how can user
interface change according to user’s preferences. This type of adaptation focuses
on usability patterns and user interface accessibility problems. In Fig. 7 we can
see that one of the users has following preferences: toolbars on the bottom of
the windows, slightly larger fonts and no status bar.

Helper Agent has adapted transparently user interface to the user’s prefer-
ences and increased usability for that particular user. This enables users to use
the application more efficiently as the user saves time in customising and using
the application.

8 Conclusions and Future Work

In this paper we have presented autonomous and intelligent system based on
mobile agents that transparently adapts user interface. We have constructed

14

Nikola Mitrovié et al.

specialised agents that predict user behaviour and suggest actions to users in
real-time.

The main features of this approach are:

We use and extend our previous work, a system for adapting user interfaces
to various resources by using mobile agents.
Specialised agents have been built:
o Helper Agent: predicts the next action using All-K*"-order LRS model
and use predictions to improve application usability
e Wanderer Agent: exchanges data between application users, implements
push service and is capable of pushing the re-designed user interface to
all users.
e Personal Agent: stores all user’s preferences and cooperates with other
agents in order to apply these preferences.
User interface is modified at run-time.
Usage data are collected on all users, and there is no training time limit.

Our future work will be focused on:

Adapting of this concept to various resources (HTML, WAP, etc.). The
potential problems, as we discussed, are in adapting usability patterns to
various resources, and achieving satisfactory plasticity [28].

Using task models in order to improve hybrid LRS-Markov model.
Reduction of the space necessary for storing sequences.

Definition of in-window tasks so the system could predict tasks within one
window.

Measuring usability using users of various expertise levels.

References

. Mitrovié, N., Mena, E.: " Adaptive User Interface for Mobile Devices”, 9th Interna-

tional Workshop on Design, Specification and Verification (DSV-IS) 2002, Springer
Verlag Lecture Notes in Computer Science vol. 2545, pages 29-44.

. Pitkow, J., Pirolli, P.: ”Mining Longest Repeatable Subsequences to Predict World

Wide Web surfing”, 2nd Usenix Symposium on Internet Technologies and Systems
(USITS), 1999.

Seffah, A., Forbrig, P.: ”Multiple User Interfaces: Towards a Task-Driven and
Patterns-Oriented Design Model”, 9th International Workshop on Design, Specifi-
cation and Verification (DSV-IS) 2002, Springer Verlag Lecture Notes in Computer
Science vol. 2545, pages 118-133.

Chi, E.H., Pirolli, P., Pitkow, J.: The scent of a site: ” A system for analyzing and
predicting information scent, usage, and usability of a web site”, ACM CHI 00
Conference on Human Factors in Computing Systems, 2000.

Seffah, A., Javahery, H.: ”On the Usability of Usability Patterns - What can make
patterns usable and accessible for common developers”, Workshop on Patterns in
Practice, ACM CHI Conference, Mineapolis, Minnesota, April 2002.

Deshpande, M., Karypis, G.: ”Selective Markov Models for Predicting Web-Page
Accesses”, University of Minnesota Technical Report 00-056, 2000.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Improving User Interface Usability Using Mobile Agents 15

. Griffioen, J., Appleton, R.: "Reducing file system latency using predictive ap-

proach”, USENIX Technical Conference Cambridge, 1994.

. Mitrovi¢, N., Arronategui, U.: "Mobile Agent security using Proxy-agents and

Trusted Domains”, 2nd International Workshop of Security of Multiagent Sys-
tems (SEMAS ’02) at 1st International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 02), DFKI Research Report, 2002, pages 81-84

. jXUL, http://jxul.sourceforge.net
. Etzioni, O., Weld, D.: ”Intelligent Agents on the Internet: Fact, Fiction, and Fore-

cast”, IEEE Expert vol. 10, 1995, pages 44-49

Ivory, M.Y., Sinha, R.R., Hearst, M.A.: ”Empirically Validated Web Page Design
Metrics”, SIGCHI 2001.

Distributed Objects & Components: Mobile Agents, http://www.cetus-
links.org/oo_mobile_agents.html

WebCriteria. Max, and the objective measurement of web sites.
http://www.webcriteria.com, 1999.

Tiedke, T., Martin, C., Gerth, N.: ”AWUSA — A Tool for Automated Website Us-
ability Analysis”, in proceedings of 9th International Workshop on Design, Speci-
fication and Verification DSV-IS, 2002.

Cheng, T.: XUL - Creating Localizable XML GUI, Fifteenth Unicode Conference,
1999. http://www.mozilla.org/projects/intl/iucl5/paper/iucl5xul.html

Mozilla project, http://www.mozilla.org

Meyer, E. A.:” Cascading Style Sheets: The Definitive Guide”, O'Reilly and Asso-
ciates, 2000.

Grasshopper, IKV, http://www.grasshopper.de/

Foundation for Intelligent Physical Agents, http://www.fipa.org

Pope, A.: "The CORBA Reference Guide: Understanding the Common Object
Request Broker Architecture”, Addison-Wesley Pub Co, 1998.

Java Remote Method Invocation, http://java.sun.com/products/jdk/rmi/
Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.:
"UIML: An Appliance-Independent XML User Interface Language”, WWW8 /
Computer Networks 31(11-16): 1695-1708 (1999)

Milojicic, D.S.: ” Trend Wars: Mobile agent applications”, IEEE Concurrency 7(3),
1999, pages 80-90

ECMAScript Language Specification, 3rd Edition, December 1999, ECMA,
http://www.ecma.ch/ecmal /stand/ecma-262.htm

Schechter, S., Krishnan, M., Smith, M.D.: ”Using path profiles to predict HTTP
requests”, Seventh International World Wide Web Conference, 1998.

The Mobile Agent List, University of Stuttgart, http://mole.informatik.uni-
stuttgart.de/mal/mal.html

XIML (eXtensible Interface Markup Language), http://www.ximl.org/

Thevenin, D. and Coutaz, J.: ?Plasticity of User Interfaces: Frame-work and Re-
search Agenda”, Proc of IFIP TC 13 Int. Conf. on Human-Computer Interaction
INTERACT’99, Edinburgh, August 1999, IOS Press, 1999.

Crow, D., Smith, B.: ”DB Habits: Comparing minimal knowledge and knowledge-
based approaches to pattern recognition in the domain of user-computer interac-
tions”, Neural networks and pattern recognition in human-computer interaction,
1992, pages 39-63

