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Abstract. Discrete event dynamic systems may have extremely large
state spaces. For their analysis, it is usual to relax the description by re-
moving the integrality constraints. Applying this idea, continuous P/T
systems are defined by allowing fractional firings of transitions, and thus
the existence of non-discrete markings [4, 5, 1]. In this paper we compare
the behaviors of discrete and continuous systems, and observe that they
are not necessarily similar. The problems that appear lead to the defini-
tion of two extensions of reachability. Many properties shall be extended
differently depending on which reachability definition is being consid-
ered. Here, we concentrate on liveness and deadlock-freeness, proposing
extensions and relating them to their discrete counterparts.

1 Introduction

One of the most important tools for the analysis of P/T systems is the state equa-
tion, which is based on the relaxation of the reachability condition using a path
integration approach. This description is sometimes further relaxed by dropping
integrality constraints, following the approach that is typical in the mathemati-
cal modeling of systems with large state spaces (e.g., population models). This
fluidization allows to use linear programming instead of integer programming
in the verification of certain properties.

These principles can also be applied in the reverse order, first continuization
and then path integration. By disregarding first the integrality of variables, we
get continuous P/T systems [4, 5, 1]. In these models, “fluid tokens” are con-
tained in “deposits” (the places), the “level” of which (the marking) captures
the state of the system. Transitions are regarded as “mixing valves” whose fir-
ing (opening) consumes fluid from the input places and produces fluid onto the
output places in a given proportion, defined by the arc weights. These nets are
interesting in the modeling of certain continuous systems, and also as an approx-
imation of systems with large amounts of (discrete) tokens.

Autonomous continuous P/T systems were introduced in [4]. Although some
work has been done in the analysis of timed continuous P/T systems [4, 5, 1],
almost nothing has been done w.r.t. the analysis of autonomous continuous P/T
systems. It might be thought that they cannot be that different from discrete
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P/T systems. However we will see that the behavior of a system considered
as discrete may be completely different from its behavior if it is considered as
continuous. Moreover, although the extension of the “token game” to continuous
P/T systems is quite immediate, it is not so clear how such a basic concept as
reachability should be extended. For instance, should be considered reachable a
marking that cannot be obtained firing a finite sequence, but is obtained after
an infinitely long one?

The basic definitions of autonomous continuous P/T nets and systems are
introduced in Section 2. Some immediate properties are also proven, as the con-
vex nature of the reachability space, or the equivalence, in case every transition
is fireable, of behavioral and synchronic relations (in particular boundedness
and str. boundedness). In Section 3 some examples are presented which show
that the properties of a system may be very different depending on whether
it is considered as discrete or continuous. A new definition of reachability, limit
reachability, in which infinitely long firing sequences are allowed, is introduced in
Section 4. If every transition is fireable, the limit reachability space of consistent
systems is characterized as the set of solutions of the state equation. Section 5
is devoted to the analysis of liveness. Two definitions of liveness are introduced
that correspond to the two views of reachability (Subsection 5.1). In Subsec-
tion 5.2 it is observed that both kinds of liveness are preserved if the marking
is scaled. The relationship that exists among all the definitions of liveness (the
two continuous definitions and the discrete one) is analyzed in Subsection 5.3.
In Subsection 5.4 two necessary conditions are obtained for the liveness defini-
tion that seems more convenient. Finally, we restrict to subclasses, in particular,
equal conflict [13], and free choice [6] systems, for which stronger results can be
proved (Subsection 5.5).

2 Definition and first results

A continuous P/T system is a pair 〈N ,m0〉, where N = 〈P, T,Pre,Post〉 is a
P/T net (P and T are disjoint (finite) sets of places and transitions, and Pre

and Post are |P | × |T | sized, natural valued, incidence matrices), and m0 is a
continuous marking.

The net in a continuous P/T system is the usual P/T net. In particular,the
restriction on the arc weights being integer is maintained. This is particularly
reasonable when the continuous P/T system is used as an approximation of a
discrete system. In the case of continuous (or hybrid) P/T systems used to model
continuous systems, the integrality of the arc weights is not a big restriction
because rational arc weights could be multiplied by the least common multiple
of their denominators.

All the concepts based on the representation of the P/T net as a graph (strong
connectedness, presets, postsets, . . . ) can be directly applied to continuous P/T
nets. In particular, the definitions based on the annullers of the token-flow matrix
(C = Post−Pre) can be immediately extended. Right and left natural annullers
are called T- and P-semiflows, respectively. When y ·C = 0, y > 0 the net is said



to be conservative, and when C · x = 0, x > 0 the net is said to be consistent.
The definitions of subclasses that depend only on the structure of the net are
also generalized. For instance, in choice free nets (CF) each place has at most one
output transition, free choice nets (FC) are ordinary nets in which all conflicts
are equal (•t ∩ •t′ 6= ∅ ⇒ Pre[P, t] = Pre[P, t′]), and equal conflict nets (EQ)
are the weighted counterpart of FC nets.

A continuous marking is a |P | sized, non-negative, real valued, vector. A
continuous P/T system is a pair S = 〈N ,m0〉, where m0 is the initial contin-
uous marking. A transition t is enabled at m iff for every p ∈ •t, m[p] > 0. In
other words, the enabling condition of continuous systems is the same as the
enabling condition of discrete ordinary systems: every input place is marked.
As in discrete systems, the enabling degree of a transition measures the max-
imal amount in which the transition can be fired in one go, i.e. enab(t,m) =
minp∈•t{m[p]/Pre[p, t]}. The firing of t in a certain amount α ≤ enab(t,m)

leads to a new marking m′ = m + α · C[P, t]. This is denoted as m αt
−→m′. No-

tice that a transition being enabled or not does not depend on the arc weights,
although they are important to compute the enabling degree and to obtain the
new marking. A certain marking m′ is reachable from m if a (finite) fireable
sequence exists leading from m to m′.

Definition 1. Let 〈N ,m0〉 be a continuous system. A certain marking m ∈

(R+ ∪ {0})
|P |

is reachable iff a finite sequence σ = α1t1α2t2 . . . αktk, exists such
that

m0

α1 t1−−−→m1
α2 t2−−−→m2 · · ·

αk tk−−−→mk = m

where ti ∈ T and αi ∈ R
+.

The reachability space, RSC(N ,m0), is the set of all the reachable markings.
Given σ such that m σ

−→m′, and denoting by σ the firing count vector of σ,
then m′ = m + C · σ. This is known as the state equation of S.

The set of all the markings m ∈ (R+ ∪ {0})
|P |

that fulfil the state equation,

with σ ∈ (R+ ∪ {0})
|T |

, is called the linearized reachability space (w.r.t. the
state equation), LRSC(N ,m0).

If m0

σ
−→m, then m = m0 + C ·σ. Thus, as in discrete P/T systems, RSC ⊆

LRSC.
The possibility of firing the transitions in any amount (up to the enabling

degree) leads to the fulfilment of several properties on the set of fireable sequences
related to homothecy and monotony :

Proposition 1. Let 〈N ,m0〉 be a continuous P/T system, and σ a sequence
fireable at m0.

– For any α ≥ 0, ασ is fireable at αm0, where ασ represents a sequence that
is equal to σ except in the amount of each firing, that is multiplied by α.

– If 0 ≤ α ≤ 1, ασ is fireable at m0.
– For any m0

′ ≥ m0, σ is fireable at m0
′.



This endows the reachability space with a particular structure that it does
not have in discrete systems: it is a convex set. That is, for any two markings
that can be reached from m0, any intermediate marking that can be expressed
as their linear combination is reachable too.

Theorem 1. The reachability space of a continuous P/T system is a convex set.

Proof. Let 〈N ,m0〉 be a continuous system and m1,m2 two reachable markings,
i.e., m0

σ1−→m1 and m0

σ2−→m2. Let α ∈ [0, 1]. Then, αm0

ασ1−−→αm1 and (1 −

α)m0

(1−α)σ2

−−−−−→(1 − α)m2. Therefore, αm1 + (1 − α)m2 is reachable from m0

firing ασ1 + (1 − α)σ2. ut

The same idea of firing just a part of what is enabled is the basis of the
following algorithm, that checks whether every transition is fireable at least
once.

The algorithm fires the enabled transitions, which can lead to the enabling of
other transitions, but taking care not to disable any of the former. Thus, the set
of enabled transitions, T j , never decreases. If it does not increase, a point has
been reached in which the firing of the enabled transitions cannot lead to the
enabling of any other one, therefore not every transition can be fired. Otherwise,
since the number of transitions is finite, the algorithm stops when all have been
considered.

Algorithm 1

Input: A continuous P/T system, 〈N ,m0〉
Output: The set of dead transitions, T ′

Begin

Let T 0 = ∅;
Let T 1 = {t | enab(t,m0) > 0}
j := 1
While T j 6= T and T j 6= T j−1 do

Let σj be a sequence obtained firing all the transitions in T j \ T j−1

with half their enabling degree, and let mj−1

σj
−→mj

T j+1 = {t | enab(t,mj) > 0}
j := j + 1

od

T ′ := T \ T j

End

In other words, in continuous systems it is equivalent that every transition is
fireable or that a strictly positive marking can be reached. From this, realizability
of T-semiflows can be deduced, and all the three are equivalent if the net is
consistent.



Proposition 2. Let 〈N ,m0〉 be a continuous system.

1. It is equivalent that every transition is fireable or that a strictly positive
marking can be reached.

2. If every transition is fireable, for every x ≥ 0 such that C · x ≥ 0 a marking
m ∈ RSC(N ,m0) exists such that m σ

−→ and σ = αx with α > 0. Moreover,
both properties are equivalent if the net is consistent.

Fireability of T-semiflows, implies that behavioral and structural synchronic
relations [11] coincide in continuous systems in which every transition is fireable
at least once. In particular, defining boundedness and str. boundedness as in
discrete systems (a system is bounded iff k exists such that for every reachable
marking m ≤ k, and it is str. bounded iff it is bounded with every initial marking)
it is immediate to see that that both concepts coincide in continuous systems in
which every transition is fireable. And, as in discrete systems, str. boundedness
is equivalent to the existence of y > 0 such that y · C ≤ 0 (Farkas Lemma [8]).

Theorem 2. Let 〈N ,m0〉 be a continuous system in which every transition is
fireable at least once. It is equivalent:

– 〈N ,m0〉 is bounded.
– N is bounded with any initial marking (str. bounded).
– y > 0 exists such that y · C ≤ 0.

3 Discrepancies between continuous and discrete
behaviors

The simple way in which the basic definitions of discrete systems are extended
to continuous systems may make us naively think that their behavior cannot
be very different, provided the marking is “large enough”. We will see in this
section that this is not completely true.

For example, look at the system in Figure 1. Each time t1 and t2 are fired
in their maximal enabling degree, the marking of p1 is cut by half. Thus, we
can always find a marking such that for every successor the marking of p1 is as
small as required. But it never reaches zero (remember the Zenon’s paradox).
Therefore, in the continuous system we can always go on firing transitions t1
and t2, while that is clearly not true in the discrete system, no matter how big
the initial marking is.

Fig. 1. A non str. live discrete system that never blocks if it is seen as continuous.



Nevertheless, the enabling degree of these continuous transitions decreases
with each firing, and it could be thought that the continuous behavior is not
that different from the discrete one: in the end a marking will be reached such
that for every successor the enabling degree of both transitions is “almost zero”.
But this is a very simple system, and things may get much more entangled.
Observe the system in Figure 2 (a). If we analyze this net as a discrete P/T net,

Fig. 2. Four bounded and strongly connected systems are which behave in a very
different way if they are considered as discrete or as continuous:

(a) is non str. live, ε-live, non str. lim-live;
(b) is non str. live, non ε-live, non str. lim-live;
(c) is live, non str. ε-live, non str. lim-live;
(d) is live, ε-live, non str. lim-live.

it is not str. live. For any initial marking, t1 or t2 can be fired sufficiently many
times to reach a marking in which p1 or p2 are marked with just one token,
which is clearly a deadlock. On the other hand, the continuous system displays a
completely different behavior. For instance, with the given initial marking, firing
the sequence t1

1
2 t1

1
4 t1

1
8 t1 . . . we can obtain a marking such that the enabling

of t1 and t2 is as small as desired (observe that the marking of p1 decreases
exponentially). However, and unlike the previous example, the marking of p1 is
not unavoidably led to zero, since it can be increased again firing t2.

The reason for the completely different behavior of the discrete and the con-
tinuous system in this case is that the continuous system considers the tokens
as composed of infinitely many parts, and hence, we do not find the restriction
that in the discrete system leads to not being able to redistribute the tokens. In
other words, the “problem” is that the gap between natural numbers is discrete,
and thus any decreasing sequence of natural numbers eventually reaches a lower
bound, in which it may get blocked. This is not true in general for sequences of
rational/real numbers.

This example shows also that systems that might be considered “equivalent”
as discrete systems (their reachability graphs are isomorphic) may not be so if
they are seen as continuous systems. From a discrete systems perspective, there
is no difference between systems (a) and (b) in Figure 2. (In particular, the token-



flow matrix of both systems is the same, although the Pre and Post matrices
are different.) However, their behaviors as continuous systems are completely
different. The system on the right follows the behavior of the discrete system: for
any initial marking firing t1 or t2 in a large enough amount we reach a deadlock.
On the contrary, we have seen that the system on the left never deadlocks with
the firing of a finite sequence.

It may also happen that a system deadlocks if it is seen as continuous and
does not deadlock as discrete. Look for instance at the system in Figure 2 (c).
As a discrete system, it is live with the given marking. However for any initial
marking, m0, the firing of t1 in an amount of m0[p1]/2 in the continuous system
leads to [0,m0[p1]/2 + m0[p2] and the system gets blocked.

On the other hand, the system in Figure 2 (d), which as discrete has a reach-
ability graph isomorphic to the one of the system in Figure 2 (c), as continuous
never reaches a marking with no transition enabled. Observe that although these
two systems have the same behavior as discrete, there is a big difference in the
underlying nets: the system in Figure 2 (c) is non live with any initial marking
with an even number of tokens in p1; while any marking greater than or equal to
[1, 1] makes live the system in Figure 2 (d). It is clear that a system cannot be
live as continuous if its liveness as discrete relies strongly on the particular mark-
ing. That is, a system that is live as discrete with a certain marking, but not live
with a multiple of it, cannot be live as continuous. Scaling liveness monotonicity,
which may be desirable, but is not compulsory in discrete systems, appears a
basic property if we want to study them as continuous systems.

With the different systems in Figure 2, we have seen that, even in the case of
EQ nets, the behaviors of a system, if it is considered as discrete or continuous, do
not necessarily coincide. We wonder whether in simpler classes, such as live and
bounded FC or CF systems, discrete and continuous behaviors are analogous.
Let us consider a basic property of discrete bounded systems: no infinite firing
sequence exists in which the markings are all different. Two example systems, one
FC and the other CF, both live, bounded and reversible (the initial marking can
always be returned to), are shown in Figure 3. In both, even this simple property
is violated. For the FC system on the left, all the intermediate markings when the
sequence t3t4t7

1
2 t1

1
2 t2

1
2 t4

1
2 t5

1
2 t7

1
4 t1

1
4 t2

1
4 t4

1
4 t5

1
4 t7 . . . 1

2k t1
1
2k t2

1
2k t4

1
2k t5

1
2k t7 . . . is

fired, are different. The same happens to the CF system on the right if we fire the
sequence t1

1
2 t3

1
2 t1

1
4 t3

1
4 t1 . . . . This is completely different from what happens in

discrete systems.

4 A new concept: limit reachability

Let us go back to the system in Figure 2 (a). We have seen that a state can be
reached in which the marking of p1 is as small as desired. For some applications,
it might be reasonable to consider that we can reach a marking such that this
place does not contain any token. In other words, to include the marking that
would be obtained in the limit as a reachable marking.



Fig. 3. Two reversible, live and bounded discrete P/T systems. When considered as
continuous systems, infinitely long firing sequences exist in which the transitions are
fired in their maximal enabling degree, and such that every intermediate marking
appears only once.

Definition 2. Let 〈N ,m0〉 be a continuous system. We say that a marking m ∈

(R+ ∪ {0})
|P |

is limit reachable iff a sequence of reachable markings {mi}i≥1

exists verifying

m0

σ1−→m1
σ2−→m2 · · ·mi−1

σi−→mi · · ·

and limi→∞ mi = m.
The firing sequence may be null after a finite number of firings, therefore the

reachable markings are in particular limit reachable.
The limit reachability space, lim-RSC(N ,m0), is the set of limit reachable

(and in particular reachable) markings.

The definition of boundedness does not change with the new concept of limit
reachability (if every mi ≤ k, then limi→∞ mi ≤ k).

There is a strong relationship between the LRSC and the lim-RSC of a contin-
uous system. In fact, they coincide in consistent systems in which every transition
is fireable.

Theorem 3. Let 〈N ,m0〉 be consistent and such that each transition can be
fired at least once.

Then lim-RSC(N ,m0) = LRSC(N ,m0).

Proof. It is clear that lim-RSC(N ,m0) ⊆ LRSC(N ,m0), since LRSC(N ,m0) is
a closed set that includes RSC(N ,m0).

For the “⊇”, let m ∈ LRSC(N ,m0), m = m0+C·σ. Applying Proposition 2,
we have that from m0 a positive marking m′ = m0 +C ·σ′ can be reached. We
will prove that m ∈ lim-RSC(N ,m′). Observe that m = m0 + C ·σ = m′ + C ·
(σ −σ

′). Being N consistent, a T-semiflow, x, exists such that x + σ −σ
′ ≥ 0,

and thus m = m′ + C · (σ − σ
′ + x). Since m′ > 0, α and σ′′ exist such that

σ′′ is fireable from m′ and σ
′′ = α(σ − σ

′ + x), i.e., a sequence proportional
to the vector leading from m′ to m can be fired. If α ≥ 1, it is clear that m



can be reached from m′. Otherwise, the firing of σ′′ leads to m′ + C · σ
′′ =

m′ + αC · (σ − σ
′ + x) = αm + (1 − α)m′, i.e.,

m0

σ′

−→m′ σ′′

−→ αm + (1 − α)m′

Clearly, if σ′′ was fireable from m′, (1− α)σ′′ is fireable from (1− α)m′. Hence

αm + (1 − α)m′ (1−α) σ′′

−−−−−−→ αm + α(1 − α)m + (1 − α)2m′

Repeating the procedure we build a sequence of markings whose limit is m. ut

This does not mean that for any vector x such that m0+C ·x ≥ 0 a sequence
with this firing vector is enabled at m0. For instance, in the example of Figure 4,
[0, 1, 0, 0, 1] = [1, 0, 0, 0, 1] + C · [0, 1, 1, 0, 0]T is reachable, but no sequence with
firing vector [0, 1, 1, 0, 0] is enabled.

Fig. 4. In this system [0, 1, 0, 0, 1] is a reachable marking, although no enabled sequence
has [0, 1, 1, 0, 0] as its firing vector.

The equality of the LRSC and the lim-RSC does not hold in general if the
system is not consistent or not every transition is fireable. For instance, in the
system on the left in Figure 5, which is consistent, but in which no transition can
be fired, the marking [0, 1, 0, 0] belongs to the LRSC but not to the lim-RSC .
The same happens to the marking [0, 1, 0, 0, 1] in the system on the right. In this
system every transition can be fired, but it is not consistent. For the moment
nothing can be said about the complexity of computing the lim-RSC in the
general case, not even whether it is decidable or not. However, the setting in
which the equality holds seems general enough to cover many interesting cases.

5 On liveness analysis

Two of the main properties we have been discussing about all along this work
are liveness and deadlock-freeness. In this section we will present two possible
extensions of the definitions of liveness to continuous P/T systems, one w.r.t.



Fig. 5. Two continuous systems for which either not every transition is fireable (left)
or the net is not consistent (right).

the RSC (ε-liveness) and the other w.r.t. the lim-RSC (lim-liveness), and the
corresponding two definitions of deadlock-freeness. We will compare these two
liveness definitions and also relate them to discrete liveness. This will allow
to deduce that necessary conditions for discrete liveness are necessary for lim-
liveness too. Then, we will concentrate on the classes of EQ and FC nets. We
will see that for strongly connected and str. bounded EQ systems str. lim-liveness
and (discrete) str. liveness coincide, and they are also equivalent to str. ε-liveness
for FC nets.

5.1 Liveness definitions

Let us start defining liveness w.r.t. the RSC. A naive generalization of the dis-
crete definition, following the approach used to define boundedness, leads to the
following statement: a transition t of a continuous P/T system is live iff from
every reachable marking, m, another marking can be reached, m′, at which the
transition is enabled, i.e., enab(t,m′) > 0.

According to this definition, transition t1 in Figure 1 is live, since for every
reachable marking a successor exists such that the marking of p1 is greater than
zero. From our discrete-biased point of view, this does not seem to be what one
would desire of a live transition. Therefore, let us try to modify the definition to
avoid this kind of behavior.

The problem in this example is that with a finite number of firings the mark-
ing of p1 and p2 can be done indefinitely small, but not zero. With the idea of
not allowing this to be considered live, we introduce an improved version of the
definition of liveness:

Definition 3. Let 〈N ,m0〉 be a continuous P/T system. A transition t is ε-
live iff ε > 0 exists such that for any reachable marking, m, a successor m′ ∈
RSC(N ,m) can be found such that enab(t,m′) ≥ ε.

So, if the enabling of a transition can be made as small as desired and never
grows back, this transition is not ε-live. As in discrete systems, we will say that
a continuous system is str. ε-live if a marking m0 exists such that in 〈N ,m0〉



every transition is ε-live. For instance, the system in Figure 2 (a) is ε-live with
the given marking.

In an analogous way we can define deadlock-freeness.

Definition 4. Let 〈N ,m0〉 be a continuous P/T system. It ε-deadlocks iff for
every ε > 0 a reachable marking, mε, exists such that for every successor m′

ε ∈
RSC(N ,mε), and every transition t, enab(t,m′

ε) < ε.

Clearly, the system in Figure 1 ε-deadlocks.
Another possibility is to define liveness w.r.t. the lim-RSC . With this defini-

tion of reachability, the extension of liveness is immediate:

Definition 5. Let 〈N ,m0〉 be a continuous P/T system. A transition t is lim-
live iff for any marking m ∈ lim-RSC(N ,m0) a successor m′ ∈ RSC(N ,m)
exists such that enab(t,m′) > 0.

In other words, a transition is non lim-live iff a sequence of successively
reachable markings exists which converges to a marking such that none of its
successors enables the transition. Observe that none of the systems in Figure 2 is
lim-live. For example, in the system in 2 (a), firing once either t1 or t2 a deadlock
is reached. For the system in 2 (b), take for instance the following sequence of
markings:

m0

t1−→m1

1

2
t1

−−→m2

1

4
t1

−−→m3

1

8
t1

−−→ . . .

That is, mk = [1/2(k−1), 4 − 1/2(k−1)]. Clearly, a limit of this sequence exists,
m = [0, 4], and no transition is enabled there. Hence, the system is not lim-
live. Even more, it can be proven that no marking makes this system lim-live.
Therefore, we can say that the continuous P/T net is not str. lim-live.

The following properties of bounded lim-live systems can be immediately
deduced.

Theorem 4. Let 〈N ,m0〉 be a consistent, bounded and lim-live continuous sys-
tem. Then,

1. LRSC(N ,m0)=lim-RSC(N,m0), i.e. there is no spurious solution of the
state equation.

2. N is str. bounded.
3. 〈N ,m0〉 is reversible w.r.t. the lim-RSC .

Proof. For (1), since the system is lim-live, a fireable sequence exists that con-
tains all the transitions. Then, applying Theorem 3, the result is proved.

(2) is immediate from Theorem 2.
To prove (3), let m ∈ lim-RSC(N ,m0). Observe that, since the net is con-

sistent, m0 ∈ LRSC(N ,m). Then, applying (1) to 〈N ,m〉, we obtain that
m0 ∈ lim-RSC(N ,m). ut

Analogously, we can define lim-deadlock:

Definition 6. A continuous P/T system 〈N ,m0〉 lim-deadlocks iff a marking
m ∈ lim-RSC(N ,m0) exists such that enab(t,m) = 0 for every transition t.

For instance, all the systems in Figure 2 lim-deadlock.



5.2 Liveness monotonicity

In discrete systems it may happen that a system is live with a certain marking,
and non-live with any other marking, in particular with a multiple marking. In
continuous systems an ε-live (lim-live) system is also ε-live (lim-live) with any
multiple/fraction of the initial marking. That is, ε-liveness and lim-liveness are
monotonic w.r.t. scaling of the marking.

Proposition 3. Let 〈N ,m0〉 be a continuous P/T system. If it is ε-live (lim-
live), then for every α > 0 〈N , αm0〉 is ε-live (lim-live).

Proof. Assume 〈N ,m0〉 is ε-live and α > 0 exists such that 〈N , αm0〉 is not
ε-live. Since 〈N ,m0〉 is ε-live, a constant ε > 0 exists such that for every
m ∈ RSC(N ,m0), and every transition t, a successor of m exists for which
the enabling of t is greater than ε. 〈N , αm0〉 is not ε-live, therefore a transition

t′ and a sequence σ′ exist such that αm0

σ′

−→m′, and for every successor of m′

the enabling of t′ is less than αε. Observe that 1
α
σ′ can be fired at m0, i.e.,

m0

1

α
σ′

−−→
1
α
m′. A successor of 1

α
m′ exists such that the enabling of t′ is greater

than ε. Hence, a successor of m′ exists for which the enabling of t′ is greater
than αε, contradiction.

An analogous proof can be used in the case of lim-liveness. ut

A question that naturally arises is whether discrete liveness monotonicity is
a stronger result than ε- or lim-liveness. This is false in the case of lim-liveness.
For instance, the system in Figure 2 (d) is live as a discrete system with the given
marking or a larger one. But it is not str. lim-live, since for any initial marking

firing m0[p1]
2 t2

m0[p1]
4 t2

m0[p1]
8 t2 . . . , in the limit a marking is reached in which no

transition is enabled. However, it is true w.r.t. ε-liveness, that is, discrete liveness
monotonicity implies ε-liveness.

Theorem 5. Let 〈N ,m0〉 be a consistent system which is live as discrete with
any marking multiple of the initial one. Then, it is ε-live.

Proof. Consider 〈N ,m0〉 as a continuous system. The proof will be done in two
steps. First, assume a reachable marking m and a transition t exist such that no
successor of m enables t. Taking a constant k big enough, a discrete sequence
can be fired from km0 leading to a marking which is as close as desired to km
(it may be exact if in the sequence leading to m all the transitions are fired in a
rational amount). Since the discrete system is live, a successor of this marking
enables t. Hence, a successor of m exists that enables t, contradiction.

Therefore, for every transition and every marking a successor exists in which
this transition is enabled. It might happen that the system were not ε-live be-
cause the enabling approached zero, i.e., for every ε > 0, t and m exist such that
for every successor the enabling of t is less than ε. Since the system is consistent,
reasoning as in Theorem 3, we can reach a marking that is as close as desired to
any solution of the LRSC, in particular a making close to m0. 〈N,m0〉 is live as
discrete, hence t can be fired again in a “big amount”. ut



5.3 Relations between discrete liveness, ε-liveness, and lim-liveness

In Section 3 we compared the properties of a system as discrete with its prop-
erties as continuous, this last one interpreted using the immediate continuous
extension of reachability. The examples that appear there show in particular
that a system can be str. live as discrete and not str. ε-live (Figure 2 (c)); and
the reverse, it can be str. ε-live and not str. live (Figure 2 (a)).

The concept of limit reachability was then introduced, trying to bring the
continuous properties nearer to what one would expect. As we have seen, lim-
liveness cannot be deduced from (discrete) str. liveness (Figure 2 (c)). However,
any lim-live system is str. live if it is seen as discrete. (Although not necessarily
live, i.e., the structure of the net is “correct”, although the marking may be “not
large enough”.)

Theorem 6. Let 〈N ,m0〉 be a bounded lim-live P/T system. Then, N is str. live
and str. bounded as a discrete net.

Proof. Assume N is not str. live as a discrete net. We will see that we can find a
sequence of successively reachable markings in the continuous system, such that
at the limit at least one transition is disabled, which contradicts lim-liveness.

〈N ,m0〉 is not live as a discrete system, therefore a sequence σ1 and a tran-
sition tj1 exist such that m0

σ1−→m1 and for every successor of m1 tj1 is disabled.
Take now 〈N , 2m1〉. It is not live as a discrete system, therefore a sequence

σ2 and a transition tj2 exist such that 2m1
σ2−→m2 and for every successor of m2

tj2 is disabled.
Analogously, 〈N , 2m2〉 is not live as a discrete system . . .
Repeating this procedure, a sequence of markings of the continuous system

is obtained:

m0

σ1−→m1

1

2
σ2

−−→
1

2
m2

1

4
σ3

−−→
1

4
m3−→ . . .

1

2k−1
σk

−−−−−→
1

2k−1
mk−→ . . .

For simplicity, let us denote m′
k =

1

2k−1
mk and σ′

k =
1

2k−1
σk. Then,

m0

σ′

1−→m′
1

σ′

2−→m′
2−→ . . .

σ′

k−→m′
k−→ . . .

The number of transitions is finite, therefore an infinite subsequence exists such
that the disabled transition is always the same. We will denote this transition
as t.

Since the system is bounded, a convergent subsequence of the former subse-
quence exists (by Bolzano-Weierstrass Theorem, any bounded sequence contains
a convergent subsequence). We will denote this latter subsequence as {m′

ik
}k≥1.

That is,

m0

σ′′

i1−−→m′
i1

σ′′

i2−−→m′
i2−→ . . .

σ′′

ik−−→m′
ik−→ . . .

where limk→∞ m′
ik

= m′.



〈N ,m0〉 is lim-live, therefore, α > 0, and a firing sequence σ exist such that

m′ σ
−→m̃′ αt

−→

Let ε =
1

2
minp∈P {m

′[p] | m′[p] > 0}. Since m′ = limk→∞ m′
ik

, a certain k0

exists such that for every k ≥ k0 and every place p, |m′
ik

[p] − m′[p]| < ε. Thus,

for every k ≥ k0, m′
ik

≥ 1
2m

′ and

m′
ik

1

2
σ

−−→m̃′
ik

α
2

t
−−→

Let Ki = 2ik−1. Then, mik
= Kim

′
ik

Ki
2

σ
−−−→Kim̃

′
ik

Kiα

2
t

−−−→, and taking k big
enough, an integer sequence that enables t can be fired from mik

, contradiction.
ut

With respect to the relationship between lim-liveness and ε-liveness, a similar
result can be proven, i.e., a bounded continuous lim-live system is ε-live. The
reverse is not true, as the system in Figure 2 (a) shows.

Theorem 7. Let 〈N ,m0〉 be a bounded lim-live P/T system. Then, 〈N ,m0〉 is
ε-live.

Proof. Assume 〈N ,m0〉 is not ε-live. Then, for every k > 0 a transition tjk
and

a marking mk ∈ RSC(N ,m0) exist such that for every m̃k ∈ RSC(N ,mk),
enab(tjk

, m̃k) < 1/k. Since the number of transitions is finite we can assume
w.l.o.g. that all the tjk

coincide. We will denote this transition as t.
Observe that m1 is reachable from m0, but nothing ensures that m2 can

be reached from m1. By Theorem 6, this system is str. live and str. bounded,
hence consistent. Thus, m2 ∈ LRSC(N ,m1). Moreover, being lim-live, every
transition is fireable, and applying Theorem 3, m2 ∈ lim-RSC(N ,m1). There-
fore m′

2 ∈ RSC(N ,m1) exists such that |m′
2 − m2| < 1/2. Analogously, m3 ∈

lim-RSC(N ,m′
2), and repeating the reasoning m′

3 ∈ RSC(N ,m′
2) exists such

that |m′
3 − m3| < 1/3. In general,

m0

σ1−→m1
σ′

2−→m′
2

σ′

3−→m′
3 . . .

σ′

k−→m′
k . . .

and |mk − m′
k| < 1/k. This defines a bounded sequence of markings, therefore,

applying the Bolzano-Weierstrass Theorem, a convergent subsequence {m′
ik
}k>0

exists. Let m′ = limk→∞ m′
ik

.
〈N ,m0〉 is lim-live and m′ ∈ lim-RSC(N ,m0), hence a (finite) sequence σ

and α > 0 exist such that

m′ σ
−→m̃′ αt

−→

Define ε = 1
2 min{m′[p] | m′[p] > 0}. Then, applying the limit definition and the

way the sequence has been built, a certain k0 exists such that for every k ≥ k0,



|m′
ik
−m′| <

1

2
ε, and |m′

ik
−mik

| <
1

2
ε. Thus, |mik

−m′| < ε and by definition

of ε, mik
≥ 1/2m′. Therefore,

mik

1

2
σ

−−→m̃ik

α
2

t
−−→

If k is big enough,
α

2
>

1

ik
. Contradiction, since for every successor of mik

the

enabling of t is less than 1/ik. ut

We have seen that a system may be str. discrete live (Figure 2 (a)) or str. ε-
live (Figure 2 (c)) and not str. lim-live. We might think that if both conditions
were required, i.e., the system is str. ε-live as a continuous system and str. live
as a discrete one, perhaps str. lim-liveness could be deduced. Actually, this is
not the case, as can be observed in the system in Figure 2 (d). The problem in
this example is that there are solutions of the state equation, that cannot be
reached in the discrete system but are reachable at the limit, which correspond
to deadlocks. For example, with the given initial marking, firing the sequence
1
2 t1

1
4 t1

1
8 t1 . . . , we reach in the limit the marking [0, 2], that clearly is a deadlock.

The results in Theorem 6 and Theorem 7, and the counterexamples in Fig-
ure 2 are summarized in the diagram at Figure 6. In Subsection 5.5 we will see
that these results can be improved if we restrict to selected subclasses.

lim-live

6⇐
⇒
⇒
6⇐

ε-live

6⇑ 6⇓

str. (discrete) live

Fig. 6. Relationships among lim-liveness, ε-liveness and discrete liveness for general
P/T nets.

5.4 Two necessary conditions for lim-liveness

From Theorem 6 it is clear that any necessary condition for a discrete system
to be str. live and str. bounded, is also necessary for it to be str. lim-live and
bounded. In particular the rank theorem (see [9] for a recent survey) is a neces-
sary condition based on the existence of left and right annullers of the token-flow
matrix, and the existence of an upper bound on the rank of this matrix, which is
the number of equal conflict sets. Two transitions, t and t′, are said to be in equal
conflict (EQ) relation when Pre[P, t] = Pre[P, t′] 6= 0. This is an equivalence
relation and the set of all the equal conflict sets is denoted by SEQS.

Theorem 8. Let 〈N ,m0〉 be a lim-live and bounded continuous system. Then,
N is consistent, conservative and rank(C) ≤ |SEQS| − 1.



Other structural elements that are useful in the analysis of lim-liveness are
siphons. A siphon is a set of places, P ′′, such that •P ′′ ⊆ P ′′•. Observe that an
empty siphon cannot be marked. Hence, a necessary condition for lim-liveness is
that no marking can be reached in which a siphon is empty. In [7] the conditions
for a set of places being a siphon were stated as the solutions to a set of linear
inequalities: A set Σ ⊆ P is a siphon of N iff y ≥ 0 exists such that ‖y‖ = Σ
and y · CΣ ≥ 0, where NΣ = 〈P, T,PreΣ ,Post〉 is such that PreΣ [p, t] = 0
iff Pre[p, t] = 0, and PreΣ [p, t] ≥

∑
p′∈t• Post[p′, t], otherwise. If lim-RSC =

LRSC, the absence of a marking in which a siphon is not marked can be checked
using a system of linear inequalities:

Theorem 9. Let 〈N ,m0〉 be a consistent P/T continuous system. If a solution
of the following system of inequalities exists, the system is not lim-live.

m = m0 + C · σ ≥ 0

y · CΣ ≥ 0

y · m = 0

y ≥ 0

σ ≥ 0

In discrete systems there exists a symmetry between traps and siphons (a
trap is a set of places, P ′, such that P ′• ⊆ •P ′), in the sense that marked
traps cannot be emptied and empty siphons cannot be marked. This symme-
try is lost in continuous systems if lim-reachability is considered, because al-
though an empty siphon cannot become marked, a trap can be emptied. For
instance, in Figure 7, {p1, p2, p3, p4} is a trap, that is emptied by the firing of
t1t2

1
2 t3

1
2 t4

1
2 t2

1
4 t3

1
4 t4

1
4 t2

1
8 t3

1
8 t4

1
8 t2 . . . This means that traps cannot be used to

improve the description of the reachability conditions given by the state equation
as in discrete systems [12].

Fig. 7. A live system and its LRG.



5.5 Particular results for some subclasses

As usual, the results obtained in the general frame of continuous systems can
be improved if we restrict to selected subclasses. We concentrate here on two
subclasses: EQ nets and FC nets.

First, it can be seen that lim-liveness and lim-deadlock freeness coincide in
bounded and strongly connected EQ systems, as happened with their discrete
counterparts.

Theorem 10. Let 〈N ,m0〉 be a bounded, strongly connected, continuous EQ
system. It is lim-live iff it is lim-deadlock-free.

Proof. Assume 〈N ,m0〉 is not lim-live. Then, a transition t and a marking m ∈
lim-RSC(N ,m0) exist such that for every m′ ∈ RSC(N ,m) the enabling of t is
zero. Let p ∈ •t. All the transitions in p• are in equal conflict relation, hence
none of the output transitions of p fires again. The system is bounded, therefore
a sequence of markings exists such that for their successors the enabling degree
of the input transitions of p converges to zero. Applying the Bolzano-Weierstrass
theorem, a convergent subsequence of markings exists. Neither t, nor any input
transition of p is enabled at the marking reached in the limit, and they will never
be enabled again. Repeating the reasoning, since the net is strongly connected,
and the number of transitions is finite, we finally reach a marking in which no
transition is enabled. ut

In discrete EQ systems the rank theorem is a characterization of str. live-
ness and str. boundedness [13]. For continuous EQ systems this result can be
improved: a characterization of lim-liveness and boundedness can be obtained
analogous to the one that exists for liveness and boundedness of discrete FC
systems [6]. This provides a simple, polynomial time, way to prove lim-liveness
of EQ systems:

Theorem 11. Let 〈N ,m0〉 be a continuous EQ system. The following condi-
tions are equivalent:

1. The system is lim-live and bounded.
2. The system is consistent, conservative, rank(C) = |SEQS| − 1 (or, equiv-

alently, it is str. bounded and str. live as discrete) and the support of every
P-semiflow is marked, i.e., 6 ∃ y ≥ 0 such that y · C = 0, y · m0 = 0.

Proof. For “1⇒2”, applying Theorem 6, and the characterization of str. liveness
and str. boundedness for EQ nets [13], the net must be consistent, conservative
and rank(C) = |SEQS| − 1. Assume a P-semiflow, y, exists that is not marked.
Then, for every reachable marking, m, y · m = y · m0 = 0, i.e., none of the
places in ‖y‖ can ever be marked. Hence, their output transitions cannot be
fired, contradiction.

For “2⇒1”, if 〈N ,m0〉 is not live, it deadlocks (Theorem 10). Let md ∈
lim-RSC(N ,m0) be a deadlock. Then, for every transition t, a place p ∈ •t
exists such that md[p] = 0. This set of places contains the support of a P-
semiflow [13], and it is not marked, contradiction. ut



The properties of EQ systems allow to extend to lim-liveness and bound-
edness a sufficient condition for (discrete) str. liveness and str. boundedness [9].
The idea is to transform the system into an EQ system, and apply the results
of this class. More specifically, each coupled conflict set is transformed into an
EQ set. The coupled conflict relation is defined as the transitive closure of the
str. conflict relation, where t and t′ are in str. conflict relation iff •t ∩ •t′ 6= ∅.
The set of all the equivalence classes is denoted by SCCS. We skip the proof,
since it is analogous to the one given in [9] for the discrete case.

Theorem 12. Let N be consistent, conservative and rank(C) = |SCCS| − 1.
Then, N is str. lim-live as a continuous net. Moreover, any marking that marks
every P-semiflow makes the system lim-live.

In strongly connected str. bounded EQ systems str. lim-liveness is equiva-
lent to (discrete) str. liveness, though not in general to str. ε-liveness (see Fig-
ure 2 (a)). For strongly connected str. bounded FC nets a stronger result holds:
(discrete) str. liveness, str. ε-liveness, and str. lim-liveness are equivalent.

Theorem 13. Let N be a strongly connected, str. bounded FC net. The following
conditions are equivalent:

1. N is str. lim-live.
2. N is str. ε-live
3. N is str. (discrete) live.

Proof. “(1)⇒(2)” is proven in Theorem 7 and “(3)⇒(1)” can be deduced from
Theorem 11.

For “(2)⇒(3)”, assume N is not str. live and let m0 be such that 〈N ,m0〉 is
ε-live. We can assume w.l.o.g. that m0 ∈ N

|P |. The system is not live as a discrete
system, hence it deadlocks, i.e., a sequence σd exists such that m0

σd−→md and
no transition is enabled at md. Then, for every transition t a place p ∈ •t exists
such that md[p] = 0. The same sequence can be fired if the system is considered
as continuous, and clearly it also leads to a deadlock, contradiction. ut

6 Conclusions

A common practice in many fields in which systems with large state spaces ap-
pear is to relax the description by dropping integrality constraints on the state
equation. Moreover, there are systems in which discrete parts are mixed with
other parts, that are more naturally represented as continuous. In P/T systems
this idea has led to the definition of continuous and hybrid P/T systems. Some
of these models incorporate a continuous part by means of algebraic differential
equations [15, 2], others allow non integer markings in some places [4, 14] (see [3]
for a comparison of different approaches through the modelling of a benchmark
example). This latter approach is the one that is considered here, although with
one main difference, we study autonomous models, i.e. without any timed inter-
pretation.



The basic definitions of P/T systems are extended to the continuous case in
Section 2, allowing real non negative markings, and the firing of transitions in
any real non negative amount. An immediate consequence of the possibility of
firing transitions in non discrete amounts, is that the behavior of a continuous
system does not change if the initial marking is scaled. This does not happen
in discrete systems (for instance, a discrete system may be deadlock-free with a
certain marking, and deadlock if the initial marking is doubled). This means that
monotonicity of the properties w.r.t. scaling, which is not basic for the study of
discrete systems, is a must if we want the continuous view to be coherent with
the discrete one. In other words, a system should not be studied as continuous
if the exact amount of tokens is so important to determine its behavior.

The relaxation of the notions of marking and firing, allowing positive real
numbers, is quite intuitive. However, the extension of reachability is not so im-
mediate. This concept is central for the eventual analysis of logic properties of
the modeled systems, but it has not been properly investigated before. In this
paper two possible definitions of reachability have been introduced, and their
analysis explored.

With the first notion of reachability, the idea of a finite sequence of firings
is preserved. Some examples are presented in Section 3 showing that with this
definition of reachability the behavior of continuous and discrete systems can be
completely different. The second notion, introduced in Section 4, allows infinitely
long firing sequences, leading to the concept of limit reachable markings.

Another difference w.r.t. the discrete case is that in continuous systems the
set of reachable markings is a convex set, independently of which reachability
definition is considered. Apparently, deciding whether a certain marking is reach-
able or not, when the firing is not restricted to be integer, is more difficult than
in the integer case. However, under the limit reachability definition, in most
practical cases the set of reachable markings coincides with the solutions of the
state equation.

Liveness and deadlock-freeness are studied in Section 5. Two definitions of
liveness, ε-liveness and lim-liveness, and the corresponding two definitions of
deadlock-freeness, have been introduced, each one associated to one of the de-
finitions of reachability. These two continuous liveness definitions and the dis-
crete liveness definition are compared. As a result it is deduced that in bounded
systems lim-liveness implies ε-liveness and (discrete) str. liveness. For bounded
strongly connected EQ systems, this result can be improved: str. lim-liveness and
discrete str. liveness coincide. Moreover, they are also equivalent to ε-liveness in
the case of FC systems. These relations among discrete and continuous liveness
definitions allow to obtain two necessary conditions for lim-liveness and bound-
edness, and a sufficient one, which are analogous to the ones that exist in the
discrete case.

From our experience after this work, we conclude that although both def-
initions of reachability are interesting, limit reachability seems to be specially
convenient. On the one hand, the idea of treating very small quantities as zero is
reasonable if continuous systems are considered as an approximation of discrete



systems. On the other, the simple representation of the lim-RSC in most practi-
cal cases (the solutions of the state equation) offers a clear advantage w.r.t. the
RSC, for which there seems to be no simple way to deduce whether a certain
marking can be reached or not. However, further investigations about how to
extend other properties of discrete P/T systems should be done before making
a choice.
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