1

Introducing Petri nets

M. Silva

1.1 INTRODUCTION

Modern manufacturing systems are highly parallel and distributed. They
need to be analyzed from qualitative and quantitative points of view.
Qualitative analysis looks for properties like the absence of deadlocks, the
absence of (store) overflows, or the presence of certain mutual exclusions
in the use of shared resources (e.g. a robot). Its ultimate goal is to prove
the correctness of the modeled system. Quantitative analysis looks for per-
formance properties (e.g. throughput), responsiveness properties (e.g. aver-
age completion times) or utilization properties (e.g. average queue lengths
or utilization rates). In other words, the quantitative analysis concerns the
evaluation of the efficiency of the modeled system.

As in many engineering fields, the design of manufacturing systems can
be carried out using models. Petri nets allow the construction of models
amenable both for correctness and efficiency analysis. Moreover they can
be implemented using many different techniques (hardware, micro-
programmed, software). Because of the graphical nature of net models,
they are mostly self-documented specifications, making easier the commun-
ication among designers and users. Net models can be used during the
entire life cycle of manufacturing systems.

A Petri net (PN), like a differential equation, is a mathematical formal-
ism, Petri nets find their basis in a few simple objects, relations and rules,
yet can represent very complex behaviors. More precisely, Petri nets can
be considered as a graph theoretic tool specially suited to model and analyze
discrete event dynamic systems (DEDS) which exhibit parallel evolutions
and whose behaviors are characterized by synchronization and sharing
phenomena. Their suitability for modeling this type of system has led to
their application in a wide range of fields. Examples of such DEDS are
communication networks, computer systems and, the purpose of this book,
discrete part manufacturing systems.

To be able to use a Petri net for modeling a given type of application,
we must enrich it with an adequate interpretation. That is, we must associate
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a semantics (i.e. a ‘physical’ meaning), to the net’s entities (places, transi-
tions, tokens), evolution conditions and, eventually, define the actions
generated by the evolutions. Broadly speaking, the interpretation gives a
meaning to the net system and defines its relationships with the external
world (i.e. the interpretation considers the environment in which the net
model will be exercised).

The interpretation of graph theoretic tools is nothing new. A graph
(in its theoretical sense) is a set of objects (nodes) with relations (see, for
example, Deo (1974); Gibbons (1985)). With a graph the connectivity
between sites (towns, points in a circuit, ...) can be represented using
obvious interpretations. Another kind of interpretation on graphs allow
us to model discrete and finite dynamic systems: the nodes represent the
states of the system, the arcs represent transitions between states. Par-
ticularizing a little more the state-based interpretation, state diagrams (SD)
(see, for example, Breeding 1989), and state transition diagrams (STD) (see,
for example, Ajmone et al. (1987)) are widely used interpreted graphs:
SDs allow the modeling of finite state sequential switching systems, while
STDs allow the modeling of homogeneous finite Markov chains. For both
formalisms, SDs and STDs, the evolution of the system can be done in
continnous time (asynchronous state diagrams; state transition rate dia-
grams) or in discrete time (synchronous state graphs; discrete time state
transition diagrams). _

Provided with adequate interpretations, PNs are able to model ‘dis-
tributed state diagrams’, the control flow of concurrent programs or queu-
ing networks with synchronizations, among other possibilities. The evolution
of a fully uninterpreted net system is said to be automomous. An inter-
preted net system is said to be non-awtomomous because its evolution
depends also on the state of the environment considered by the associated
interpretation. For example, the timing of a net is a particular interpre-
tation by which its evolution depends also on time. : .

There exists a very rich body of knowledge around Petri nets theory and
applications. The purpose of this chapter is to briefly overview in a semi-
formal and illustrative way the basic modeling concepts and the main tech-
niques for qualitative analysis. It can be said that Petri nets are suited for
parallel systems even more than are automata for sequential systems. Any-
how, the main practical argument for employing PNs should be the use of
a graphical, easy to understand single family of formalisms through all the
different stages from the design until the implementation and operation.

Although many recent results are integrated in this text, the main line
of argument closely follows Silva (1985). The chapter is basically organized
in two parts. The first one (up to section 1.5) is devoted to different modeling
issues. The second part, sections 1.6 and 1.7, is mainly devoted to qualita-

tive analysis. More precisely, the chapter is structured as follows. Net-

structure and the dynamics of net systems are introduced in section 1.2.
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illustrative way some possible interpretations of net systems models. The
existence of pathological behaviors on concurrent systems jeads to th.e
introduction of some basic qualitative properties in section 1.5. Th‘elr
analysis is done in section 1.6, overviewing reachability graph (sef:tlon
1.6.1), net system reductions (section 1.6.2) and linear algebra techniques
(section 1.6.3). Section 1.7 is devoted to some basic net subclasses and
their analysis. Obviously, the more restrained the net subclass is, the more
powerful the analysis techniques are. Concluding and bibliographical re-
marks end this introductory presentation.

1.2 NETS AND NET SYSTEMS

A Petri net model of a dynamic system consists of two parts:

1. a net structure, a weighted-bipartite directed graph, that represents the
static part of the system; and :
2. a marking, representing a distributed overall state on the structure.

The above separation allows one to reason on net-based models at two
different levels: strunctural and behavioral. Reasoning at the structural
level we can derive some ‘fast’ conclusions on the behavior of the modeled
system, relating when possible structural and behavioral properties. Purely
behavioral reasonings are computationally very complex.

1.2.1 Net structure (what is a Petri net?)

To model a discrete-event-dynamic system we need to take into account
its states and the events leading to the state-evolutions. In net systems the
state is described by means of a set of state variables representing local
conditions. Moreover, net models make explicit the existence of state-
tramsitions. Therefore net structures are built on two disjoint sets of objects:
places (represented as circles), and tramsitions (represented as bars or
boxes). Places are the support of the state variables.

Places and transitions are related through a weighted flow relation,
described by an unweighted flow relation, F, and a weighting function on
F,W. Let us now give the formal definitions and see some examples.

Definition 1.1. A Petri net is a four-tuple:
N=(P, T FW)
where:

P is a finite non-empty set of n = | P| places

T is a finite non-empty set of m = |T| transitions

P T = ie. places and transitions are disjoint sets
FC(PxT)u (T x P) is the flow relation (set of directed arcs):

PR



()

Figure 1.1 Net structure and net system: (a) N, net structure; (b) (N, M), net
system.

Figure 1.1(a) shows a net structure. Arcs are labeled with natural numbers,
W(p. t;) or W(t, p;), the arc weights. As will be seen, non-unitary arc weights
allow us to model bulk arrivals or bulk services. By convention, unlabeled
arcs are weighted one. All the arc weights in the net of Fig. 1.1 are 1,
except for arcs (a, p;) and (ps, d) whose weights are 2. In many practical
cases there exists neither bulk arrival nor bulk service. Therefore all the
arc weights are one. In this.case the net is said to be ordinary.

A place p is an input (output) place of transition ¢ if there exists an arc
going from p to ¢ (output respectively from ¢ to p). In F1g 11, {p3, s} are
input places of 4 while {p;, p,} are output places of a.

An alternative way to see Petrl nets is to define the weighted flow
relation through two incidence functions:

'Definition 1.1(a). A Petri net is a four-tuple:

N = (P, T, Pre, Post)
where:

F and T are disjoint, finite, non-empty sets of places and transitions,
Tespectively
Pre: P x T — N is the pre-incidence or input function
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(a) (&)
Figwre 1.2 Two self-loops.

There is an arc going from the place p; to the transition ¢ iff Pre(p, 1) +
0. Similarly, there is an arc going from transition £, to place p; iff Post(i,, p,)
£ 0. The arc weight, Pre(p,, t) = W(p,, ;) or Post(t,, p,) = Wz, p;), labels
the corresponding arc. The pre- and post-set of transition f € T are defined
respectively as ‘t = {p | Pre(p,#) > O}and £ ={p | Post(, p) > 0}. The pre-
and post-set of a place p € P are defined respectively as 'p = {t | Post(t, p)
> 0} and p°= [t | Pre(p,t) > O}

A practical way of representing the net structure is to use incidence
matrices. The incidence functions can be represented by means of pre- and
post-incidence matrices, Pre- and Post-, both having » = |P| rows and m =
|7} columns.

The pre- and post-incidence matrices of the net in Fig. 1.1(a) are as
follows:

abc def abc def

pp (1 00000 pp (000100
p, 010000 ps 200000
.10 00200 _ps |01 00C0CO
Pe=2 100101 o Post=0"11 000 0 1
ps |0 00 1 00 ps |0 01 00 O
pe L0 0 0 001 ps L0 0 0 01 0

A pair of place p and transition ¢ is called a self-loop if p is both an input
and output place of t. A Petri net is said to be pure if it has no self-loops.

Figure 1.2 shows two self-loops. A self-loop can be easily eliminated
(e.g. by expanding the transition into a sequence: initial transition — inter-
mediate piace ~ final transition). Pure nets are completely characterized by
the (single) incidence matrix:

C = Post — Pre

Positive (negative) entries in C represent the post- (pre-) incidence func-
tion. If the net is not pure, the incidence matrix ‘does not see’ the self-
loops.

1.2.2 Net systems: marking and token game

The structure of a net is something static. Assuming that the behavior of



Figure 1.3 Firing transition #: marking evolution.

dynamics of a net structure are created by deﬁmng its markmg and

marking evelution rule.
Definition 1.2. The marking M of a net N is an application of P on N, i.e.

the assignment of a non-negative integer (number of tokens) to each place. -

Definition 1.3. A marked Petri net or net system is the couple (N, M,),
where N is a Petri net-and M, is an initial marking.

The number of tokens at a place represents the local state of the place (ie.
the value of the state variable). The state of the overall net system is
defined by the collection of local states of the places. A marking M is
denoted as an » = |P| vector whose pth component, M(p), represents the
number. of tokens in place p. The vector M is the state-vector of the dis-
crete event dynamic system described by the net system. Pictorially, we
place M(p) black dots (tokens) in the circle representing place p. Figure
1.1(b) represents a net system with an initial marking M = (1,0, 0, 0,0, 0)".

Once the distributed state is defined, the guestion is: how does a net
system work? The evolution is defined through a firing or occurrence rule,
informally named the ‘token game’. This is because net structures can be
seen as ‘special checkers’, the tokens as ‘markers’ and the firing rule as the

‘game rule’. Transitions represent potential moves in the ‘token game’.

Definition 1.4 (token game). A marking in a net system evolves accord-
ing to the followmg firing (or occurrence) rule:

1. A transition is said to be enabled at a given markmg if each input place
has at least as many tokens as the weight of the arc joining them.

2. The firing or occurrence of an enabled transition is an instantaneous
operation that removes from (adds to) each input (output) place a
number of tokens equal to the weight of the arc joining the place (tran-
sition) to the transition (place).

The pre-condition of a transition can be seen as the resources required for
the transition to be fired. The post-condition represents the resources
produced by the firing of the transition.

Transition ¢ (Fig. 1.3(a}) is enabled. Its firing leads to the marking in Fig.
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system of Fig. 1.1(b) is a. Its firing leads to the marking M = (0, 2,0, 1, 0, 0)’,
where b, ¢ and ¢ are now enabled. '

An important remark concerning the firing rule on our abstract model
is that enabled tramsitions are never forced to fire. This is a form of non-
determinism. In practical modeling the interpretation partially governs the
firing of enabled transitions (e.g. depending on whether or not an external
event associated to an enabled transition occurs). In section 1.3 we will
come back to this important issue.

The enabling and firing of a transition can be represented in a very
convenient way using incidence matrices and marking vectors. Let us de-
note the columns associated to ¢ in the different incidence matrices as Pre(f),
Post(f) and C(z):

1. Transition 7 is enabled at M iff M 2 Pre(?) 1.1
2. Denoting as M,[t} M, the fact that M, is reached by firing ¢ at M; (M,
enables 1)

M, = M, + Post(f) — Pre(t) = M, + C(f) (12)

Assuming N to be pure (otherwise it can be easily transformed), it is not
difficult to derive the following:

Mty M, & My=M;+C-¢, 20 13)

where ¢, is the characteristic vector of . e{x) = if x = 1 then 1 else 0
The right-hand side of the equivalence in eq. (1.3) is clearly a state
equation: M, is the present state, M, the next state, ¢, the input vector.
Unfortunately classical control theory is not of great help to us when
studying the dynamic behavior of net systems: the state (marking) and
input vectors should take their values on non-negative integers. '
Integratmg the state equation- from™ M, along a firing sequence ¢ =
.. leading to M, (M, is said to be reached from M, by means of 0') we
can wnte '

Mo} M, = M,=M,+C- 520,520 (1.4)

where & is the firing count vector of o: &(f) is the number of times  has
been fired in &

Equation (1.4) is called the fundamental equation or, more frequently,
the state equation of the net system. (Remark: properly speaking the state
equation is eq. (1.3), while eq. (1.4) is the transition equation in control
____theory terminology.)

~ The most important remark now is that only the right-hand implication
exists in eq. (1.4). Otherwise stated, unfortunately a non-negative integer
solution & 2 0 of M, = M,+ C - & 2 () does not imply there exists a &
such that M, is reachable from M, (i.e. does not imply M,[c) M,). For
example, assuming M, = 0 for the net in Fig. 1.1(2), & = (1,1,1,1,0, 0)*
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integer couple M, =0, & = (1,1,1,1,0,0)7 is called a spurious solution of
the state equation. The existence of spurious solutions is the main problem -

for the analysis of net systems using linear algebra techniques. However,

many practical analysis results can be obtained using these techmques (see

later sections 1.6.3 and 1.7. 2)

13 ON MODELING FEATURES

Petri nets, as infroduced thus far, are a mathematical formalism. This
section presents a number of features which — in our opinion — make nets
an interesting modeling formalism, specially suited for discrete-event
dynamic systems with concurrent or parallel events and activities.

The considerations in this section are general, i.e. still on the abstract
formalism, valid for any particular interpretation. Before concentrating on
our main issue here, on practical modeling, it is important to highlight the
fact that nets allow a natural graphical representation that makes them very
much appreciated in engineering circles (‘a picture is worth a thousand
words!’). Nevertheless, big and not well-structured net models are difficult
to understand and analyze. This means in practice that good modeling
disciplines are very important.

As a preliminary remark on practical modeling, the reader can easily

check the simplicity of representing with nets three basic modeling notions:
causal dependence (e.g. sequence), conflict (decision, choice) and con-
currency. Going back to our net system in Fig. 1.1(b) it is obvious that the
firing of f must be done after (causal dependence) that of e. Also, it is clear
that twice b and ¢ must precede the firing of d. Moreover, ¢ and e define
a conflict. From any marking with M(p,) = 1, transitions ¢ and e are
simultaneously enabled, but they cannot be simultaneously fired: a deci-
sion must solve the conflict.

As already mentioned, a major feature of nets is that they do not define
in any way how and when (i.¢. time independence) a given conflict should
be solved, leading to non-determinism on its behavior.

Sequence and conflict are classical notions in sequential systems (e.g.

in finite automata). Concurrency is a third concept that net systems re-
present in an extremely natural way. Informally speaking two transi-
tions are concurrent at a given marking if they can be fired ‘at the same
time’, i.e. simultaneously. Once transition « is fired in the net system at
Fig. 1.1(b), the marking M = (0,2,0,1,0,0,0)7 is reached. Then transi-
tions b and ¢ can be fired simultaneously. Moreover, because M(p,) =
2, transition b can be fired concurrently to itself (idea of re-entramcy):
self-concurrency.

Synchronizations are very important in the modeling of distributed and
concurrent systems. How are synchronizations modeled with nets? Basi-
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. Figure 14 Typica] synchfonizaﬁon schemes: (a) rendezvous, RV;

; (b) semaphore, §; (c) symmetric RV/
-join; {f} subprogram (p, p; are in mutual

semaphore; (d) asymmetric RV/semaphore (master/slave); (¢) fork
exclusion, mutex); (g) shared-resource (&t); (h) guard (condition reading).
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may appear, even if a transition has only one input place, when the arc is

weighted (e.g. assuming ps was not present in Fig. 1.1, transition d would - '

also represent a synchronization because its firing would require the pres-
ence of two tokens on p;).

Figure 1.4 is self-explanatory. In all cases nets are ordinary (thus
synchronizations are on transitions with more than ore input place). Just
two remarks: (1) the correct behavior of schema (f) is based on the fact
that both p; and p; cannot be simultaneously marked (i.e. they must be in
mutual exclusion) and (2) the resource & of schema (g) can be used in
place p, or in place p,, but simultaneous use is impossible (i.c. the use in
p, and p, is in mutual exclusion).

The separation in a bipartite structure and a marking makes the net-
based approach very powerful for modeling purposes. In particular, the
dichotomy places/transitions leads to a treatment of states and actions on
an equal footing. This makes — in our opinion -~ nets superior to cither
purely state- or purely transition-oriented formalisms where one of the
notions is explicit and the other has to be deduced.

The existence of a locality principle on states and actions (transitions)
in net models is a direct consequence of its bipartite structure and marking
definition. The importance of the locality principle resides in the fact that
net models can be locally modified, refined or made coarse, without altering
the rest of the model. This means, in particular, that nets can be synthesized
using top-down and bettom-up approaches. Top-down synthesis is any
procedure that, starting with an initial (very abstract) model, leads to the
final model through stepwise refinements. In a bottom-up approach
modules are produced, possibly in parallel by different groups of designers,
and later composed. Restricting the many possible refinements and com-
positions strategies, we just mention here place and transition refinements
and compositions through merging of transitions (i.e. synchronization of
modules) and merging of places (i.. fusion of modules). The net in Fig. 1.5
shows a two-level hierarchical refinement: p; (that defines local states) and
9, are refined. The net system in Fig. 1.1 can be obtained synchronizing
two modules (Fig. 1.6(a), synchronizing transitions ¢ and d) or fusing two
modules (Fig. 1.6(b), fusing the places p,).

Summarizing, still at an abstract level, net systems have the following
practical features for modeling:

1. Graphical and equational representations. Therefore, net systems
enjoy some comparative advantages for documentation and analytical
studies.

. Natural expression of causal dependences, conflicts and concurrency.

Simple, appealing and powerful synchronization mechanism making

patural the construction of mutual exclusion constraints.

4. Locality of states and actions which allows the hierarchical and the

w N
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_Figl_lre L6 Two modular ways of constructing the net in Fig. 1.1: (a) synchron-
1zation; (b) fusion.
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SYSTEM

events actions

ENVIRONMENT

Figure 1.7 Modeled system and its environment mutually interact.

1.4 ON NET SYSTEMS INTERPRETATIONS

A Petri net can be used to model a discrete event dynamic systems assign-
ing a meaning to its associated elements (places, transitions and tokens)
and relating explicitly the modeled systent and its emvironment (Fig. 1.7).
In general the behavior of a system is influenced by the environment
{through events in our case), while the actions generated by the system
" influence the behavior of its environment. Therefore, to interpret a net
system is to establish a convention which defines:

1. The meaning of places, transitions and tokens.

2. A meaning for the conditions which govern the transition firing.
The marking evolution rule is slightly modified by the interpretation,
which also becomes a function of the behavior of the modeled system’s
environment.

3. The actions generated by the model.

If the behavior of a net system is not influenced by the environment, it is

said to be automomens. Non-autonomous net systems have more con-
strained behavior than the underlying autonomous net system.

The purpose of this informally written section is not to fix ‘good’ inter-
pretations, but to show the existence of many possible ones, even for a
given class of problems or application domain. Therefore, the reader should
not be very much worried about technical details.

Section 1.4.1 introduces two different interpretations, one for modeling
the control part of concurrent programs, the second generalizes the classical
state diagram formalism (see, for example, Ercegovac and Lang (1985);
Breeding (1989)) useful to model sequential switching systems. To clearly
differentiate PNs as uninterpreted models from their different interpre-
tations. marking flow charts and marking diagrams are the names given to

/ , On net systems interpretations 13

1.4.1 Marking flow charts and marking diagrams

The environment of a net modeled system can affect the behavior of the
net model and vice versa. Usually the interaction is done through:

(a) Events and/or predicates over some ‘external states’. These ‘guard’
the firing of transitions (from the environment to the net modeled
system).

(b) Actions that, generated by the net modeled system, cause the state of
the environment to ‘change’.

Depending more precisely on the application domain (software, hardware
controllers, logical automatisms, etc.), many interpretations exist. In some
cases, actions are associated with the firing of transitions {(as in Mealy-
Automata); in other cases actions are associated with the marking of
places (as in Moore-Automata).

Even for a given application domain, there exist many possible interpre-
tations. Thus no formal or rigid definition of interpretations will be given.
Only two cases are considered for illustration purposes. First there is
a collection of comments on what net interpretations look like to model
the control part of concurrent software systems. Later a discrete-event-
controller (a production cell with two machines, one robot and a store) is
modeled using marking diagrams.

(a)- Marking flow charts

In modeling software the more natural interpretation is based cn the
classical control part (CP)-operative part (OP) decomposition. Using the
CP-OP decomposition principle, the state of a program (sequential or
concurrent) can be considered as the concatenation of a control state (for
the CP) and a data state (for the OF). Places will represent parts of the
control state (defined by the marking of the net), while predicates over the
data state are associated with the transitions. Predicates allow dec131ons to
be taken (i.e. conflicts to be solved). :

Therefore the firing of transitions is govemed by the net markmg and
predicates on the data. Data transformations can be associated with the
firing of a transition (usually implemented by means of sequential modules
activated by the firing of the tramnsition).

For a given program, the execution of an instruction (at a more abstract
level a block of instructions or medule) will be represented by the firing
of a transition. The preincidence (input) function of each transition de-
termines a condition which must be fulfilled for the instruction (or the
block) to be executed. In general, with each transition a label, consisting
of a ‘predicate over data/data transformation’ couple, is associated. If a
transition is not conditioned by a predicate, that field is omitted in the
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while C; do {*py*)
if C2 then l'] (*p3*)
else b
endif (*pg¥)
parbegin I3, iy (*ps, p7*)
parend (*pg. pg*)
endwhile (*p*)

endloop

Figure 1.8 Flow control representation of a simple parallel-PASCAIL -like
program.

corresponding field is-omitted. The complete condition for fmng a transi-
tion is the intersection of the net system enabling condition and, possibly,
the associated predicate over data.

According to the above comments, at a certain level of abstraction the
interpreted net system models the control part, while the operative part is
Jmplemented through the modules associated with the ﬁnng of transitions.
Figure 1.8 is practically self-explanatory.

(b) Marking diagrams

In modeling discrete-event-controllers, state diagrams (see, for example,
Ercegovac and Lang (1985); Breeding (1989)) are classical interpretations
of graphs allowing the modeling of finite sequential switching automata.

In state diagrams, the nodes of the graph represent the states, while the
arcs are labeled with external events and external state conditions. Actions
are associated with the transitions (arcs) or the states (nodes). Eventually
actions may be conditioned by the external state. State diagram inter-
pretations can be easily applied to Petri net systems leading to some marking
diagrams (MD): (a) events and Boolean functions of external variables
guard the firing of transitions, and (b) actions can be associated with tran-
sitions (level-actions) or to the marking of places.

Let us concentrate now on our manufacturing domain through an example.

On net systems interpretations 15

consumer (MACHINE 2) schema with a2 mutaal exclusion semaphore (R, a
robot) (Fig. 1.9(a)). Many production systems can be constructed con-
catenating different stages of such schema.

The following behavior is assumed for the cell (Fig. 1.9(b)). Raw parts
arrive through a conveyor. The arrival of a part is detected by a presence
(e.g. photoelectric) sensor: IT; = 1 iff a part is present. When a raw part is
present, MACHINE 1 is not loaded and the robot is free, it proceeds to load
the machine (load; ef: end_of_load). The machine performs operations op;
and waits for deposit in the buffer (wait-dep.).

The deposit is done when there is an empty niche in the buffer and the
robot is free again. End_of deposit, ed, is represented by a transition.
MACHINE 2 proceeds in an analogous way, but once op, has finished, eop,
(end_of_op,) waits for the robot to perform the unloading, assuming the
second sensor detects that there is any part at the beginaing of the finished
parts conveyor (II= 0 iff the conveyor is free).

The net system model in Figure 1.9(b) (let us call these interpreted net
models marking diagrams) specifies the above behavior. It is labeled with
external conditions at trapsitions (17, label ¢, IT, label #,), and actions at
places (load, op,, deposit, op,, unload, withdrawal).

1.4.2 Timed net systems

Uninterpreted Petri nets do not include any notion of time and are aimed
to model only the logical behavior of systems by describing the causal
relations existing between events. The introduction of a timing specifica-
tion is essential if we want fo use this class of model to consider per-
formance, scheduling or real-time conirol problems.

Timing and firing process. Since Petri nets are bipartite graphs, histori-
cally there have been two ways of introducing the concept of time in them,
namely, associating a time interpretation with either places or transitions. .
Because transitions represent activities that change the state (marking)
of the net, it seems ‘natural’ to associate a duration with these activities
(transitions). In order to solve conflicts between transitions many authors
tend to define a ‘timed firing’ of transitions.in three phases: a first in-
stantaneous phase in which an enabled transition removes tokens fromn its
input places, then a timed phase in which the transitions are ‘working’, and
a final instantaneous phase in which tokens are deposited into the output
places. If we want to model pre-emption of activities after their starting,
however, we are forced to associate an enabling time with transitions and
define atomic ﬁrmg In this way conflicts should be solved at the end of the
delay of enabled transitions. The solution is always in favor of the first
transition that elapses its firing time among the conflicting transitions
(Ajmone et al., 1989).

_In any case, from the above discussion it follows that the only effect of
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Finished parts
(opy; 0p2)

Temporary buffer
for partially
produced (op ) parts

Raw parts
(@

MACH 1

®

Figure 1.9 A production cell with two machines, one robot and a store:
(a) Schema of a manufacturing cell; (b) Net system specifying the behavior.
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P P3

Figure 1.10 Visualization of the 3 phases firing of a timed transition: place p,
will hold each token for z; time units. .

to the different implications that the choices have on the resolution of
conflicts. :

Let us now give in a more precise way two alternative definitions for
deterministically timed Petri nets. The reader is left to reflect on the rela-
tionship between the two. For illustration purposes only three phases timed
firing is now considered. '

Definition 1.5. A (deterministically) transition-timed Petri net (~TPN) is
a couple (N, Z) such that N = (P, T, Pre, Posty and Z is a function which
assigns a non-negative real number, z;, to each transition in the net: Z:T
— RY; z; = Z(t) is called the firing time of the transition .

The marking evolution rule of +-TPNs is nearly identical to that of a PN.
The only difference is that firing 1, takes z, time units. Adopting the three
phases approach (Fig. 1.10): ' :

1. When the transition ¢ is enabled, a firing is initiated. Conflicts are non-
deterininistically solved as in the untimed net system. In this phase
Pre(p, ) tokens disappear from each input place of &

2. The firing process (which represents an operation) remains for z; time
units.

3. When the z; time units have elapsed, the firing ends. In this phase
Post(t, p) tokens are added to each output place of .

Definition 1.5(bis). A (deterministically) place-timed Petri Net (p-TPN)
is a couple (N, R) such that N = (P, T, Pre, Posty and R is a function which
assigns a non-negative real number 7; to each place in the net: R:P — R%;
r; = R(p,) is the minimum residence time of a token in p,

A token in a p-TPN can be in either of two states: ready or not ready. If
the tokens are ready the marking evolution rule is the same as for an
autonomous net system. Not ready tokens do not enable transitions, as
though they were not present yet. When a token reaches a place, it goes
into the non-ready state, and becomes ready again after an interval of
r; = R(p;) time units. '

] In basic timed PN models, conflict resolution strategies are not specified:



18 - Introducing Petri nets

Single versus multiple server semantics: degree of self-concurrency. A
possible source of confusion in the definition of any timed net model is
related to the self-concurrency (or re-entrance) of a transition. In the case
of timing associated with places, it seems quite natural to define unavail-
ability time which is independent of the total number of tokens already
present in the place. This can be interpreted as an ‘infinite server’ policy
from the queuing theory perspective. In the case of time associated with
transitions, the adopted semantics is less obvious. Assume that transition
tis k-enabled at a given marking. Then either one firing of ¢ occurs at that
time or k firings occur in parallel (i.e. the idea of one or more servers).

Thus single server and infinite server semantics can be considered in
transition-timed net models. Of course an infinite server transition can
always be constrained to a ‘k-server’ behavior by just adding a self-loop
place around the transition (i.e. an input and output place) with k-tokens
{e.g. the self-loop place in Fig. 1.2(b) constrains the transition to a single
server). Therefore, the infinite server semantic appears to be the most
general one. However, this generality of the infinite server assumption is
usually paid in terms of complexity of the analysis algorithms (e.g. for
computing performance figures).

Some comments on stochastic net systems. Definitions 1.5 and 1.5(bis)
consider only deterministic timing of transitions. In many cases the timing
is not deterministic, being characterized by the probability distribution
fonction (PDF) of a random variable. In this case stochastic net systems
are defined. The most usual approach is to consider one-phase firing
transition-timed models. Stochastic Petri nets are defined in Chapter 4.
The following informal comments (that can be skipped without affecting
the comprehension of the rest of the material) try to point out that stochastic
Petri nets can be viewed as queuing networks provided with a semantically
simple and formal way of introducing synchronizations among queues.

The consideration of stochastic Petri nets as mentioned above is limited
in practice by the fact that routing probabilities’ are not naturally expressible
when one-phase firing is assumed for transitions. The advantage of one-
phase over three-phase firing is that tokens do not ‘disappear’ as in the

second phase of the three-phase semantics; thus token (e.g. customers)”

conservation laws of the uninterpreted net system are preserved.

Generalized stochastic Petri nets (GSPN) have (one-phase) stochastically
timed transitions and immediate transitions. Immediate transitions fire in
zero time (i.e. instantaneous firing). Conflicts among immediate transitions
are solved, among other mechanisms, using routing probability schemas.
Because a single-phase firing semantics is used, immediate transitions are
prioritized with respect to timed transitions (see Ajmone et al. (1984) for
the seminal definition of GSPNs, and Ajmone et al. (1989)).

From a conceptual point of view the modeling power of GSPNs is greater
than extended quening networks (EQN), that were introduced to partially

)
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Figure 1.11 Central server representations (Mailles, 1987): (a) extended
queuing network; (b) Descriptive queuing network; {c) Generalized stochastic
Petri net (a free choice net with three conflicting immediate transitions:

T, I, IT).

More precisely EQNs allow us to express particular synchronization schemas
as:

* fork and joins
* passive resources
* replicated customers.

Figure 1.11 (Mailles, 1987) is almost self-explanatory. As a summary,
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with a stochastic interpretation or, as sometimes more convenient (Campos
et al., 1991), synchronized queuing networks (SQNs).

1.5 APPROACHING CONCURRENCY QUALITATIVE
PROBLEMS

Concurrent and distributed systems are usually difficult to manage and
understand. Thus misunderstanding and mistakes are frequent during the
design cycle.

A way of cutting down the cost and duration of the design process is
to express in a formalized way properties the system should enjoy and to
use formal proof techniques. Errors could eventually be detected close to
the moment they are introduced, reducing their propagation to subsequent
stages.

Only a few qualitative properties will be considered in this introductory
chapter.* They are general in the sense that they are meaningful for any
concurrent system, not only for those modeled with Petri nets. Nevertheless,
their statements with Petri net concepts and objects make them especially
‘easy to understand’ in many cases. The properties to be considered are:

1. Boundedness, characterizing finiteness of the state space. o
* 2. Liveness, related to poteatial firability in all reachable markings.

Deadlock-freemess is a weaker condition in which only global infinite
activity (i.e. firability) of the net system model is guaranteed, even if
some parts of it do not work at all.

3. Reversibility, characterizing recoverability of the initial marking from
any reachable marking. ‘

4, Mutoal exclusion, dealing with the impossibility of simultaneous
submarkings (p-mutex) or firing concurrency (:-mutex).

Let us consider the net in Fig. 1.12(a). The firing of #, allows us to reach
the marking M = (0,0, 1, 1)” (i.e. p, and p, have one token). Firing now ,
M' = (1,0,1,0)7 is reached. Repeating o times the sequence ff, the
marking M® = (1,0, @, 0)7 is reached. So the marking of p; can be arbi-
trarily high. In practice the capacity of the physical element represented
by p; should be finite, so an overflow can appear. Place p, is said to be
unbounded. Attention must be paid to the above situation because un-
boundedness can be a pathological situation. System boundedness (i.e. all
places bounded) is a good behavioral property. _

The maximum number of tokens a place may. contain is its (marking)
bound. A place is bounded if its bound is finite. A net system is bounded
if each place is bounded.
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Fi 112 On qualitative pathological behaviors: (a) an unbpuuded,_ -
deﬁgckable (non-live), non-reversible net system, (b) Increasing the initial
marking (e.g. Mq(ps) = 1) the live pet system is killed! ‘

For any initial marking we can definie on the net structure of Fig. 1.1(a)
the following token conservation laws hold:

2M(py) + M(p;) + M(ps) = 2My(p1) + Mop2) + My(ps) = Ki(My)
M(p,) + M(p) + M(ps) + M(ps) = Mo(p) + Mo(pd) +
My(ps) + Mo(ps) = Ka(Mo)

where M, is the initial marking and M any reachable marking. Therefore:

M(p,) < min(Kl(MD)IZ, Kz(Mo))
M(p) s Ki(My) i=2,3
M(p) < K(My) j=4.5,6

The above inequalities mean that for any M, the net system is bounded.
This property, stronger than boundedness, is called structural l?oundedness
because it holds independently of the initial marking (only finiteness of M,
is assumed).

Let us now fire , from the marking in Fig. 1.12(a). After that, no tran-
sition can be fired: a total deadlock has been reached. A net system is said
to be deadlock-free (ie. from any reachable marking) if at least one

- transition can always be fired. A stronger condition than deadlock.—ﬁee-
ness is liveness. A transition ¢ is potentially firable at a given 'makag_M
if there exists a transition firing sequence o leading to a mark.in,_g M in W!chh
t is enabled (i.e. M[o) M”2 Pre(f)). A transition is live if it is ?ot§nufiﬂy
firable in all reachable markings. In other words, a transition is live if it
mever Inas the nossibility of firing (i.e.of performing some activity). A net
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For any initial marking we can define on the net structure in Fig. 1.12(a)

non-liveness holds (in fact, a total deadlock can always be reached).
Non-liveness for arbitrary initial markings reflects ‘a pathology of the net
structure: structural non-liveness. A net is structurally live if there exists at
least one live initial marking.

A paradoxical behavior of concurrent systems is the following: at first
glance it may be accepted as intuitive that increasing the initial marking
(e.g. increasing the number of resources) of a net system ‘helps’ in making
it live. The live net system in Fig. 1.12(b) shows that increasing the number
of resources can lead to deadlock situations: adding a token to ps, f; can
be fired and a deadlock is reached!

Another interesting property is reversibility. A net system is reversible
if it is always possible to return to the initial marking (i.e. it is reachable
from any other reachable marking).The net system in Fig. 1.12(a) is not
reversible. In fact if a total deadlock exists at some reachable marking, the
net system cannot be reversible; the reverse is not true as is pointed out
in Fig. 1.13(6), where the net system is not reversible but live, thus dead-
lock-free. :

Liveness, boundedness and reversibility are just three different ‘good’
behavior properties that may be interesting to study in a net system. Fig-
ure 1.13 shows examples of the eight cases we may have. Therefore

boundedness, liveness and reversibility are independent properties.

" The last basic property we introduce in this section is mutual exclusion.
This property captures constraints like the impossibility of a simultaneous
access by two robots to a single store. Two places (transitions) are in
mutual exclusion if they can never be simultaneously marked (fired). For
the net system in Fig. 1.4(g) we can write: M(p,) + M(p,) + M (#) = 1. Thus

M(p) =1= M(p,) = M(%) =0
MI(P-a) =1=>M(p)=M@®R) =0

and [M(p,) = 0] or [M(p,) = 0] is true for every reachable marking (i.e. p,
and p, are in mutual exclusion). Table 1.1 summarizes the definitions of
the different properties we introduced in this section. '

1.6 QUALITATIVE ANALYSIS OF NET SYSTEM MODELS

Techniques for analyzing net systems can be divided into the following
groups:

1. analysis by enumeration
2. analysis by transformation
3. structural analvsis
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Figure 1.13 Boundedness (B), liveness (L) and reversibility {R) are
independent properties.

The first three groups are called static methods, and their application to
nets systems as abstract models leads fo exact resuits. Simulation methods
are called dynamic and proceed exercising the net system model under
certain strategies. In this case some bugs can be detected (e.g. some dead-
locks), allowing ‘some confidence on the model’, if problems are not
manifested during the simulation process. However, in general, simulation
methods do not allow properties to be proved, even if they might be of
great help in understanding the modeled system. In particular, simulation

mlethods are extremely useful when time is associated with the net evolution
(tlmefl 8yste‘ms), or when we wish to know the response of the system
described with a net in an environment which is also defined by simula-

_ti(_)n. In this section we will only overview some static methods applied to
auif)nomous nets.
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Table 1.1 Summarizing some basic qualitative properties

1. Bound of place p in (N, M,)

B(p) = sup{M(p)IM & R(N, My)}
. p is bounded in (N, My) if B(p) < o
. (N, M} is bounded if ali places are bounded '
. {N, M,} is a deadlock-free system if vM € R(N,M,) 3t € T such that 7 is
firable at M, M[z)
. tis live in (N, M) if YM e R(N, M;) 3o such that Mo, > M
. {N, M) is live if all transitions are live
(N, M,) is reversible if ¥M e R(N, M,) Jo such that Mo > M,
. Mutual exclusion in (N, My):

e p;and p, are in marking mutual exclusion if M e R(N, My) st.[M(p;) > 0]
A [M (Pj) > 0]
e tand # are in firing mutual exclusion if AM eR(N,M,) st. M = Pre(t,) +
Pre(t)
9, Structural properties (represent abstractions of behavioral properties):

+ N is structurally bounded if VM, (finite) (N, M,) is bounded
e N is structurally live if M, (finite) making (N, M,) a live system

R . AT AN

graph (RG) which represents, individually, the net markings and trapsition
firings. If the net system is bounded, the reachability graph is finite and the
different qualitative properties can be verified easily. If the net system is
unbounded, the above graph is infinite and it is therefore impossible to
copstruct, In this case, finite graphs known as coverability graphs can be
constructed (see, for example, Finkel (1990)). In spite of its power, enu-
meration is often difficult to apply, even in nets with few places, because
of its computational complexity (it is strongly combinatorial).

The enumeration analysis technique for bounded stochastic Petri net
systems consists of the generation of an upnderlying Markev chain (MC).
All performance figures are later computed on the MC. Assuming expon-
ential (i.e. memoryless) firing times, the MC is isomorphous to the RG.

Analysis by transformation is based on the following idea: given a net
system (N, M,) in which we wish to verify the set of properties II, we
transform it into the net system (N’, M) such that:

1. (N ' M}) satisfies the properties TT iff (N, M) satisfies them (i.e. the
transformation preserves the properties IT).
2. Tt is easier to verify the properties IT in (N’, M) than in (N, My).

Reduction methods are a special class of transformation methods in which
a sequence of net systems preserving the properties to be studied is con-
structed. The construction is done in such a way that the net system (N )
Ay is ‘smaller” (i.e. has less markings) than the previous in the sequence,
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The applicability of reduction methods is limited by the existence of
irreducible net systems. Practically speaking, the reductions obtained are
normally considerable, and can allow the desired properties to be verified
directly. Because of the existence of irreducible systems, this method must
be complemented by some other methods. '

Finally, structural analysis techniques carefully consider the net structure
(hence their name), while the initial marking acts basically as a parameter.
Structural analysis techniques investigate the relationships between the
hehavior of a net system and the structure of the net. In this last class of
analysis techmiques, we can distinguish two subgroups:

1. Linear algebra/Linear programming-based techniques, which are based
on the net system state equation. In certain analysis they permit a fast
diagnosis without the necessity of enumeration.

2. Graph-based technigues, in which the net is seen as a bipartite directed
graph and some ad hoc reasonings are applied. These methods are
especially effective in analyzing restricted subclasses of ordinary nets.

The three groups of analysis techniques outlined above are by no means
exclusive, but rather they are complementary. Normally the designer can
use them according to the needs of the ongoing analysis process. Obviously,
although we have distinguished between reduction and structural analysis
methods, it must be pointed out that most popular reduction techmiques
act basicaily on the net structure level and thus can be considered also as
structural technigues.

For what concerns the qualitative analysis of interpreted systems, it should
be pointed out that the properties of the underlying autonomous model
can be only sufficient (e.g. for boundedness), necessary (e.g. for reachability)
or neither sufficient nor necessary (e.g. for liveness). For particular net
subclasses (e.g. simple nets) liveness properties are preserved under
‘reasonable assumptions’ on the behavior of the environment (e.g. fair
progress: i.e. not infinite delay in firing a continuously enabled transition; '
and local fairness on choices, i.e. all outcomes of a conflict are being chosen
repeatedly).

1.6.1 Reachability graph

A marking is said to be reachable in a system (N, M,) if there exists a
sequence o applicable at M, such that M[o) M. If we were able to com-
pute _i{ll__reachable markings, M € R{N, M), and their reachability rela-
t101_1$h1ps, all qualitative behavioral properties should be analyzable. A
Inajor problem arises in systems in which the number of reachable markings
1s infinite (unbounded systems). Because infinite state (marking) systems
cannot easily be represented by enumeration, finite representations have
beep proposed. But in this case it is possible that refevant information for
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Figure 1.14 Bounded, live and reversible system and its reachability graph.

This presentation being more engineering oriented, let us restrict ourselves
to the case of bounded systems. -
_ Reachability analysis approach for bounded systems is based on the
exhaustive sequentialized simulation of the possible marking evolutions.
The main limitation of the approach is its computational complexity, so-
called state explosion problem: the number of markings can be exponential
with respect to the size of the net (measured, for example, by the number
of places).

Definition 1.6. The reachability graph associated with a system (N, M} is
a graph RG(N, M,) in which each node represents a marking reachable
form M, and each arc represents the firing of a transition. There exists an
arc, labeled £, which goes from the node representing M, to that repre-
senting M, iff on firing #, from M, we reach M, : M) M,

If the marked net is bounded, the graph construction process is straight-
forward. Tt finishes when all the possible firings from the reachable mark-
ings have been explored.

Let us consider, for example, the system in Fig. 1.14, assuming p; is
removed. Initially only a is enabled. Firing it, p, and p, are marked and b
and ¢ are enabled. If b is fired before, the marked places are p; and p,,
otherwise if ¢ is fired before, p, and ps should be marked. From any of the
last two markings p; and p; will be unavoidably marked and d being the
only enabled transition, the initial marking should be recovered. There-

fore our system has five markings (thus is bounded). From a direct in-
mnmbioe of tha cat ~f marlrinae {1 a the state snace) it is easv to conclude
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p» and p; (py, p, and ps) are in mutual exclusion (i.e. a pair of places is
never simultaneously marked). '

Moreover, considering the reachable markings and the net structure
(the pre-function), firing concurrency between transitions b and ¢ appears
(in the reachability graph b and ¢ seem to be conflicting!). Observe at this
point that introducing ps in our system does mot change the reachability
graph, but transitions b and ¢ become in firing mutual exclusion. This ex-
ample shows that concurrency-mutual exclusion on firings cannot be studied
on the reachability graph alone, because this gives a sequentialized vision
of the concurrent evolutions. '

Reversibility (i.e. recoverability of the initial marking) cannot be studied
considering only the state space. The reachability relations among states
(markings) must be taken into account. Because all markings are reach-
able from the initial one, a system should be reversible iff in the reachabil-
ity graph there exists a path from any node to the original one. In other
words:

Property 1.1. A net system is reversible iff its reachability graph is strongly
connected.

If a system is reversible, any transition can be fired once and again iff that
transition is firable at least once from the initial marking. This is true
because the initial marking being always reachable, the transition can be
fired again. More precisely, we are saying that in a reversible net system
a transition is live iff it is firable in a sequence starting in the initial mark-
ing. If the system is not reversible but bounded, liveness is also char-
acterizable but the condition is slightly more complex:

Property 1.2. Let (N, M;) be a bounded system. Transition ¢ is live in
(N, M,) iff ¢ labels at least one arc of every strongly connected component
of the reachability graph containing its transitive closure (i.e. such that the
set of its successor nodes is included in the component itself).

In general, a system may be unbounded. Therefore the reachability graph
cpnstruction process would never end. To avoid this, an abandon condi-
tion can be taken into account in the construction process:

Property 1.3. Place p is bounded in (N, M,} iff there exists no M, reached
from M; such that M; > M, and M;(p) > M,(p). Therefore, the system (N, M)
is unbounded (abandon condition) iff there exists M; reachable from M;
such that M, > M, and M;= M,

If M[o)M;, M;> M, and M, # M, the repetition of ¢ allows us to conclude
on unboundedness. The proof that the condition is also necessary is based
on a result from Karp-Miller (Karp and Miller, 1969).

A_ la§t and obvious consideration about the construction/analysis of the
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Property 14. A system is deadlockable iff a marking not enabling any
transition is found (i.e. a node without successor points out a deadlock).

Concluding, analysis techniques based on the reachability graph (theoreti-
cally possible for bounded systems) are very simple from a conceptual
point of view. The problem that makes this approach impractical in many
cases is its computational complexity: the state explosion problem. Figure
1.15 shows this on a very simple net system: parts are sent from store 1 to
stores 2 and 3. The subnet generated by places {B, C, D, E} imposes some
restrictions on the way parts are distributed to the destination stores (i.e.
partially schedule the distribution). The reachability graph is, even if it
has been ‘structured’ for clearer presentation, difficult to understand and
manage. The reader can try Lo check on the reachability graph (!) that the
imposed distribution strategy is: parts are sent in a 1 : 1 relation to the
destination stores, but allowing sometimes up to four consecutive dispatches
to a given store (i.¢. locally adjusting the possible demand, but maintaining
the overall fair distribution).

Last, but not least, it is important to observe that reachability/coverability
graphs are built for a given initial marking. If the number of resources {e.g.
number of machines, size of stores, etc. . . .} changes, new (and completely
different) graphs should be computed. Otherwise stated: reachability/
coverability does not allow parametric analysis on the behavior of net

" systems.

1.6.2 Net system reductions

Even if reachability graph-based analysis techniques are complete for
bounded systems, the computational complexity limits their applicability
in practice. Net system reduction is a different analysis technique that
allows the analysis of net models by producing transformations on its
structure and, eventually, on its initial marking.

The approach is based on the definition of a kit or catalog of reduction
rules, each one preserving the subset of properties (liveness, boundedness,
reversibility, etc.) to be analyzed. The transformation procedure is itera-
tive by nature: given the property (or properties) to be analyzed, the subset
of rules that preserve it (them) is applied until the reduced system becomes
irreducible. The irreducible system can be so simple that the property
under study is trivially checked (see later, Fig. 1.17(d)). In other cases, the

irreducible net is just ‘more simple’ to be analyzed, and other analysis

techniques should be used: in other words, techniques to analyze net system
models are complementary, not exclusive.
Reduction rules are transformation rules interesting for net analysis.

When considered in the reverse sense they become expansion rules, in-
emmntine Frr not cnthadis: tenwise refinements (or top-down) approach.
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Figure 1,15 Parts of STORE 1 are sended to STORE 2 and STORE 3 according to the strategy .deﬁned by the

subnet generated by {B, C,E, F}: (a) the net system; (b) the RG.
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the specification by construction. This is interesting when comparing with
the more classical approach based on the iteration of description and
analysis. The iterative process has two basic disadvantages: '

1. the lack of general criteria for modifying (correcting) a model which
does not meet the requirements made in the validation.

2. the operational difficulty inherent to the validation phase. Obviously,
this difficalty will be strongly reduced if a computer-aided design (CAD)
system is available.

Nevertheless, because there exists no universal reduction rules kit (i.e. that
fully reduces any system), it is not possible to synthesize ali of them by
stepwise refinements.

From a practical point of view, the design of the transformation rules
catalog represents a compromise between completeness (ie. transforma-
tion capabilities) and usefulmess. '

Reduction rules have a single pattern:

if an applicability precondition is true then reduce the pet system.

Behavioral and/or structural statements can be done for the applicability
precondition. The behavioral statements can be more powerful for a given
initial marking, but their computation is usually much more complex. So
" the applicability preconditions presented here are based on structural
considerations, the initial marking playing an auxiliary role as a parameter.
According to this, reduction rules will have the following general pattern:

it structural condition and initial marking condition are true
then make structural change and marking change.

A very basic kit of reduction rules is presented. Additional details are
given only for the rule of implicit places, which are redundancies in the net
system model: if an implicit place is removed, then (illusory) synchron-
izations disappear and other reduction rules can be applied.

(a) A basic kit of reduction rules

Figure 1.16 presents graphically structural and marking conditions of a kit
of six particular cases of reduction rules (Silva, 1985). It is not difficult to
observe that they preserve such properties as liveness, the bounds of places

(thus boundedness) and, if the second place in RA1 has only cne input-

transition, reversibility:

¢ RAI is a particular case of the macroplace rule (Silva, 1981).
¢ RA?2 is a particular case of the transition fusion rules (Berthelot, 1987).
e« BR1 and RC1 are narticular cases of the implicit place rule (Silva, 1985;
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RAZI. Fusion of series places RAZ. Fusion of series transitions

b4

RE1. Elimination of identical place RBEZ. Elimination of identical transition

. '3:C

RC1, Elimination of selfloop place

RC2, Elimination of selflocp wransition

Figure 1.16 A basic reduction kit.

that RC1 can be trivially generalized creating several self-loops in which
the place always appears. Liveness, the bound of places and reversibﬂity
are preserved. Moreover, if the place contains several tokens, liveness,
!Joundedness (in general, not the bound of the net system) and revers-
ibility are preserved.

RB2 and RC2 are particulax cases of identical and identity transition
rules (Berthelot, 1987). '

A‘ll interesting remark is the analogy between rules at the same level in
Fig. 1.17: basically rules RX2 are obtained from rules RX1 by changing the
IO_le qf places and transitions (duality) and reversing the arrows {some-
thing important only for rules RA). Duality (and reversing) are importént
concepts for a deep understanding and systematic presentation of many
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Figure 1.17 The reduétion process shows (see (d)) that the net system in Fig. 1.11 is five, 7-bounded

and reversible.

HErS N

o odnmis abetieh:

Qualitative analysis of net system models 33

Let us now consider the net system in Fig. 1.9. The subnet defined by
op—t;—wait dep. verifies the precondition of rule RAL. Thus it can be
reduced to a place, p; (Fig. 1.17(a)). The same holds for op,~f—wait free
that is reduced to pg (Fig. 1.17(a)). The subnets r—load—t,, t,—deposit-ts,
t-unload—t; and t,~withdraw—t,, can be reduced according to RA2 (see
fy, bis, tg and tey in Fig. 1.17(a)). Place R in Fig. 1.17(a) is implicit (one of
the trivial generalizations mentioned for RC1). Thus it can be removed,
and wait raw—t,—p,; and ty—ps—t; can be reduced to pp, and fgg,, Te-
spectively (see Fig. 1.17(b)). Places py, and wait with. are implicit (RCL) in
Fig. 1.17(b), thus the net system in Fig. 1.17(c) is obtained. Playing the
token game, a place (e.g. object) can became empty in Fig. 1.17(c) and
t,—0bject—t;5010 can be reduced (RA2) to a single transition (Fig. 1.17(d)).
Therefore, the original net system is live, 7-bounded and reversible.

{b) Implicit places

A place in a net system can only constrain the firable sequences. If a place,
for an initial marking, never constrains the firable sequences, it can be
removed without changing the sequential observation of the behavior of
the net system (i.e. the set of firable sequences). These behaviorally de-
fined places are called (firing) implicit places.

Let N be a net and N, the net resulting from removing place p from N,
Pre and Pre” are the corresponding pre-incidence functions. If M, is an initial
marking for N,, M, = (M{, My(p)) denotes the initial marking of N.

Defiition 1.7. Givena system (N, M,), the place p is implicit (IP) if for any
reachable marking in (N,, M), (i.e. VM? e R(N,, M{)) and any output
transition of p (ie. ¥r € (p°}) the following holds:

M7= Pref(t) = M(p) = Pre(p, 1)

The net system in Fig. 1.18 is unbounded (p, is the unique unbounded place) -

and non-reversible (also because of p,). Place p, is implicit. Removing p,
the system becomes bounded and reversible! Place p, in Fig. 1.14 imposes
firing mutual exclusion between b and c. Since p, is an implicit place, the
reduction rule does not preserve firing mutual exclusion. According to the

‘definition, firable sequences are preserved. Thus the following is true:

Property 1.5. The elimination of implicit places:

1. Preserves: deadlock-freeness, liveness and marking mutuoal exclusions.

2-Does not preserve: boundedness, reversibility and firing mutual
exclusion.

Sometimes it is practical to impose a second condition to the definition
of implicit places: marking redundancy (i.e. computable from the other
mgr]cings). The marking of p, in Fig. 1.18 cannot be computed from the
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Figure 1.18 Place p, is firing implicit but not marking implicit. Removing p.
the ‘false’ synchronization in f, disappears.

considering now: marking implicit places. Because of the additional redund-
ancy, marking implicit places preserves the state space (i.e. the reach-
ability graphs of the net system with and without p are isomorphous) and
therefore preserves two already mentioned properties: boundedness and
reversibility. . o
~ How can implicit places be detected? How complex is the process? The
property is behavioral, so computationally complex behavior-based algor-
ithms should be used. The next property gives a very simple algorithm,
based on the solution of a linear programming problem (LPP1) to detect
‘most of the practical cases’. Because, LPPs are of polynomial time com-
plexity (Nemhauser et al., 1989), the technique has this complexity. This
approach derives from some relatively complex arguments (see Colom
and Silva, 1991b).

Property 1.6. Let (N, M) be a net system, and z defined as follows:

z = min YT-My+pu
" subject to YZ - C < C(p)
YT . Pre(f) + L = Pre(p,1) Vtep' (LPP1)
Y>0, Y(p) =0

Assuming M(p) = 0, if My(p) 2 z then p is implicit.

Remark if Y'C = C(p) constraint, then p is a marking implicit place.
The computation of LPP1 for p, (Fig. 1.19(a)) gives z = 0, for:

%- [¥y” =1(0 01110100)] & [C(ps) = C(ps) + Clps) + Cps) + C(p)]
. H=-=

T mmorces M et ™> » — 1 n. ie imnlicit and can he removed. Once p. is
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(a) (®)

Fignre 1.19  Places p, and p, (or p, and p,) are implicits.

Figure 1.19(b) shows a reduced net system. It can be obtained reducing
py—b-p, into a place (say p;,) (RA1) and finally pg—f~p;—a—p, into I, Now
RA1 allows us to fuse IT, and p.. The new place is implicit, so it can be
removed. Then a cycle with p.—d-p,—e—p; remains. Finally it can be re-
duced to a basic net, p;—t,~ps with one token. Therefore the original net
system is live and bounded (Note: it is also reversible, but we cannot
guarantee tbis because of the fusion of p;—b—p, in py,}.

1.6.3 Linear algebraic techniques

The behavior of a net system model is clearly non-linear, nevertheless the
so-called state equation, M =M, +C .- @ 20, G 20 (see eq. (1.4)), rep-~
resents a nice linear relaxation. Unfortunately the existence of spurious
solutions (section 1.1.2) leads usually to semidecision algorithms (i.e., only
necessary or only sufficient conditions) to analyze such behavioral properties
as reachability, boundedness, deadiock-freeness, mutual exclusion, liveness
or reversibility. For example, M; = (0,0, 0,2, 0)" and M, = (0,2,0,0,0)7
are two spurious solutions for the system in Fig. 1.20(a). The first allows
us to say that p, is 2-bounded, while it is really 1-bounded (check it). M,
18 a deadlock. Then using the state equation we cannot conclude that the
system in Fig. 1.20(a) is deadlock-free. ‘ '
Squious solutions can be removed using different approaches (Colom
and Silva, 1991b). For example, it is clear that adding implicit places, a
new system model with identical behavior is obtained. For certain net
systems, if the implicit places are chosen carefully, the state equation of




(2) (b)

Figure 1.20 Two equal behavior 1-bounded and live net systems: dashed
-~ places, {Dg1» Doz, Pos} are implicit. o

_ system in Fig. 1.20(b) has been obtained by adding implicit places pg, Pe:
and pg, to that in Fig. 1.20(a). The above-mentioned spurious solutions,
M, and M,, are not projections on P of the solutions of the new state
equation. Moreover, we can conclude now that the new (and original) net
systems were 1-bounded for p, and deadlock-free!

Classical reasoning to prove logical properties uses invariants on the
behavior of a system. The right and left non-negative annullers of the
incidence matrix lead to two kinds of structural objects (p- and t-semiflows):

1, Y20, Y7 - C=0=Y"-M=Y" M, (token conservation law)
2. X 20,C- X =0= 3M,such that M;[c) M, and & =X (cyclic marking
behavior) . :

The token conservation laws are marking invariants induced by p-semiflows,
Usually they are called p-invariants.

The computation of minimal p-semifiows (Y) and minimal ¢-semiflows
(X) has been extensively studied. However, an exponential number of
minimal semifiows may appear. Therefore the time complexity of this
computation cannot be polynomial. In Colom and Silva (1991a) a study is
carried out merging traditional techniques in convex geometry with those
developed within Petri pets. From a conceptual point of view, the consid-
eration of semiflows provides decomposed views of the structure of the net
model. In Fig. 1.21 the decomposition induced by the minimal p-semiflows
AL vt e THe 0 Q ie oranhicallv nresented. The induced minimal
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Figure 1.21 A decomposed view of the net system in Fig. 1.9.

M(wait raw) + M(load) + M(opl) + M(wait dep.} + M(deposit) = 1 (1.5)

M(op,) + M(wait free) + M(unload) + M(wait with.) +
_ M(withdrawal) =1 (1.6)

M(empty) + M(deposit) + M(object) + M(withdrawal) =7 (1.7)

M(R) + M(load) + M(unload) + M(deposit) +
M(withdrawal) = 1 (1.8)

Because markings are non-negative integers (i.e. ¥p € P, M(p) = 0), the
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1. Bounds: M(p) <1 Vp; eP\empty, object}
M(empty) <7, M(object) <7 S
2. Marking mutual exclusions among the following subset of places (i.e.
M(p)M(p) =0, i #j): S
e wait raw, load, op,, wait dep., deposit
» op,, wait free, unload, wait with., withdrawal
e R, load, unload, deposit, withdrawal

The decomposed view of a net system is even useful to derive an im-
plementation. For example, the net system in Fig, 1.9 can be implemented
using two sequential processes (for Machinel and Machine2) and three
semaphores (object, empty and R), where R is a mutual exclusion sema-
phore. :

Linear algebraic techniques represent fast to compute (polynomial time
in many cases) semidecision (necessary ot sufficient conditions) algorithms,
easily amenable to initial marking parametric analysis (e.g. changing the
number of customers, size of resources, initial distribution of customets
and/or resources). The followmng subsections study marking tounds and
boundedness {(a), deadlock-freeness (b), structural liveness and liveness
(c), and reversibility (d).

.- ... {a) -Marking bounds and boundednesé
Relaxing the reachability condition in the definition of the bound of a

place p (see Table 1.1), by using the state equation (1.4), the structural

bound of p is defined as follows:
SB(p) = sup (M(p)iM =M, + C- T 20,0 2 0}

Let e, be the characteristic vector of p: ¢, (f):= if f = p then 1 else 0. The
structural bound of p, SB(p), can be expressed as a linear programming
problem: , o .
SB(p) = max el - M
subject toM = My +C- T 20 (LPP2)
= 20 :

Therefore SB(p) can be computed in polynomial time. In sparse-matrix
problems (matrix C is usually sparse), good implementations of the clas-
sical simplex method lead to quasi-linear time complexities.

Because SB(p) has been defined using a linear relaxation of the
reachability in the system, then SB(p) 2 B(p). Therefore, if we are in-
vestigating the k-boundedness of a place (i.e. M(p) < k), we have a suf-
ficient condition in polynomial time:

if SB(p) < k then B(p) < k (ie.pis k-bounded)
-  .T A e i o Alaceiral reanlte from linear programming and

R T

- s@iiesed e ath ol ¥ o
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th‘eones (see, for example, Murty (1983); Nemhauser et al. (1989); other-
wise all the needed arguments are compiled and adapted in (Silva and
Colom, 1988). The important point in this overview is to convey the idea
that other theories are helpful to understand in a deep and general frame-
work many sparse results on net systems’ behaviors.

The dqal linear programming problem of LPP2 is the following (see any
text on linear programming to check it): '

SB(p) = min Y?. M,
subject to Y7 - C <0 (LPP3)
Yze,

LPP2 has always a feasible solution (M = M,, & = 0). Using duality and
boundedness theorems from linear programming theory, both LPP2 and
LPP3 are bounded (thus p is structurally bounded) and SB(p) = SB(p) iff
there exists a feasible solution for LPP3:

JY 2 e, suchthat ¥Y'- C<0 (1.9

Thq reader can easily check that LPP3 makes in polynomial time an ‘im-
plicit search’ for the structural bound of p on a set of structural com-
ponents including all the p-semiflows (Y 20, Y™ . C = 0).

_ From the above discussion and using the alternatives theorem (essen-
tially the Minkowski—Farkas lemma in algebraic form) the following prop-
erties can be proved:

Property 1.7. The following three statements are equivalent:

1. pis strqctura]ly (i.e. for any M,;) bounded;

2. 3Y z ¢, such that Y7 - C < 0 {place-based characterization};

3. VX 2 0 such that C - X 20, el- C- X =C(p)- X =0 is satisfied
{transition-based characterization}.

Property 1.8 The following three statements are equivalent:

1. N is structurally (i.e. VM) bounded;

2. 3Y > 1 such that ¥ . C < 0 {place-based characterization}; :

3. %X > 0 such that C - X2 0,C - X = 0 is satisfied (ie. 7X > 0 such that
C-X20and C- X = 0) {transition-based characterization)}.

(b) Deadlock-freeness (and liveness)

Token conservation laws are invariant properties of the behavior of net

giﬁis tthf':lt may( be very useful to prove deadlock-freeness. Using the

: ants in egs (1.5-1.8), we shall prove that our net in Fi

s gt i og8 P pet system in Fig. 1.9
If there exi§ts a deadlock, no transition can be fired. Let us try to con-

struct a marking in which no transition is firable. When a unique input
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M(op,) = M(deposit) = M(op,) = M (unload) = M(withdrawal ) =0, and the
" token conservation laws in eqs (1.5-1.8) reduce to:

M(wait raw) + M(wait dep.) =1 (1.5a)
M(wait free) + M(wait with.) = 1 (1.6a)
M(empty) + M(object) =7 (1.7a)

' MR =1 (1.82)

Because R should always be marked at the present stage, to prevent the
firing of ¢, and #,, places ‘wait raw’ and ‘wait free’ should be unmarked.
The token conservation laws are reduced once more, leading to:

M(wait dep.) =1 (1.5b)

M(wait with.) =1 ' 822
M(object) =7 .

M(emptylzlz_}?) -E-oljea) (1.8b)

Since M(wait dep.) = M(wait with.) = 1, to avoid the firing c')f.t4 and fy,
M(empty) + M(object) = 0 is needed. This contradicts eq. (1.7txis), so the
net system is deadlock-free. ‘ o

A more compact, algorithmic presentation of the above deadlock-freeness

proof is:

if M(load) + M(op,) + M(deposit) + M(op,) + M(unload) +
-~ ~M(withdrawal) 2 1
then one of t,, ts, &s, t, ts, OF by Is firable
else if M(wait raw) + M(wait free) 21
then one of 4, or t, is firable
else one of t, or t, is firable

Even if the above is an ad hoc proof, it can be fully automated (i.e. auto-
matic proving). To prove deadlock-freeness by means of linea:'l' algebra we
must express the condition ‘transition ¢ is not firable at marking M’ using
linear constraints. This can always be done: Nevertheless, it turns-out to be
very efficient in net systems where for each place the structu'ral bour_ld
SB(p), computed through LFP2 or LPP3 is equal to the .we‘lght of its
output axcs: SB(p) = W(p.1) Vpe P, Vie p'. The condition in linear form
is:

Z M(p) < ZPre(p,t) -1

F, &'t peP
In words: the amount of tokens in the input places of ¢ is less than re-
quired. Therefore:

Property L9. Let (N, My) be a net system such that SB(p) = W( P N vp
e P, Vte p'. A sufficient condition for (N, M;) to be deadlock-free is that
the following linear system has mo solution (dim (13) = q):
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For the system in Fig. 1.4(g), the system of inequalities M7 - Pre < 17 -
Pre — 1 looks as follows (M(p) =2 0 Vp € p, thus M{p) <0 is equivalent to
M(p} = 0}

M(p) + M(R) <1 {1}
M(p,) =0 i)
M(ps) + M(&R) <1 {5}
M(p,) =0 {t}

The above system of inequalities and equations together with the state
equation form an. imconsistent linear system. Thus the net system is
deadlock-free.

The deadlock-free system in Fig. 1.9 does not verify the precondition of
Property 1.9. Nevertheless the approach has been generalized (see Colom
et al. (1990b)), and that conclusion can be obtained from the inconsistency
of a single linear system.

As a final remark, we want to point out that liveness can be proved for
the net system in Fig. 1.9. Liveness implies deadlock-freeness, but the
reverse is not true in general. Nevertheless, if the incidence matrix, C, has
a right-orthogonal space of dimension one (i.e. C- X=0= X=k - A) and
A 21 (ie. the net is consistent), then any infinite behavior must contain
all transitions with relative firings given by A (). Thus deadlock-freeness
implies, in this case, liveness. For the net in Fig. 1.9 the above property
holds with A = 1. Therefore the net system being deadlock-free is also live.

{c) Structural liveness and liveness

A general approach to linearly analyze liveness needs the use of invariants
and some inductive reasoning. A necessary condition for a transition ¢ to
be live in a system {N, M,) is its eventual infinite firability (i.e. the exist-
ence of a firing repetitive sequence oy containing #). : .

Using the state equation (1.4} as a linear relaxation of the reachability
condition, an mpper bound of the number of times ¢ can be fired in (N, M)
is given by the following LPP (e, (0): > if 8 = ¢ then 1 else 0):

SR(f) = max el - T
subjectto M =My +C- T 20 (LPP4)
. cg=0
The dual of LPP4 is:
e : ~~------»SR’(t) = min YT M,
subject to Y7 - C <~ ¢ (LPP5)
Y20

We are interested on characterizing when SR(?) goes to infinity. The
problem LPP4 has M = M, and & = 0 as a feasible solution. Using first
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(@) ®)

Figure 1.22 Two conservative and consistent, structurally non-live nets:
(a) rank(C) =4,/T/-1-86=5-1~ 1 =.3, thus N is not struct-live; .
(b) rank(C) = 4,/T/ -1 -§=T-1-2=4, thus no answer.

_ Property L10. The following three statements are equivalent:

1. tis structurally repetitive (i.e. there exists a ‘large enough’ M, such that
¢ can be fired infinitely often);

2. 7Y > 0 such that Y7 - C < — ¢ {place perspective};

3. 3X > ¢, such that C - X = 0 {transition perspective}.

Property 1L11. The following three statements are equivalent:

1. Nis structurally repetitive (i.e. all transitions are structurally repetitive);
2. F¥Y 2 O such that Y7 - C<0and Y7 - C #0;
3. 3X =1 such that C- X 2 0.

Combining Properties 1.8 and 1.11 and ‘considering that stroctural repeti-
tiveness is a necessary condition for structural liveness, the following clas-
sical result can be obtained (Memmi and Roucairol, 1980; Brams, 1983;
Silva, 1985):

if N is structurally live and structurally bounded
then 3X > 1 such that C - X = 0 (i.e. N is consistent)
3y > 1 such that Y7 - C = 0 (i.e. N is conservative)

Net structures in Fig. 1.22 are consistent and conservative, but there
exists no live marking for them. A more careful analysis using the above
result iteratively allows us to improve it with a rank condition on the
inmidancs matrie nf N € This and other results are summarized in the
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Let us say that ¢ and ¢ are in equality conflict relation if Pre(;) = Pre(t;)
# 0. Obviously, this is an equivalence relation, leading to a partition of transi—
tions into equivalence classes. Let D, be an equivalence class. We define
the following quantities: '

6Jc:|Dk[_1
6 =Zk5k

Property 1.12. Let C be the incidence matrix of V.

1. if N is structurally live them ZX > 1 such that C - X =2 0
2. if N is structurally live and structurally bounded

then 37X > 1 such that C - X = 0 (i.e. net consistency)
3Y =1 such that ¥7 - C = 0 (i.e. net conservativeness)
rank(C) <1TI-6-1

3. if N is connected, consistent and conservative then it is strongly
connected.

The added rank condition allows us to state that the net in Fig. 1.22(a) is
structurally non-live. Nevertheless, nothing can be said about structural
liveness of the net in Fig. 1.22(b).

Property 1.12 is purely structural (i.e. the initial marking is not consid-
ered at all). Nevertheless it is clear that a small enough initial marking can
make non-live a net system even if the net structure is well formed. A
Iower bound for the initial marking to make live a net system is based on
p-invariants: if t € T is firable at least once, for any p-invariant ¥, Y7 - M,
> Y7 . Pre(?). Therefore: : ' - '

Property 1.13. If (N, M,) is a live system, then
VY 20suchthat Y*- C=0, Y' - My2max, (Y- Pre()) 21

Unfortuyaté}y no characterization of liveness exists in linear é.igebraic ferms.
The net in Fig. 1.12b is structurally live. Adding a token to ps, all p-semiflows
remain marked, but it is non-live.

{d} Reversibility (and liveness)

Let us now use a Liapunov-stability-like technique to prove that the net
system in Fig. 1.9 is reversible. It serves to illustrate the use of invariants
and some inductive reasonings. ‘

As a preliminary consideration that makes the rest of the proof easier,
the following simple property will be used: let (N, M,) be a reversible sys-

tem and M, reachable from M, (i.e. Jo such that M[c) M,). Then (N, M)
1s reversible.
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M, (wait raw) = 0, M (wait dep.) =1
M,(empty) = 0, My(object) =7

Let us prove first that {N, M,} is reversible. Let L be a non—negativc_e place
weighting such that L{p;) = 0iff p;is marked in M,. Therefore, L(wait dep.)
= L(R) = L(object) = L(wait with.) = 0 and L{p)) > 0 for all ‘the other
places. The function V(M) = L” - M has the following propertics:

YM)20 and V(M) =0

For the system in Fig. 1.9 a strongeT property holds: V'(M) =0eM=M,.
This can be clearly seen because LT M=0« M(wglt raw) = M(load) =
M(op,) = M(deposit) = M (empty) = M(op;) = M(wait free) = M_(unload)
= M(withdrawal) = 0. Even more, it is easy 10 check the following:

M, is the present marking < & is the unique firable transition

If there exists (warning: in Liapunov-stability criteria the universal quan-
tifier is used!) a finite firing sequence (i.e. a finite trajectgry) pet reachable
marking M, such that Mo} M, and V(M) > V(M,,), in a finite number
of transition firings V(M) = 0 is reactied. Because ViM)=0 c»'M = Ml,
a proof that M, is reachable from any marking has been obtained (ie.
{N, M) is reversible}. . .
Pre-multiplying the state equation (1.4) by L™ we obtain the following
" gondition:” T
if 0, = ¢; then [LT- My <LT -M]le L' - C{)<0

Now, removing in Fig. 1.9 the places marked at M, (ie. wait d?:p., R, object,
wait with.) and firable transitions (i.e. t,} an acyclic net is obtained, so there
exists an L such that L7 - C () <0 V; # 9. ’

For example, taking as weights the levels in the acyclic graph we have:

L(op,) = L(unload) = 1
L(load) = L(wait free) = 2
L(wait raw) = L{op;) = 3
L(deposit) = L(withdrawal) = 4
L(empty) =5
and LT- C=(-1,-1,-1,-1,-1,-1,-1,-1,+4, —1). In other words, the firing
of any transition, except t;, decreases V(M) = LT M. .
Using the algorithmic deadlock-freeness explanation in section (l?), the

reversibility of (N, M) is proven (observe that the p-invariants in eqs
(1.5-1.8) remain for My):

it M(load) + M{op) + M(deposit) + M(op;) + M(unload) +
M(withdrawal) z 1

then V(M) can decrease firing b, 3, &s I % OF 1o
M 20 Adfwereit vauny L AMwait free) > 1

Some net subclasses and their analysis 45

else V(M) can decrease firing t, or
ty is the unique firable wansition {© M, is the present
marking) |
Because M, is reachable from M, (for example, by means of 6= (2, - t;y- 45
bt - by 1), {N, M,) is a reversible system.

Once again liveness of the system in Fig. 1.9 can be proved, because the
complete sequence (1.e. containing all transitions) o=t -ty -t -8, L5 &y
- b * tg - b7 - ty can be fired. Since the system is reversible, no transition loses
the possibility of firing (i.e. all transitions are live). .

1.7 SOME NET SUBCLASSES AND THEIR ANALYSIS

Net subclasses will be defined exclusively by introducing constraints on the
structure of ordinary nets. Therefore it is very easy to recognize if a net
model belongs to a subclass (ie. the membership problem). By restricting
the generality of the model, it will be easier to study its behavior. In
particular, powerful structural results allow us to fully characterize some
(otherwise hard to study) properties such as liveness and reversibility.

' 171 Definition of four net subclésse§
Let us introduce four imaportant subclasses summarized in Fig. 1.23.
Definition 1.8. A state inachine (SM) is an ordinary net such that:
Vie TI'"t=1 and If'l=1
that is, any transition has one input and one output place.

State machines allow the modeling of decisions (conflicts) and re-entrance.
It is important to note that the concept of state machine, considered as a
subclass of nets, is more general than the classical state diagram or state
graph, since it can have more than one token. In any case, state machines
do not ‘create’ tokens; thus can model only finite state systems.

Definition 1.9. A marked graph (MG) (also event or synchronization
graph) is an ordinary net such that: :

Vpe PlI'pl=1 and p1=1

L that-is, any place has one input and one outplit transiﬁon.

MGs are a subclass of structurally decision-free nets. They can model
systems for ordering activities as PERTSs (program evaluation and review
techniques) do. They are more general than PERTs in the sense that re-
eycling is allowed and places can contain several tokens. Moreover, pro-
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Figure 1.24 A job-shop system modeled with a marked graph (Hillion and

Proth, 1989).

oin queuning

i

M;: job 1, job 2, job 3, job 4

job 1: machine 1, machine 2, machine 3
M,: job 1, job 2

job 2: machine 3, machine 2
job 3: machine 1, machine 3

Let us assume that we want to model a 4-jobs—3-machines manufactur-
job 4: machine 1, machine 3

Even if MGs are a very restrained class of nets, they may appear in the
ing system under the following fixed route control strategy:

modeling of job-shop systems, once production routing of jobs and the

are equivalent (i.e. have the same descriptive power) to fork/
machine sequencing are uniquely defined.

networks with blockings (FIQN/B) (Dallery et al., 1990).
(b) Jobs should visit the machines as follows:
{e}-Machines should sequence the jobs as follows:

(a) Product mix: 25% of job i, Vi = 1, 4;

B s [ __
"S35SR[OqNS JOU ATEUIPIO [EIUSTREPUNT INC - £T°T WA

N

‘NS

poowszspun Ajernred st &Aooy siskjeuy .
sorogdruios UOISN{IXY Jermnw

A5 suraisAsqns Tenuonbas ulEpoul MO[Y «
Y3noay PIZINQIYDUAS qns | poy

PIATOS 59 UBD 1nq [RIAUAT T} 935 JOU 2Fe SAOMOY) «
sdigsuonies1

2OUATINDTOD PUE 210G2 ‘eoudnbas Fuipapour Ao[[Y «
) SUORISURTL 910

itm pareys aseyd indug suo 1sow e SEY UOTISUE] Y3y «

sjaN a1dung

N

PooIsIopun [[aM ST A10a) SISOUIUAS pue SISA[BUY .
soroydewos UON[IXS fEnINU YEnoay
paztuonpuAs swasksqns [Enuanbos JUapow MOjIe 10U A «
. UONISURD JWBS
DY LIO DPIILULLOT JOULED SUOREZIUOIYIULS pue 10Y7) -
SUIYSUOIRIE 2UDLIRIUOD PUT 210D <anuanbas Tuljopous Moy »

SN 9210Y) 2214 _

powisIopun ([os Si L1031 SISAYIUAS pue SISAEUY »

, sinotaeyaq aannadal Suneadsul usad
‘g1 ©f SE[IWTS SSMIANDE BULIOPIO I0] swu2isAs Burpapowr MOfY
SWIISAS D1RIS DIUI-UOU [IPOW UL »

SA0TOND [APOL JOUUES Nq
wisfafered [eINIONNS PUE SUCHIEZIUOL[IUAS Suyapour MO[[Y »

sydern ﬂoﬁaﬁ_

WS

s
wﬂwﬁg
o

pOoIsIapUN [jam ST K103Y) SISYIUAS pue SISA[ETIY o
: SUIISAS 31818 21Ul [SpOus A{UQ) »
AU LMOUOD pue

Aouenuosn mojge 10q (SYHOH) wsyapjeLed EIMOIS Jou
(SNIOD SGOLRZIUONIUAS IOTH12H 1USAI] »

FNAHaAIgao:1

SATNIBTA ouﬂ\m_

M. job 1, job 2, job 3, job 4



48 _ Introducing Petri nets

The jobs to be performed are modeled with the horizontal circuits:

job I:pio -ty Pz - i " Pt P s " Puo
job 2:pyy-tn Pn -t Pz In Pw
job 3:ps -t Pai- fac P B P
job 4: pug - ta - Pa v ta - Pas "l Pa
Because machines process only one job at a time, vertical circuits marked
with a single token are added to determine the sequencing of the jobs on
the corresponding machines (i.e. the token represents the availability of

the machine to process a job):

machine 1. myy - by - Mgy Iy - My B - T

machine 2: My Yz * My - by - My

machine 3: My - bz - My by~ bog * Mg - g - Mag = Loy~ My
Another class of examples where MGs are useful to model manufacturing
problems is the following. A flow line is a tandem production system (i.e.
a series of machines separated by buffers) (Gershwin, 1987). Material flows
from the first to the last machine. Figure 1.25(a) shows a flow line with
three machines and two buffers. The MG in Fig. 1.25(b) makes explicit the
behavior of the model with reliable machines, assuming the so-called
blocking-after service mechanism (i.e. machine processes even if there is

no free-space in the output buffer). o
- Yere it-is worth noting that the modeling capacities of MGs and SMs

are dual in the sense that SMs can model choices, but not synchronizations.
On the other hand, MGs can model synchronizations, but cannot model

choices.
The subclasses we introduce below contain SMs and MGs; therefore,

they can model some restricted interleaving between choices and synchron-

izations, although not in all the cases that ordinary nets allow. Free-choice

nets (FCNs) can be considered as an extension of:

(2) SMs by allowing MGs-type synchronization (i.e. if two places share a
common output transition then this is their unique output transition); or

(b) MGs by allowing SMs-type conflicts (i.e. if two transitions share a
common input place, then this is their unique input place).

It is not difficult to realize that both statements represent identical restric-

tions. FCNis are a common generalization in which choices and synchroniza-

tions do not directly interfere with each other.

Definition 1.10. A free-choice net (FCN) is an ordinary net such that:
Vpe P,ip'l >1= Ve p I'td = 1

That is, if two transitions, # and £, have a common input place p, it is the

only input place of #; and .

Fram a hehavioral noint of view, FCNs are models in which either all or
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Figure 1.25 A flow line and two net systems representations: {(a} a flow line with three machines and two buffers;

(b) MG model assuming reliable machines; (c) Macroplace expansion for unreliable machines,
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place is marked and has more than one output transition, the transition to
be fired can be freely chosen (i.e. independently of the rest of the mark-
ing). Hence the name. The behavioral and structural analysis of FCNs is
particularly elegant and well understood.

‘When the machines of the flow line (Fig. 1.25(a)) are considered un-
reliable, the corresponding refinément of the machine-working places leads
to the FCN of Figure 1.25(c)) (MTBF: meai time between failures; MRT:
mean repairing time).

Provided with adequate stochastic interpretation, FCNs extend the FIQN/
B model allowing random routings. The net in Fig. 1.11(c) is free-choice.
The net in Fig. 1.8 is also free-choice. Stochastic free-choice nets can also
be viewed as free-choice synchronized gqueuing networks (Campos ef al.,
1991).

Free-choice nets do not allow the modeling of sequential subsystems
synchronized through mutual exclusion semaphores (i.e. shared resources).
The next net subclass, simple nets, allows it in some simple case: when no
more than one exclusion semaphore is considered in any synchronization.
In simple nets, choices are not free in general but they can be solved
locally, because each choice is centered around a unique shared place.

Definition 1.11. A simple net (SN) is an ordinazy net in which each tran-
__sition has at most one input place shared with other transitions. An SN is
such that: -

Vre T l{p e A such that [p*l > 1} < 1

In spite of its relative generality, this subclass has some interesting prop-
erties. Nevertheless, its behavior is by far not so well understood as that
of FCNs. Many systems are modeled with SNs. The typical basic example
of an SN is the model of a system in which a resource is shared by two or
more users (Fig. 1.4(g)). The net of our production cell with two machines,
one robot and a store (Fig. 1.9) is simple. Other simple non-free-choice
nets are in Figs 1.12(b), 1.15, 1.17(a), 1.19 and 1.22(a).

1.7.2 On the analysis of the net systems subclasses

The structure of the considered net subclasses is rich enough to give plenty
of information on the net systems we can define by putting an initial
marking. This is particularly true for FCN systems and their subclasses,
MG and SM systems. For SN systems there cxist also some interesting
results, but the stronger properties of free-choice systems cannot be ex-
tended (e.g. the rank theorem, or the liveness monotonicity with respect
to the initial marking).

Tt M o Vievminmmn and ranshalailitxr
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®

Figure 1.26 Two consistent and conservative free choice nets:

- ts: (a) Struct

live (r=p),r=rank(C) =5 p=m+n—-a-1 =7"+7—8—1(25;n1 urally

‘(1b) gtrucfjturilly 1210n-]1ve Fzphr=rank(C)=3,p=m+n-a-1=
+5-6-1=2.

{a) Siphons, traps, liveness and reversibility

By means of graph—theory based reascning it is possible to characterize
many properties for net subclasses. Siphons (also called structural dead-
locks, or more simply deadlocks) and traps are easily recognizable subsets
of places that generate very particular subnets.

Definition 112, Let N = (P, T, F) be an ordinary net.

1. A siphqn is a subset of places such that the set of its input transitions
is (;)ntamed in the set of its output transitions: £ C P is a siphon &'z
= -

2.A trap is a subset of places such that the set of its output transitions is
contained in the set of its input transitions: 8 C Pisatrap & 6°¢C *6.

Z ={ps, P2, Ps» Ps, Pe} I a siphon for the net in Fig. 1.26(a): *X= [t i B, 1, B},

L. while £ =X U {tg}. Z contains a trap, 8= X\p,. In fact @is also a siphon

(it is minimal: removing any number of places no siphon can be obtained).
Siphons and traps are reverse concepts: a subset of places of a net N is

a siphon 1ff it is a trap on the reverse net, N* (i.e. that obtained reversing
the arcs, its flow relation, F).

The following nropertv ‘exnlains’ whv ‘sinhons’ {think of ‘enda sinhang)
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Property 1.14

1. Siphons: ' : :

(i) If M is a behavioral deadlock (i.e. dead-marking), then D = {p/M(p)
= 0} is an unmarked (empty) siphon.

(ii) If a siphon is (or becomes) unmarked, it will remain unmarked for
any possible net system evolution. Therefore all its mput and out-
put transitions are dead. So the system is not live (but can be
deadlock-free).

2. Traps: If a trap is (or becomes) marked, it will remain marked for any
possible net system evolution (i.e. at least one token is ‘trapped’).

Tf a trap is not marked by M, and the system is live, M, will not be re-
coverable from those markings in which the trap is marked. Thus: -

Corollary 1.1. If a live net system is reversible, then M, marks all traps.

For live and bounded free-choice systems a stronger property holds:
Marking all traps is a necessary and sufficient condition for reversibility
(Best et al., 1990). The net system in Fig. 1.26(a) is reversible. Nevertheless,
if M% = (0100100), the new system is live and bounded but non-revers-
ible: The trap 8 = {py, Ps: Ps Pe» P7} is not marked under M,

A siphon which contains a marked trap will never become unmarked.

__So this more elaborate property can be helpful for some liveness charac-

terizations.

Definition 1.13. Let N be an ordinary net. The system (¥, M,) has the
marked-siphon-trap property, MST-property, if each siphon contains a
marked trap under M,

A siphon (trap) is minimal if it is not contained in any other. Thus siphons
in the above statement can be constrained to be minimal without any loss

of generality. _ B . .
The MST-property guarantees that all siphons will be marked. Thus no
dead marking can be reached, according to property 1.14(1)(i). Therefore:

Property 115, If (N, M,) has the MST-property, the system is ‘deadlock-
free.

Figure 1.27 presents some limitations of the MST-property for liveness
characterization. Nevertheless, there exist the following interesting results
on liveness.

Property 1.16. The MST-property is sufficient for livéness in simple net
systems and necessary and sufficient for free-choice net systems. '

As a corollary, the following liveness monotonicity result is true:

Fovallary 17 Teot (N M) he a live free-choice svstem. Increasing M,
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(a) )

Figure 1.27 For liveness analysis the marked siphon-trap-property i
necessary for sunpie bounded nets nor sufﬁcicntpfor non?siIIanf; lr:tguﬁdrtls?it nets:
(a) the marked siphon-trap-property does not hold and the simple net is live
and bounded; (b) the marked siphon-trap-property does not hold but the
non-simple net is non-live (although deadlock-free) and bounded.

TI'hg_a above result does not apply to SN systems. The system in Fig. 1.12(b)
is simple, 2 = {py, P2, p7} is asiphon ("Z = {t, £, 1,}, £ = "Z U {1,)) that does
not contain any trap. If we assume My(ps;) = 1, £, can be fired and X
becomes empty, leading to non-liveness. :

SMs a'nc:l MGs are FCNs. The set of places of an SM is a minimal siphon
afld a minimal trap iff it is strongly connected. Moreover, any elementary
circuit of an MG is simultaneously a minimal siphon and a minimal tra
So the following can be stated, S

Property 1.17

1. A.n SM is l‘ive for M, iff it is stiongly connected and marked under M,
(i.e. there is at least one token). : '

2. An MG is live for M, iff all circuits are marked under M,

Obﬁqusly, liveness is a polynomial complexity problem for SMs. By con-
ventional logic equivalence the last property can be easily restated as fol-
lows: an MG is live under M, iff there is no unmarked circuit. From this
statement it follows immediately that liveness can also be computed in
polynomial time for MGs:

1. Remove from N all marked places under M, to obtain the net N;

--2. The system (N, My} is live iff N, is an acyclic graph.

The MG systems in Figs 1.24 and 1.25 are obviously live.

(b) Linear algebra, structural liveness and liveness
Structural boundedness is well characterized far oeneral Patri nate feon
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for structurally bounded FCNs and for MGs. Liveness for those structur-

ally live net systems is also fully characterized in linear algebraic terms.

Property 1.18. Let C be the incidence matrix of the free-choice net N. N
is structurally live and structurally bounded iff: : ‘

3X > 1 such that C- X = 0 (i.e. net consistency)
3y > 1 such that ¥7 - C = 0 (i.e. net conservativeness)

rank(C) =TI + Pl —a—1, where a is the number of arcs in the flow relation -

Pre.

With respect to Property 1.12(2), necessary and sufficient conditions are
now given. Moreover, the rank condition is now an equality, and & is
substituted by its value for FCNs: 6 = a - LPl. _

The above property allows us to conclude on structural liveness (Fig.
1.26(a)) and structural non-liveness (Fig.1.26(b)) for consistent and con-
servative FCNs.

The particularization of Property 1.18 for SMs and MGs shows that in
both cases the rank condition is redundant: it is satisfied when consistency
and conservativeness hold. Even more, the following can be shown:

Property 1.19. A connected SM (MG) is consistent (conservative) if the

net is strongly connected.

" Connected SMs are comservative (then structurally bounded), thus struc-

turally live iff strongly connected. Connected MGs are consistent, thus
structurally bounded and structurally live iff strongly connected. This very
last result can be generalized interpreting Property 1.17(2): with ‘large
enough’ M,, any MG is live. In other words, MGs are structurally live nets.

Property 1.18 has several important consequences (Esparza and Silva,
1991a): (1) Structural liveness can be decided in polynomial time (solving
the consistency and conservativeness problems, and computing the rank
of a matrix); (2) duality theorem; (3) a kit of two reduction rules (that is
complete, i.e. is able to reduce all structurally live and structurally bounded
FCNs).

Property 1.18 characterizes the lively and boundedly markable FCNs.
Once we have one of these nets, we would like to know which are exactly
the markings that make it live and bounded.

Property 1.20. LetNbea structurally live and structurally bounded FCN.
(N, My is live iff all p-semiflows of N are marked at M, (i.e. 7Y 2 0 such
that Y7 - C =0 and Y7 - M, = 0). -

The necessary condition holds in general: if a p-semiflow (that is always a
siphon and a trap) is unmarked at M, it remains unmarked forever. Liveness
monotonicity for live and (structurally) bounded FCN systems is also a
nnnnn manre nf the ahave nropertv. Moreover, liveness for structurally
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{c) Reversibility, reachability and marking bounds
Not all live and bounded FCNs are reversible (jinagine ME =

(0, 13 0,0,1,0,0)" for the net in Fig. 1.26(a). Nevertheless, it is alway_s
Possrbl_e to rc?ach from M, a marking such that a unique reversible system
is obtained (i.e. there always exists a so-called home state). The following

property characterizes the live, bounded and reversible FCN systems.

Prol_)erty. 121, Let (N, M;) be a live and bounded FCN system. It is re-
versible iff all traps are marked under M,

The reachability problem for the class of systems being considered is also
solved {Desel and Esparza, 1990):

Property 1.22. Ijet (N, M,) be a live, reversible and bounded FCN system.
The three following statements are equivalent:

(i) M is reachable from M, (i.e. Jo such that My[c )} M);

(11) M=M,+C-&, &20where M ¢ N" marks all minimal traps;

(iii) BT - M = BT - M,, where B is a basis of left annullers (i.e. B” - c-=
0) and M € N” marks all minimal traps.

Strongly connected SMs have one minimal trap {6 = P) and B = 1.
’_I'herefore (Property 1.21) live SMs are reversible and the reachable mark-
ings are the non-negative integer solutions of X, M(p) = Z,M,(p). For MGs
minimal traps coincide with elementary circuits. Therefore liveness is

equival'ent to reversibility for strongly connected MGs. Even more, the
above is true for MGs in general: '

Property 1.23. ]._,et {N, M,) be a live (possibly unbounded) MG system.
The three following statements are equivalent:

(1) M is reachable from M, (i.e. 3o such that M) M)

(i) MT=MD+c.a,aao,whereMeN" ' .

(iiiy B - M = B - M,, where M € N* and B,is the fandamental circuit
matrix of the graph. '

Therefore .it_ 1s easy 1o show. that (possibly unbounded) MG systems are
reversible lff live. Finally, using reachability characterizations it is not dif-
ficult to derive the following last property:

Propgrty 124, Let (N, M) be a live and bounded FCN system or a live
(possibly unbounded) MG system. The behavioral and structural bounds
_of place p coincide:

B(p) = max(M(p)/M < R (N, My)} = SB(p) -
=max{M(p)/M =M;+C- G 20,5 20}

As an example, th.e above means (for the class of systems being consid-
ered) that the maximum required size of stores (buffers) can be computed



56 . Introducing Petri neis

The net system in Fig. 1.9 is simple but not free-choice (thus it i_s not a
marked graph). As an example of complementarity among analzgs tech- -
niques, let us prove its main global properties combining reductions and
structure theory for net subclasses:

1. Reduction phase: . _ -
e Use rule RA2 (Fig. 1.16} to fuse the following series of transitions of

Fig. 1.9:

t-load—t, = 1,
t,—deposit—ts = s

" t-unload—ts = tx
t—withdrawal—,, = tag

e Use (marking) implicit place rule (only the basic extension of seli-

loop place, RC1 in Fig. 1.16) to remove place R.
2. The remaining net is a marked graph, therefore:

» The MG is strongly connected, then conservative (Property 1.19).

Conservativeness is a particular case of structural boundedness.
Therefore the MG system is bounded. .

¢ Removing marked places (i.e. wait raw, empty,.objecr, wait thh.) an
acyclic net is obtained. Then the MG system is live (Property 1.17(2))
and reversible (follows from Property 1.22 or Property 1.23). |

" “Rules RAZ and RC1 preserve boundedness, liveness and re\fersibil-
ity. Therefore, the original manufacturing model is bounded, live and

reversible.

1.8 CONCLUDING REMARKS

Petri nets theory and applications is a vast field. In this chapter a selection
of modeling issues have been presented first: Autonomous net‘ systems are
abstract models. Interpreted net systems are ‘natural’ extensions of well-
known formalisms like state diagrams (a formalism to model the func-
tional behavior of sequential switching systems) or quewing netwo;ks (a
formalism to model performance issues of systems where the sl;anpg of
resources plays an important role, but there are no synchronizations).
Marking diagrams and synchronized queuing networks are examples of such
(particular) net interpreted models. - .

The GRAFCET (see, for example, David and Alla (1989)), an interna-
tional standard of the Commission Electrotechnique International (CEI
#848  Preparation of function charts for control systems). is an interpreted
bipartite graph, 1-bounded by definition, closely re_lated in some aspects to
marking diagrams. GRAFCETs are difficult to validate in general because
tae mnch information is put in the interpretation. They have been exten-
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Qualitative (i.e. logical) analysis issues of net system models have been
considered in the second part of the chapter. We tried to present a com-
pilation of some practical results. The reader is referred to the literature
where many motre interesting analytical results are documented. Com-
plementarity of qualitative analysis techniques has been emphasized.
Moreover, quantitative (i.e. performance) modeling issues have just been
introduced in the framework of net interpretations. A consideration in
manufacturing, including quantitative analysis techniques, is delayed to
Chapter 4. At the research level a main trend is the in-depth interleaving
of qualitative and quantitative analysis techniques.

The behavior of non-autonomous net systems may be constrained by
the environment. Therefore the interpreted net system behavior may be
strictly included in the behavior of the underlying autonomous net system.
Therefore, attention must be paid to the fact that the analysis of the un-
derlying net system may be for the interpreted one only necessary (e.g. for
marking reachability), only sefficient (e.g. for boundedness or mututal
exclusion} or neither necessary nor sufficient (e.g. for liveness). In other
words, the designer should interpret the properties of the underlying net
system, given the constraints imposed by the environment: the results of
the net system qualitative analysis can be considered as elaborated
warmpings. This generalizes from purely syntactical to a certain semantical
level, those warnings in the compilation of programs.

Petri nets as introduced here represent a level in the hierarchy of net
level models; namely piace/transition nets. Subclasses have been consid-
ered to increase the practical decision power at the expense of practical
modeling power. On the other side, extensions of place/transition net models
allow us to increase the practical modeling power (e.g. capacity Petri nets:
all places are bounded by a given capacity) or even the theoretical modeling
power (e.g. inhibitor arcs or transition priority nets have the same de-
scriptive power as Turing machines!). Therefore they are difficult to analyze
in general. Nevertheless, in bounded systems inhibitor arcs or priority at
transitions do not enlarge the modeling power. They are only practical
modeling facilities. :

Another kind of extension leads to the so-called High-Level Nets (HLN)
(see Jensen and Rozenberg (1991) for a broad and recent perspective). In
HINs tokens have attributes (e.g. called colors) and arcs receive some
inscriptions concerning the flow and transformation of the attributes of
tokens. HLNs allow us to make much more compact models (see, for ex-

_ample, in manufactaring, Martinez et al. (1986) or Silva and Valette (1990)).
Their analysis is presently not so mature as for place/transition nets.

Nets potentials for modeling discrete event dynamic systems (a consist-

ent, graphical/analytical family of models covering the main modeling

. lssues), and for its qualitative and quantitative analysis are not the only

basic arguments to use nets. Real-time control systems can be derived from
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(i.e. microprogrammed) and software level (see Silva (1985)) for a broad
overview of techniques). The generation of real-time software systems
received particular attention in the past, putting nets close to programmable
logic controilers (Colom et al., 1986; Silva and Valette, 1950).

19 BIBLIOGRAPHICAL REMARKS

Petri nets were introduced in the Ph.D. of Carl Adam Petri (Petri, 1962).
Today it is a very tich but relatively young field having an impact on many
different industrial sectors. More than in seminal/ historical papers we mainly
(but not only) refer to books, tutorials or surveys, where the specialized

“contributions are explicitly pointed. A bibliography on Petri nets is peri-
odically gathered by the Gesellschaft fiir Mathematik und Datenverarbeitung
(GMD). The last issue was compiled in 1986 and published in Rozenberg,
1987, where some 2,634 entrics are quoted.

Introductory texts to Petri nets and their applications have been written
by Peterson (1981), Brams, (collective name of a group of French re-
searchers) (Brams 1983), Silva (1985) and David and Alla (1989).

The material of two advanced courses on Petri nets is collected in Brauer
(1980), Brauer et 4l. (1987a,b). There is a subseries of Lecture Notes in
_Computer Science (LNCS) entitled Advances in Petri Nets (Rozenberg,
various dates). The International Conference (European Workshop until
1989) on Application and Theory of Petri Nets takes place every year, since
1980. The Proceedings are published by the organizers with the support of
IBM-Germany. Published by the IEEE Computer Society Press, there are
the Proceedings of the International Workshops on Petri Nets and Per-
formance Models (PNPM) focusing on the time qualitative and quantitative
aspects. Focused on High-Level Petri Nets (Jensen and Rozenberg, 1991)
is a selection of papers.

There exist several surveys on Petri nets in general. Murata (1989) gives
a broad perspective (containing 315 bibliographical entries) and received
the TEEE Donald G. Fink Prize Award. Petri nets and manufacturing
have also been the subject of several tutorials and surveys. Martinez et al.
(1986) is a basic tutorial for manufacturing engineers introducing concepts
on modeling with Petri nets. More survey-oriented are Valette (1987) and
Silva and Valette (1990). The last one assumes knowledge on Petri nets
basic concepts. Basically it focuses on some mapufacturing features and
how Petri nets may be helpful (contains more than 150 bibliographical
entries). Invited or regular sessions on Petri nets and manufacturing appear
at several conferences (e.g. IEEE International Conference on Robotics
and Automation, World Congress of IMACS, and IEEE International
Symposium on Circuits and Systems).

o F1O0M e o rarent naner an the construction of coverability graphs.
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Berthelot (1987). An overview of seminal works on this topic is Berthelot
et al. (1980). Silva (1981) studies the macroplace reduction rule, while Silva
(1985) and Colom and Silva (1991b) generalize the implicit {or redundant)
p_lace_ concept from Berthelot ef al. (1980). The reverse process of reduc-
tion is stepwise refinement for which Valette {1979) and Suzuki and Murata
(1983) can be taken into account. A more general/abstract perspective of
the topic is summarized in Brauer ez al. (1991).

. A semlpal overview on the state equation based analysis of net models
is Memmi _and_Roucairol (1980). The bridge between Petri nets and linear
programming is covered in Silva and Colom (1988) and Colom and Silva
(1991b). The identification of minimal invariants as extreme directions of
a cone allow.s us to derive fast algorithms to compute the sets of minimal.
p- and r-semiflows of a net (Colom and Silva, 1991a). Additional results on
linear algebra and Petri nets are in Colom ef al. (1990b). Structure theory

for‘ net. s.ubclasses is surveyed in several works. Best (1987) Best and

T1.11agara3an (1987) and Esparza and Silva (1991a) are mainly’concemed

with the free choice subclass. Commoner et al. (1971) and Murata (1977)

develop the basic theory of marked graphs. In Thulasiraman and Comean

(1987) linear programming is considered for MGs.
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