IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Divide and Conquer: EKF SLAM in O(n)

Lina M. Paz, Student Member, IEEE, Juan D. Tardos, Member, IEEE, and José Neira, Member, IEEE

Abstract—In this paper we show that all processes associated
to the move-sense-update cycle of EKF SLAM can be carried
out in time linear with the number of map features. We describe
Divide and Conquer SLAM, an EKF SLAM algorithm in which
the computational complexity per step is reduced from O(n2)
to O(n); the total cost of SLAM is reduced from O(n®) to
O(n?). Unlike many current large scale EKF SLAM techniques,
this algorithm computes a solution without relying on approxi-
mations or simplifications (other than linearizations) to reduce
computational complexity. Also, estimates and covariances are
available when needed by data association without any further
computation. Furthermore, as the method works most of the
time in local maps, where angular errors remain small, the
effect of linearization errors is limited. The resulting vehicle
and map estimates are more precise than those obtained with
standard EKF SLAM: the errors with respect to the true value
are smaller, and the computed state covariance is consistent with
the real error in the estimation. Both simulated experiments and
the Victoria Park dataset are used to provide evidence of the
advantages of this algorithm.

Index Terms—SILLAM, Linear time, Computational Complexity,
Precision, Consistency.

I. INTRODUCTION

HE Simultaneous Localization and Mapping (SLAM)

problem deals with the construction of a model of the
environment being traversed with an onboard sensor, while at
the same time maintaining an estimation of the sensor location
within the model [3], [4]. Solving SLAM is central to the effort
of conferring real autonomy to robots and vehicles, but also
opens possibilities in applications where a sensor moves with
six degrees of freedom, such as augmented reality. SLAM has
been the subject of much attention since the seminal work in
the late 80s [5], [6], [7], [8].

The most popular solution to SLAM considers it a stochastic
process in which the Extended Kalman Filter (EKF) is used
to compute an estimation of a state vector x representing the
sensor and environment feature locations, together with the
covariance matrix P representing the error in the estimation.
Most processes associated to the move-sense-update cycle of
EKF SLAM are linear in the number of map features n:
vehicle prediction and inclusion of new features [9], [10].
The exception is the update of the covariance matrix P of
the stochastic state vector that represents the vehicle and map

This research has been funded in part by the European Union under project
RAWSEEDS FP6-IST-045144 and the Direccion General de Investigacion of
Spain under project SLAM6DOF DPI2006-13578.

L.M. Paz, J.D. Tardés and J. Neira are with Instituto de Investi-
gacion en Ingenieria de Aragén (I3A), Universidad de Zaragoza, Maria
de Luna 1, E-50018, Zaragoza, Spain, e-mail: {linapaz, tardos,
jneira}@unizar.es

Preliminary versions of this work were presented at the 2007 IEEE Int.
Conf. on Robotics and Automation [1] and at the 2007 Robotics: Science and
Systems conference [2].

states, which is O(n?). The EKF solution to SLAM has been
used successfully in small scale environments, however the
O(n?) computational complexity limits the use EKF SLAM in
large environments. This has been a subject of much interest in
research. Postponement [11], the Compressed EKF filter [10],
the Sparse Weight Kalman Filter [12] and Map Joining SLAM
[13] are alternatives that work on local areas of the stochastic
map and are essentially constant time most of the time, al-
though they require periodical O(n?) updates. Given a certain
environment and sensor characteristics, an optimal local map
size can be derived to minimize the total computational cost
[14]. Recently, researchers have pointed out the approximate
sparseness of the Information matrix Y, the inverse of the
full covariance matrix P. This suggests using the Extended
Information Filter, the dual of the Extended Kalman Filter,
for SLAM updates. The Sparse Extended Information Filter
(SEIF) algorithm [15] approximates the Information matrix
by a sparse form that allows O(1) updates on the information
vector. Nonetheless, data association becomes more difficult
when the state and covariance matrix are not available, and the
approximation can yield overconfident estimations of the state
[16]. This overconfidence is overcome by the Exactly Sparse
Extended Information Filter (ESEIF) [17] with a strategy that
produces an exactly sparse Information matrix with no intro-
duction of inaccuracies through sparsification, but discarding
odometry information.

The Thin Junction Tree Filter algorithm [18] works on
the Gaussian graphical model represented by the Informa-
tion matrix, and achieves high scalability by working on an
approximation, where weak links are broken. The Treemap
algorithm [19] is a closely related technique: in cases where
there are many overlapping features, an optional optimization
uses a weak link breakage policy. Recently, the Exactly
Sparse Delayed State Filter [20] and Square Root SAM [21]
provided the insight that the full SLAM problem, the complete
vehicle trajectory plus the map, is sparse in information
form (although ever increasing) allowing the use of sparse
linear algebra techniques. The Tectonic SAM algorithm [22]
provides a local mapping version to reduce the computational
cost. However, the method remains a batch algorithm and
covariance is not available to solve data association. The Fast
Incremental Smoothing and Mapping (iSAM) algorithm [23]
addresses the data association problem by recovering the exact
covariance using QR-factorization on the Information matrix.
The authors report that iSAM is real time for the Victoria
Park dataset (although EKF SLAM is also real time for this
dataset).

A second important limitation of standard EKF SLAM
is the effect that linearizations have in the precision and
consistency of the final vehicle and feature estimates. Lin-

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

earizations introduce errors in the estimation process that
reduce precision and can render the result inconsistent, in the
sense that the computed state covariance does not represent
the real error in the estimation [24], [25], [26]. Among
other things, this complicates data association, which is based
on contrasting predicted feature locations with observations
made by the sensor. Thus, important processes in SLAM
like loop closing are complicated. All algorithms for EKF
SLAM based on efficiently computing an approximation of
the EKF solution will inevitably suffer from this consistency
problem [18], [19]. The Unscented Kalman Filter [27] avoids
linearizations via a parametrization of means and covariances
through selected points to which the nonlinear transformation
is applied. Unscented SLAM has been shown to have improved
consistency properties [28]. These solutions however ignore
the computational complexity problem.

In this paper we describe Divide and Conquer SLAM (D&C
SLAM), an EKF SLAM algorithm that overcomes these two
fundamental limitations:

1) The computational cost per step is reduced from O(n?)

to O(n); the total cost of SLAM is reduced from O(n3)
to O(n?);

2) the resulting vehicle and map estimates are more precise
than with standard EKF SLAM and the computed state
covariance more adequately represents the real error in
the estimation.

Unlike many current large scale EKF SLAM techniques,
this algorithm computes a solution without relying on approx-
imations or simplifications (other than linearizations) to reduce
computational complexity. Also, estimates and covariances are
available when needed by data association without any further
computation. The Victoria Park dataset is used to test this
algorithm. It produces better results than other state of the art
SLAM methods [29], [23] for this dataset.

In a recent paper [30] the authors prove that convergence
properties known to hold for linear EKF SLAM [31] hold
for nonlinear EKF SLAM only when Jacobians (and thus
linearizations) are computed around the ground truth solution,
which is in general unfeasible. It is also proven that the
use of Jacobians computed around the estimated value may
result in overconfident estimates. In particular, when the robot
orientation uncertainty is large, the extent of inconsistency is
significant. Likewise, when the robot orientation uncertainty
is small, the extent of inconsistency is insignificant. The
authors point out that since the robot orientation error is
the main source of inconsistency, algorithms that use local
submapping, where the robot orientation error remains small,
have the potential to improve consistency. Here we confirm
the consistency improvement offered by one of such local
submapping algorithms.

This paper is organized as follows: in section II we briefly
review the standard EKF SLAM algorithm and its computa-
tional properties. We also discuss other recent alternative algo-
rithms, based on local mapping, with reduced computational
cost. In section III we describe the D&C SLAM algorithm,
and study its computational cost as well as its consistency
properties in comparison with EKF SLAM and Map Joining
SLAM. In section IV we compare the computational cost,

Algorithm 1 : m = ekf_slam(steps)

zo,Ro =
X0, Po =

get_measurements

new_map(zo, Ro)

for k =1 to steps do

&gz_l ,Qr = get_odometry
Xijk—1,Fr, Gr = prediction(f(k_hfcgz’l)
Pyt = FiPpaFL +GiQGr (D)
zr, Rk = get_measurements

Hi, Hy, 274, , Ry, data_association

(Xkjk—1, Prjr—1, 2%, Ri)

Sk = HyPy_1H{ + Ry, (@)
Ki = Py HL/Ss 3)
P, = (I-KiHp)Pyp_ 4
v = 2w, — by (Reje—1) ©)
X = Xgk—1 + Krvg (6)
Xk, Pr = add_feat(f(,Pk,zk,Rk,’Hk)

end for
return m = (xx, Pg)

precision and consistency of EKF SLAM and D&C SLAM
using simulated experiments. In section V we analyze the
computational cost of continuous data association in EKF
SLAM, and describe the Randomized Joint Compatibility
(RJC) algorithm for carrying out data association in D&C
SLAM also in linear time. In section VI we use the Victoria
Park dataset to carry out an experimental comparison between
EKF SLAM and D&C SLAM. Finally in section VII we draw
the main conclusions of this work.

II. THE EKF SLAM ALGORITHM

The EKF SLAM algorithm (see alg. 1) has been widely used
for mapping and localization. Several authors have described
the computational complexity of this algorithm [9], [10]. With
the purpose of comparing EKF SLAM with the proposed
D&C SLAM algorithm, in this section we briefly analyze the
computational complexity of EKF SLAM.

A. Computational complexity of EKF SLAM

For simplicity, assume that in the environment being
mapped, features are distributed more or less uniformly. If
the vehicle is equipped with a sensor of limited range and
bearing, the amount of measurements obtained at any location
will be more or less constant. Assume that at some step k:

« the map contains n features,

« the sensor provides m measurements,

o 1 of which correspond to re-observed features and

e s =m — r which correspond to new features.

This corresponds to an exploratory trajectory, where the size
of the map is proportional to the number of steps that have
been carried out.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Fig. 1. Computation of the innovation covariance Sy matrix (top): given
that the effective size of the Jacobian matrix Hy, is r X ¢, the computation
requires O(n) operations (rcn + r2¢ multiplications and ren + 72¢ + 2
sums). In a similar way, the computations of the Kalman gain Kj matrix
(middle) requires O(n) operations, and the covariance Matrix Py (bottom)
requires O(n?) operations.

1) Computational cost per step: The computational com-
plexity of carrying out the move-sense-update cycle of algo-
rithm ekf_slam at step k involves the following:

o computing the predicted map X1, Pyjp_1, which re-
quires obtaining also the corresponding Jacobians F, Gy,

« solving data association (the complexity of data associa-
tion is analyzed in section V).

o computing the updated map Xj,Pj, which requires
the computation of the corresponding Jacobian Hy, the
Kalman gain matrix Ky, as well as the innovation vy,
and its covariance Sy.

The fundamental fact regarding computational complexity
in standard EKF SLAM is that, given a sensor of limited range
and bearing, Jacobians matrices are sparse [9], [10], [21]: their
computation is O(1). But more importantly, since they take
part in the computation of both the predicted and updated map,
the computational cost of eqgs. (1) to (6) can also be reduced.
Consider as an example the innovation covariance matrix Sy
in eq. (2). Without considering sparseness, the computation of
this 7 x r matrix would require rn? + r2n multiplications and
rn? + r2n + r? sums, that is, O(n?) operations. But given
that matrix Hy, is sparse, with an effective size of r X ¢, the
computation requires rcn+r?c multiplications and ren+r2c+
r? sums, that is, O(n) operations (see fig. 1 top). Similar

analysis leads to the conclusion that the cost of computing
both the predicted covariance Pp;_; and the Kalman gain
matrix Ky, is O(n), and that the greatest cost in an EKF SLAM
update is the computation of the covariance matrix Py, which
is O(n?). Thus, the computational cost per step of EKF SLAM
is quadratic on the size of the map:

Crxry = O(n?) @)

2) Total computational cost: Considering the assumptions
above, during an exploratory trajectory a constant number of
s new features are added to the map at each step. Thus to map
an environment of size n, n/s steps are required, and the total
cost of EKF SLAM will be:

n/s n/s
Cekr = Z O((ks)?) = Z O(k?)
k=1 k=1

The square power summation is known to be:

Lo, G +1)Ei+1)
Y =

i=1
Thus, the total cost of EKF SLLAM is cubic:

- 0 ((”/3)(71/5 +1)(2n/s + 1))

Cgxr = G
Tl3
© (83)

= 0On®) (8)

In general, the rate at which a map grows depends on
the trajectory that the vehicle follows and on the density of
features in the environment. During exploration, the number of
features in the current map will grow linearly, but when the
vehicle returns retracing its steps, the map size will remain
more or less constant. In these cases the cost of updating the
map is still O(n?) with the size of the map, but since n does
not increase, the total cost may be less than cubic.

B. Local Mapping Algorithms

Local mapping techniques have been proposed as com-
putationally efficient alternatives to EKF SLAM. Instead of
working on a full global map all the time as EKF SLAM does,
a sequence of local maps of limited size is produced. When
the size of the current local map reaches some limit, the map
is closed and stored, and a new local map is created. This
allows us to maintain the computational cost constant most of
the time, while working on the current local map. Algorithms
based on this idea include suboptimal or approximate solutions
such as Decoupled Stochastic Mapping (DSM) [32], Constant
Time SLAM (CTS) [33], the ATLAS framework [34] and
Hierarchical SLAM [35]. These algorithms sacrifice precision
in the resulting estimation of the map in order to maintain the
computational cost linear in the size of the map at worst.

There are alternative solutions that do not carry out approxi-
mations, such as Map Joining SLAM [13] and the Constrained

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Algorlthm 2: m; = join (mim]—,mj_,,k)

(R %j.00) "

Xik —
P; , = blkdiag(Pi.;,P;. k)
H, Hy data_assoc(X; 4, P; i)
Sy = HyxP; HY
H = HE G kTYH
Ky = P, Hy/Sn
)A(;rk = X~ KxHux,
Pj— k (I - KHHH)P;,.k
Xi.x = transform(X;)
T
OXi.. .k + 0.k
* o), "t <8f<i.k>

©

return m; . = (Xi...k, Pi.. k)

Local Submap Filter [36]. Given that we are interested in
algorithms that do not sacrifice precision in order to limit
computational cost, we concentrate on these two. Map Joining
SLAM (and similarly, the Constrained Local Submap Filter) is
an EKF-based algorithm in which a sequence of independent
local maps of a limited size p is produced using the standard
EKF SLAM algorithm. Map independence is guaranteed by
construction: once the current local map is closed, a new
local map is initialized with zero covariance using the current
vehicle pose as the base reference for the new map. These
local maps are later fused using a map joining procedure to
produce a single final stochastic map. Algorithm 2 details the
map joining procedure. For two consecutive local maps m;__;
and m; _j, computed in steps ¢...j and j...k respectively,
map joining computes the resulting map m; for all steps
i...k in the following way:

« Both maps are simply stacked together, with the features
of each in each local base reference. Thanks to map
independence, the cross-covariance between both maps
is zero.

« Data association is carried out to find common features
between both maps.

o Using a modified version of the EKF update equations
the map is optimized by fusing common features.

o All features are transformed to the base reference of the
first map.

A more detailed explanation of this procedure and its
notation can be found in the Appendix. It is worth noting that
Map Joining SLAM never revisits a prior local map. Instead,
a new local map is created, which will be joined later with
the previous map to obtain a global map which includes all
available information.

An analysis similar to that of fig 1 shows that for local maps
of limited size, the computational cost of Map Joining SLAM
is O(n?) on the size of the resulting global map, again being
the most expensive operation the update of the covariance
matrix P. However, map joining takes place only when a given
local map has reached its limit size. In all other steps, only

Algorithm 3 : m = map_joining_slam
sequential implementation of map joining.

m =ekf_slam(steps)

Main loop
repeat
my = ekf_slam(steps)
m = join(m, mg)
until end_of_map
return (m)
1 join, 1 resulting
L7} map of size n
| | ,,,,,,, 2 joins
1 1 I 1 ..
n/4. n/4 27 4 joins
4]
2 2p oee p 2 1/2 joins
— — — —
p P P D P P p p e 1 local maps
- of size p
Fig. 2. Hierarchy of maps that are created and joined in D&C SLAM.

The lower level is the sequence of [local maps of size p computed with
standard EKF SLAM as the arrow suggests. The intermediate levels represent
intermediate joins during the process. The top level represents the final map
of size n resulting from the join of two local maps os size n/2.

a local map is being updated, with a computational cost of
o(1).

Algorithm 3 carries out Map Joining SLAM: ekf_slam
is used to compute a local map my of a given limit size (or
for a given limit number of steps). This local map is joined
to a global map m by means of the join function in a se-
quential fashion. The process continues until the environment
is completely covered.

III. THE DIVIDE AND CONQUER ALGORITHM

Instead of joining each new local map to a global map
sequentially, as Map Joining SLAM does, the algorithm pro-
posed in this paper, Divide and Conquer SLAM, carries out
map joining in a hierarchical fashion, as depicted in fig. 2.
The lower nodes of the hierarchy represent the sequence of [
local maps of minimal size p, computed with standard EKF
SLAM. These maps are joined pairwise to compute [/2 local
maps of double their size (2p), which will in turn be joined
pairwise into [/4 local maps of size 4p, until finally two local
maps of size n/2 will be joined into one full map of size n,
the final map size. D&C is implemented using algorithm 4,
which uses a stack to save intermediate maps. Whenever two
maps of around the same size are at the top of the stack, they
are replaced in the stack by their join. This allows a sequential
execution of D&C SLAM.

A. Total computational complexity of D&C SLAM

In D&C SLAM, the process of building a map of size n
produces | = n/p maps of size p (not considering overlap), at

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

cost O(p?) each (see eq. (7)), which are joined into //2 maps
of size 2p, at cost O((2p)?) each. These in turn are joined
into /4 maps of size 4p, at cost O((4p)?) each. This process
continues until two local maps of size n/2 are joined into one
local map of size n, at a cost of O(n?). Map joining SLAM
and D&C SLAM carry out the same number of map joining
operations. The fundamental difference is that in D&C SLAM
the size of the maps involved in map joining increases at a
slower rate than in Map Joining SLAM. As shown next, this
allows the total cost to remain quadratic with n.
The total computational complexity of D&C SLAM is:

logy 1 I ‘
Cpc = O p3l+25(2ll’)2
i=1
! logz"/pn/p _
= O(p'nfp+ Y @)
i=1
logy n/p N
= O|p’n+ Z P@(Ql)z
i=1
log, n/p)
= O|p*n+pn Z 2

i=1

Note that the sum represents all costs associated to map
joining. This corresponds to the sum of a geometric progres-
sion of the type:

; C1—7r
=1
Thus, in this case:
2log2 n/p+1 _ 2

= O@®n+pn2n/p—2))
0] (p2n +2n? — 2pn)
O(n?)

This means that D&C SLAM performs SLAM with a total
cost quadratic with the size of the environment, as compared
with the cubic cost of standard EKF SLAM. This corresponds
to the normal exploration operation. In the worst case scenario,
when the overlap between the maps to be joined is full (i.e.,
if the robot traverses the whole map for a second time), the
cost of map joining will be cubic, the same as EKF SLAM.

(10)

B. Computational complexity of D&C SLAM per step

In D&C SLAM, in steps that are a power of 2, when
k= 2t 4 = 1...t joins will take place, at a cost
0(22),0(42) ... O(k?) respectively. An analysis similar to
that of eq. (10) shows that the total cost of such steps is O(k?),
of the same order as a standard EKF SLAM step. However,
in D&C SLAM the map to be generated at step k& will not be
required for joining until step 2 k. This allows us to amortize

Algorithm 4 : dc_slam
sequential implementation using a stack.

stack = new ()

my = ekf_slam()

stack = push (mg, stack) {

Main loop: postorder traversing of the map tree.

repeat
my =ekf_slam()
while - empty (stack) and then
size (mg) > size (top (stack)) do
m = top (stack)
stack = pop (stack)
mg = join(m, mg)
end while
stack = push (my, stack)
until end_of_map {
Wrap up: join all maps in stack for full map recovery.

while - empty (stack) do
m = top (stack)
stack = pop (stack)
my; = join(m, mg)
end while

return (mg)

the cost O(k?) at this step by dividing it up between steps
k+1to 2k in equal O(k) computations for each step. In this
way, amortized D&C SLAM becomes a linear time SLAM
algorithm.

An amortized version of D&C SLAM can be implemented
using two concurrent threads: one high priority thread executes
ekf_slam (alg. 1) to update the current local map, and the
other low priority thread executes dc_slam (alg. 4). In this
way, all otherwise idle time in the processor will be used for
the more costly map joining operations, but high priority is
given to local mapping, allowing for real time execution of
D&C SLAM.

As we will see in the Monte Carlo simulations and the
experiments, the amortized cost of D&C SLAM is always
lower than that of EKF SLAM. D&C SLAM is an anytime
algorithm, if at any moment during the map building process
the full map is required for another task, it can be computed
in a single O(n?) step.

IV. SIMULATED EXPERIMENTS

We use four simulated scenarios (fig. 3) to illustrate the
properties of the algorithms discussed in this paper. In an
environment which consists of equally spaced point features,
a vehicle equipped with a range and bearing sensor carries
out four different trajectories: straight line, a square loop,
lawn mowing and outward spiral (first, second, third and
fourth column, respectively). The simulated experiments were
carried out with known data association for the evaluated
algorithms, in order to discard mismatching effects in the
resulting performance of the estimators. The first row shows
the environment and each of the trajectories. The second and
third rows show the execution time per step and the total
execution time, respectively. It can be seen that the total cost
of D&C SLAM quickly separates from the total cost of EKF

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

15 151 . 15}
E10 E10/ E10 B
kS s | 8 8
3 3 | 3 3
g g4 g g
&5 S50 S 50 &
0 D . of . 0
0 5 10 15 o] 5 10 15 0 5 10 15
X position (m) X position (m)
07 EKF 045~ EKF
D&C p&c 4 &C
__ 06 Sequential MJ = 04 Sequential M) = . Sequential MJ
= = 2 1 <35
g os g 035 g s
fd 203 ;" :
] g s g & 55
£ £
[= [= 08 s 2
0.6, 15
0.4 1
X 02 05 I .
o ke o 0 A & A

IS
S

Total Time (s)
w
o

)
=)

[
o

Amortized Time (s)
)
=

Step

C
Sequential MJ

10 20 30 40 50 60

Step

C
equential MJ

Total Time (s)
IS

Time (s)
N
o

100

<
Sequential MJ

Total Time (s)

w
S

N
a

N}
S

D&C
Sequential MJ

Amortized Time (s)

(s)
o
° o
S

Amortized Time (s)
o
&

I
w

o
N

Step

Step

P ————

Fig. 3.

50 100 150
Step

200

250

10 20 30 40 50 60
Step

50

100
Step

150

50 100 150 200 250
Step

Four simulated experiments for comparing the EKF, Sequential Map Joining and D&C SLAM algorithms: (first column) straight forward trajectory;

(second column) loop closing; (third column) lawn mowing; (fourth column) outward spiral. Ground truth environment and trajectory (top row); execution
time per step of EKF vs. Map Joining vs. D&C SLAM (second row); total execution time (third row); execution time per step of EKF SLAM vs. amortized

execution time per step of D&C SLAM (bottom row).

SLAM, and also from Map Joining SLAM. The reason is
that the computational cost per step of D&C SLAM is lower
than that of EKF SLAM most of the time. EKF SLAM works
with a map of non-decreasing size, while D&C SLAM works
on local maps of small size most of the time. Map Joining
SLAM is computationally equivalent to D&C SLAM when
working on local maps. In some steps (in the simulation
those which are a multiple of 2), the computational cost of
D&C is higher. In those steps, one or more map joining
operations take place (in those that are a power of 2, 2%, ¢ map
joining operations take place). The accompanying AVI videos
dcslam_xvid_loop.avi, dcslam_xvid_lawn.avi
and dcslam_xvid_spiral.avi (available at
http://ieeexplore.ieee.org) show the execution of
both EKF SLAM and D&C SLAM for the same sample data.
The frames have been time stamped so that the actual running

times of the algorithms in our Matlab implementation are
shown.

Fig. 3 (bottom row) shows the amortized cost per step for
the four simulated experiments. We can see that the amortized
cost of D&C SLAM is always lower than that of EKF SLAM.

A. Consistency and precision in Divide and Conquer SLAM

Apart from computational complexity, another important
aspect of the solution computed by the EKF has gained
attention recently: map consistency and precision. When the
ground truth solution x for the state variables is available,
a statistical test for filter consistency can be carried out on
the estimation (X, P), using the Normalized Estimation Error
Squared (NEES), defined as:

Y

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Consistency is checked using a chi-squared test:

PP, (12)

where r = dim(x) and « is the desired significance level (we
consider the usual @ = 0.05). If we define the consistency
index of a given estimation (x, P) with respect to its true
value x as:

D2

Cl=—
Xg,lfoz

13)
when C'I < 1, the estimation is consistent with ground truth,
and when CI > 1, the estimation is inconsistent (optimistic)
with respect to ground truth. Thus CI measures how precise
the computed covariance is with respect to the real error, while
precision can be simply computed as the root of the squared
difference with ground truth.

We tested consistency of both standard EKF and D&C
SLAM algorithms by carrying out 100 Monte Carlo runs
on the simulated experiments. Simulation allows us to have
ground truth available. Additionally, Monte Carlo runs allow to
obtain statistically significant evidence about the consistency
of the algorithms being compared.

Figure 4 (top) shows the evolution of the mean consistency
index of the vehicle position (left) and orientation (right)
during all steps of the straight forward trajectory simulation.
We can see that the D&C estimate on vehicle location is
always more consistent than the standard EKF estimate; in
less than 100 steps EKF falls out of consistency while D&C
remains consistent. Figure 4 (bottom) shows the evolution
of the root mean square error on the vehicle position and
orientation. The 20 bounds for the theoretical uncertainty
are computed by running the simulated experiment without
measurement and robot noise, so that linearizations take place
in the true state values, and thus introduce no errors. The
computed uncertainty of both standard EKF and D&C SLAM
are also drawn. We can see how the RMS error increases more
slowly in the case of D&C SLAM. We can also see the fast rate
at which the uncertainty computed by standard EKF SLAM
falls below its theoretical value.

Monte carlo runs show that Divide and Conquer SLAM is
less subject to linearization errors than EKF SLAM. Fig. 5
shows a typical situation: the two algorithms run on exactly
the same data of a loop closure (the accompanying video
dcslam_xvid_loop.avi shows the execution of the two
algorithms for the same data). Because of less accumulated
error and thus better linearizations, the final result is much
more precise for D&C SLAM (data association is known and
used in both algorithms).

V. DATA ASSOCIATION FOR DIVIDE AND CONQUER
SLAM

A. Data association for standard EKF SLAM

The data association problem in continuous EKF SLAM
consists in producing a hypothesis H = [jij2"Ji*** jm]
where correspondences are established between each of the
i = 1...m sensor measurements and one (or none) of the

35F

30

25F

y position
v

X position
35¢

30F

251

201

y position

-5t

X position

Fig. 5. A typical result when running EKF SLAM (top) and D&C SLAM
(bottom) on the same data. The vehicle and map features tend to accumulate
more error during exploration with EKF SLAM. Even if data association
is known, the final result after closing a loop is less precise. The absolute
vehicle location estimates are shown when available from each algorithm.
Ground truth environment and trajectory are shown in red.

j = 1...n map features. The space of measurement-feature
correspondences can be represented by an inferpretation tree
of m levels [37]. Each node of the tree at level ¢ has n + 1
branches, corresponding to the n alternative feature pairings
for measurement ¢, and an extra node (star-branch) to account
for the possibility of the measurement being spurious or a new
feature. The size of this correspondence space, (i.e. the number
of alternative hypotheses) in which data association must
be solved is exponential with the number of measurements:
(n+1)™.

Fortunately, the availability of a stochastic model for both
the map and the measurements allows us to check each
measurement-feature correspondence for individual compati-
bility by predicting the location of the map features relative
to the sensor reference, and determine compatibility using
a hypothesis test on the innovation and covariance of each
possible pairing.

The discrepancy between the observation 7 and the predicted
observation of map feature j is measured using the innovation
term of eq. (5) and covariance (2). The measurement can be
considered corresponding to the feature if the Mahalanobis

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

——EKF
4b] o D&C
= = =Bound

35

Index

Steps

= EKF Theoretical uncertainty
= = =EKF computed uncertainty
—+— EKF Error

200 |- | — D&C Theoretical Uncertainty
— — —D&C computed uncertainty
oo D&C Error

150 -

Error (m)

100 -

50

[| ——EKF
| |7 D&C
= = =Bound

Index

50 100 150 200 250
Steps

0.1

= EKF Theoretical uncertainty
0.09 | | = = =EKF computed uncertainty
—— EKF Error

0.08 | | —— D&C Theoretical Uncertainty
— — - D&C computed uncertainty
0.07 |- D&C Error

Error (rad)

. . . .
50 100 150 200 250
Steps

Fig. 4. Mean consistency index CI of eq. 13 (top) and Root Mean Squared Error (bottom) for the robot x-y position (left) and orientation (right) for standard
EKF and D&C SLAM. The root mean square error is always smaller for D&C SLAM; also the computation of the variance of the error is more precise,
and thus the estimation always remains consistent. The EKF and D&C theoretical uncertainties coincide over all steps. Also, D&C computed uncertainty

superimposes the latter two.

distance D,%,ij satisfies [38]:

2 _ T q-1 . 2
Dy ij = Vi,ijSk,ijVhii < Xd1-a (14)

where d = dim (hy ;) and 1 — « is the desired confidence
level, usually 95%.

In standard EKF SLAM, and for a sensor of limited range
and bearing, the number of measurements m is constant and
thus individual compatibility is O(nm) = O(n), linear on the
size of the map. This cost can be easily reduced to O(m), a
constant, by a simple tessellation or grid of the map computed
during map building, which allows us to determine candidates
for a measurement in constant time simply by checking the
grid element and nearby grid elements in which its predicted
location falls. In 2D problems, the cost of computing and
updating the tessellation would be constant per step (a constant
amount of new features are included in the map per step),
while the space required would be proportional to the total
area covered by the map and the resolution of the tessellation.

In cases where clutter or vehicle error are high, there
may be more than one possible correspondence for each
measurement. More elaborate algorithms are required to dis-
ambiguate in these cases. Nevertheless, the overlap between
the measurements and the map is the size of the sensor
range plus the vehicle uncertainty, and thus more or less
constant. In local mapping, after individual compatibility is
sorted out, we use the Joint Compatibility Branch and

Bound (JCBB) algorithm [39] (see alg. 5) to disambiguate
between the possible associations for the m measurements.
It has been shown that algorithms such as JCBB, based on
a probabilistic model (feature estimates and covariances), can
greatly increase the robustness of data association, even when
other measurement properties are available. For instance, in
the case of monocular SLAM, the combined use of texture-
based matching and stochastic compatibility tests has proved
critical to reject outliers, especially from repetitive patterns
and dynamic objects [40]. JCBB performs branch and bound
search on the interpretation tree looking for jointly compat-
ible correspondences, but only in the overlap determined by
individual compatibility. Given that this is a region of the map
of constant size, each measurement will have a more or less
constant number of feature candidates, say c, and thus the
solution space is constant: (¢ + 1)™. In this way, JCBB will
execute in constant time.

B. Data association for Divide and Conquer SLAM

Data association in D&C SLAM is a very particular problem
because it involves finding correspondences between two local
maps of similar size whenever joining is to take place. For
instance, before obtaining a final map of size n, the data
association problem has to be solved between two maps of
size n/2 and so computing individual compatibility would
be O(n?) instead of O(n). Fortunately, as in the case of

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008 9
0000000000000 00® X X x 10
000000000000000®® X X x 000000
15! e 15| 9990000O0N0000000000 06000060000600006000
0000000000000 000000Q0 O0ORBRRRIBRIRRIRIRIARRIROOQ
888338883 g;ggggg;ggg COEIIVRRIIRIXZI BV EB|® OO
00QRII BRIV LR BB DSRS0 O
ool (Gfeye1e) 000000000000 51 00eRlelr e e R eREe® 00
=10, =10l 299R99900009009000000 ~ 0ogRlBlsle e R RRERSRRI8I® 0O
B E 000J000000000000888®® 0 E 0 0 glelelelexx xx x xlgslele® O O
< = OYPXVORORR® B ® z 00 gleeelelx[xxxx]xlglslelele O O
g s Y CEI Y L L) g 00 elglelelelx X x]x|x]elslelele O O
2 2 LIRS IO BB % O SoeslslelehxxxxslzielRle O O
s s .| ccclyrressy BB x g 00 XX X [@R]R[E]
> > XBRTRBI VXX DD B OB & X XX X X > 00 @lRIRIRISIe T T ®
XX XXX X XXX XX XX XXX XXX X X 00 EEEEE
X X XX XXX XX XX XX XXX XXX X X QO@@@@@@@'@'
X X XXX XX XX XX XX XXX XXX X X 5 [S1e: D CEEEEEEE @]
o o X X X XX X XX XX XX XX XX XXX X X OO0IRRRP RN R KRR ROIOOO
[XXXXXXXXXXXXXXX XXX XXX Q0000000000000 OOOO0O0
XXXXXXXXXXXXXXXXXXXX [e]ele]elolelolelololololololoolololelole)
XOXOXXXXOXX X XXX X X X X X 10 0000000000000000000
0 5 10 15 0 5 10 15 -10 5 0 5 10
X position (m) x position (m) x position (m)
Fig. 7. Size of the overlap between two final local maps, i.e. common features in both maps: crosses correspond to the first map and circles to the second

map. Square loop trajectory (left), lawn mowers trajectory (middle), and outward spiral (right).

Algorithm 5 Joint Compatibility Branch and Bound
Continuous_JCBB (E1...m, Fi...n):
Best = []
JCBB (11, 1
return Best

JCBB (H, %): {find pairings for observationE;}
if ¢ > m then {leaf node?}
if pairings(H) > pairings(Best) then
Best — H
end if
else
for j =1ton do
if individual_compatibility(z, j) and then
joint_compatibility (H, i, j) then
JCBB([H jl, i + 1) {pairing (E;, F;) accepted}
end if
end for
if pairings(H)+m—i¢ > pairings(Best) then {can do better?}
JCBB([H 0], ¢ + 1) {star node, E; not paired}
end if
end if

individual compatibility for standard EKF SLAM, finding
potential matches for one feature in another map can be done
in constant time using a simple tessellation or grid in the map
where the search is done. Consider the example in fig. 6. The
red trajectory and features correspond to the first local map
built, and the blue trajectory and features correspond to the
second local map. Individual compatibility may be done in a
way similar to standard EKF SLAM: we predict the location of
features in the first (red) map relative to the base reference of
the second (blue) map, and check for possible correspondences
with blue features. If the blue map is tessellated, we can find
potential matches for a red feature in constant time, and for
the whole red map in linear time. The cost of computing and
updating the tessellation is constant per step, while the space
required is proportional to the total area covered by each map.
Alternative solutions, such as 2D priority kd-trees [41], can be
used to make the storage space required be O(nlogn) on the
number of map features, instead of dependent on the covered
area as the tessellation is. There is however a higher cost
involved in finding a potential match per feature, O(logn),
and an update cost of O(logn) per feature to be included.

i
20 ﬁ ﬁ
10/ T
5
= 0r HHH
8 taasi FHH
f=% un! I
> .]
10t =
-20 ¢
-30 e
-40 -30 -20 -10 0 10 20 30
X position
Fig. 6. Tessellation to compute individual compatibility between two local

maps of similar size. The second (blue) map is tessellated using a grid.
Red ellipses represent the uncertainties of the predicted features of the first
local map with respect to the base reference of the second. The ellipses are
approximated by windows, and in this way possible candidates (asterisks) for
each red feature can be found in constant time. The robot trajectory is also
shown for each local map with the corresponding color.

A second issue of importance is the size of the region
of overlap between two local maps. While in standard EKF
SLAM this region is constant, and thus data association
algorithms like JCBB will execute in constant time, in D&C
SLAM the size of the overlap is not always constant. It
basically depends on the environment and type of trajectory.
Consider the simulated examples of fig. 7 where two n/2 maps
are shown. In the first case, the square loop, the region of
overlap between two maps will be of constant size, basically
dependent on the sensor range. In the case of the lawn mowers
trajectory, the overlap will be proportional to the length of the
trajectory before the vehicle turns back, basically the square
root of n. In the third case, the outward spiral, the region
of overlap between the inner map and the encircling map is
proportional to the square root of n as well. In some cases,
like traversing a loop for a second time, the size of the overlap
is the entire second local map.

In order to limit the computational cost of data association
between local maps in D&C SLAM, we use a randomized joint

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Algorithm 6 :RJC
P o = 0.01, Pyooa = 0.8, b =4
i=1, Best=[,H=]]
while (7 <t) do
m3 = random_select(msz, b)
‘H = JCBB*(H,1,m1, m3)
if pairings(H) > pairings(Best) then
Best ='H
end if
P gooa = max(P good, pairings(Best)/m)
t =1log P air/log(1 — Pgooq)
t=14+1
end while

JCBB*: testing the joint compatibility for b pairings.
}
procedure JCBB* (H, i, m;, m3)
if pairings(H)==b then
H = NN(H, i + 1, m1, m3)
else
for j =1 to length(m;) do
if individually_compatible (i, Jj) A
jointly_ compatible ([H j]) then
JCBBx* ([H j],t+ 1, m;, m3)
end if
end for
end if

compatibility algorithm. Our RJC approach (see algorithm
6) is a variant of the linear RS algorithm [42] used for
global localization. Consider two consecutive maps m; and
mpy, of size ny; and no respectively, to be joined. First, the
overlap between the two maps is identified using individual
compatibility. Second, instead of performing branch and bound
interpretation tree search in the whole overlap as in JCBB,
we randomly select b features in the overlapped area of the
second map and use JCBB*. This algorithm is a version of
JCBB where all b features are expected to be found in the
second map (no star branch). This produces a hypothesis H
of b jointly compatible features in the first map. Associations
for the remaining features in the overlap are obtained using
the simple nearest neighbor rule given hypothesis H, that is,
finding pairings that are compatible with the first b features. In
the spirit of adaptive RANSAC [43], we repeat this process ¢
times, so that the probability of missing a correct association
is limited to Pfail~

The RJC algorithm successfully detects the overlap between
two local maps in either continuous data association or loop
closing. The only requirement is that the stochastic maps
remain consistent, a condition which is enforced by the D&C
algorithm.

Since JCBB* is executed using a fixed number of features,
its cost remains constant. Finding the nearest neighbor for
each remaining feature among the ones that are individually
compatible with it, a constant number, will be constant. The
cost of each try is thus O(n). The number of tries depends on
b, the number of features randomly selected, on the probability
that a selected feature in the overlap can be actually found
in the first map Pgy,0q, and on the acceptable probability of
failure in this probabilistic algorithm, Py;;. It does not depend

10
250+
—= N
—— —EKF trajectory N X
C=> -EKFFeature)
200 H uncertainties >
__150f
£
[=4
o
‘2 100
a
>
50+
L4
%
ol +
L L L bl ra L L L
-100 -50 0 50 100 150 200
X position (m)
250
—— —GPS
P —D&C trajectory
(=> -D&CFeature
200+ uncertainties
150
£
s a% Y
2100 ¥,
<] Z
a
2 PR
50
'
§
b
¥
0 |-
L L L hd bl] L L L
—-100 -50 0 50 100 150 200
X position (m)
Fig. 8. Map for Victoria Park dataset according to the EKF SLAM (top)

and to D&C SLAM (bottom). The results are essentially equivalent; there are
some minor differences due to missed associations in the case of EKF. The
estimated position along the whole trajectory is shown as a red line for EKF
SLAM, and the vehicle locations are drawn as red triangles when available
in D&C SLAM. Green points are GPS readings in both cases, and are not
used in either case.

on the size of either map. In this way, we can maintain data
association in D&C SLAM linear with the size of the joined
map.

VI. EXPERIMENTS

We have used the well known Victoria Park data set to
validate the algorithms D&C SLAM and RJC. This experi-
ment is particulary adequate for testing SLAM due to its large
scale and the significant level of spurious measurements. The
experiment also provides critical loops in absence of reliable
features.

For RJC, we chose b = 4 as the number of map features
to be randomly selected as seed for hypothesis generation.
Two features are sufficient in theory to fix the relative location
between the maps, but we have found 4 to adequately disam-
biguate. The probability that a selected feature in the overlap
is not spurious, P ,,q is set to 0.8, and the probability of not
finding a good solution when one exists, P ¢4 is set to 0.01.
These parameters make the data association algorithm carry
out 9 random tries.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Fig. 9. The results were projected on Google Earth in order to compare the
precision obtained.

0.5

045

~-EKF
—D&C

04

o

[

@
T

o
w
T

o
[N}
T

Amortized time per step (seg)
[=} =}
- N
(%] w

o

0.05

I
2000
steps

1500 2500 3000

Al
—D&C

3500

500 -

Total time (seg)
w S
o o
o o
T T

N

o

o
T

100 -

I I I I
2000 2500 3000 3500

steps

| I I
500 1000 1500

Fig. 10. Time per step of EKF SLAM vs. amortized time per step of D&C
SLAM (top); accumulated time of EKF SLAM vs. D&C SLAM (bottom).

Figure 8 shows the resulting maps from standard EKF
SLAM vs. D&C SLAM. Each algorithm solves data associa-
tion on its own. This allows seeing when the estimator falls out
of consistency precisely because data association starts to fail;
there are some minor differences due to missed associations
in the case of EKF. Figure 10, top, shows the amortized
cost of D&C SLAM. We can see that in this experiment an
EKF step can take 0.5 seconds, while the amortized D&C
SLAM step will take around 0.05 seconds. The main source
of the noise visible in the EKF timing values is the variable
number of observations gathered when the vehicle traverses
the environment.

In real experiments like Victoria Park it is not generally
possible to predict at which step the size of the current local
map will reach its limit size. This depends on the trajectory
that the vehicle follows and on the density of features in the
environment. Some features can be initialized in the map and
later removed if they are not re-observed. In the Victoria Park
data set, the vehicle sometimes carries out exploratory trajec-
tories and sometimes it revisits previously mapped regions of
the park. When two local maps are joined, the size of the
resulting map will depend on the overlap. For these reasons,
the total map size does not increase linearly with the number
of steps. This makes the total cost of standard EKF SLAM
to not be cubic with the number of steps (fig. 10, bottom).
For the same reasons the total cost of D&C SLAM seems to
grow linearly, instead of quadratically, with the step number.
In any case, the benefits of using D&C SLAM can be clearly
seen. In this experiment, the total cost of D&C SLAM is
one fifth of the total cost of standard EKF, (130.24s on a
2.8 GHz Pentium IV, compared to 590.48s for EKF SLAM).
This result is also comparatively better than the reported by
iSAM algorithm [23] (464s on a 2 GHz Pentium M) and
comparable to FastSLAM 2.0 [29] (140s on a 1 GHz Pentium
IV). Plotting the results of D&C SLAM on (©)Google Earth
(Fig. 9) reveals a superior performance when comparing with
the precision obtained by the mentioned algorithms [23], [29].
The accompanying video dcslam_xvid_victoria.avi
shows the comparative running times of both standard EKF
SLAM and D&C SLAM.

VII. CONCLUSIONS

In this paper we have shown that EKF SLAM can be carried
out in time linear with map size. We describe an EKF SLAM
variant: Divide and Conquer SLAM, an algorithm that can
be easily implemented. In contrast with many current efficient
SLAM algorithms, all information required for data associ-
ation is available when needed with no further processing.
D&C SLAM computes the EKF SLAM solution, both the
state and its covariance, with no approximations, and with the
additional advantage of providing always a more precise and
consistent vehicle and map estimate. We also provide RJC,
a data association algorithm that also executes in linear time
per step.

We hope to have shown that D&C SLAM is the algorithm
to use in all applications in which the Extended Kalman Filter
solution is to be used. We also believe that the D&C map

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

hierarchical splitting strategy can also be incorporated in other
algorithms based on local submaps and similar strategies. This
idea is part of our future work.

APPENDIX: MAP JOINING 2.0

This appendix describes the map joining process used in
D&C SLAM, an improved version with respect to the original
map joining 1.0 in [13]. The general idea is the following: in a
sequential move-sense-update cycle, a local map is initialized
at some moment ¢ using the current vehicle location R; as base
reference, and thus the initial vehicle location in the map is
Xpr,;r; = 0 an also the initial vehicle uncertainty P, = 0.
Standard EKF SLAM is carried out in a this move-sense-
update fashion, until the map reaches a certain size of n
features I ... F), at step j. In this moment the state vector
X;...; will be:

XRi R]'
XRFy

XRi F,

with corresponding covariance matrix P;. ;. This map is then
closed, and a new local map m; ; = (ﬁj...k,P]‘...k) is
initialized in the same way (for simplicity, assume the sensor
measurements at step j are used to update the first map, and
the vehicle motion from R; to R;4q is carried out in the
second map). This results in having the last vehicle location
in the first map, I?;, be the base reference of the second map,
which allows maps to be joined into a full map in a three step
process of (1) joining; (2) update; and (3) transformation, as
it is explained next.

A. The Map Joining step

Consider two sequential local maps m; ; = (X;.;,Pi.),
m; ; = (X % Pj i), with n features Fy...F,, and m
features G, ... G, each:

XRiRj XRij
XRiFl Xchl

Xi.j= i Xj. k= (15)
XRiFn XRjG77L

The joining step allows us to obtain a stochastic map
m; , = (x; ,,P;) in the following simple way:
Xi..j

A o D- o Plj 0
Xik = [Xk } Py = [0 P, }

Note that the elements in the second map are kept in their
own reference R; instead of being referenced to reference
frame R; as in map joining 1.0. This has the effect of delaying
the linearization process of converting all features to base
reference R; until the update step has taken place, and thus
an improved estimation is used for this linearization. This is
the fundamental difference between map joining 1.0 and map
joining 2.0.

(16)

B. The update step

Data association is carried out to determine correspondences
between features coming from the first and second map.
This allows us to refine the vehicle and environment feature
locations by the EKF update step on the state vector. Let
‘H be a hypothesis that pairs r features Fy, ...y coming
from local map m;_; with features G, ... Gy, coming from
map m;. . A modified ideal measurement equation for r re-
observed features expresses this coincidence:

hy, g,
hy (% 5) = : =0
hy, g,
where for each pairing:
hy . =Xgr,F;, —XR,R, ®XR;G,, -
Linearization yields:

hyy (X5) = ha(X;) + Hyx; o — %5 1)

T...

ahh 91
OXR; R,

8h.f1.¢71
BijGgl

Ohy, g,
6ij Ggp

7)

8hf7'97‘ 0 I .. 0

OXR; R,

The update step allows us to obtain a new estimate m; , =
(%} . P!) by applying modified EKF update equations:

&jk =)A(;...k - KhH(ﬁz..k)
P, (I-KH»)P;
PZ..kH7T1 (HHP;...kH%)_l

K =

C. The transformation step

A final step is carried out to transform all the elements of
fcjk to the same base reference R; and obtain the final joined
map m;_x = (X1, Pi. 1)

I - ros ot
XR, Ry XRiR; EB XR, R
XR,Fy XR,Fy
Xk = b = X7
ik = R;Fp = N RiFn+
XR;Gy XRiRj ® XRle
L)A{RiGm _)A(RvR_ @ﬁ};g
L T]] m -
~ ~ T
p. _ Rikpy (X
i...k a),\(_i_ ...k 8),\(_1_
axR,Rk BxR,Rk
A aqu.R. 0 ale.R 0
0% i .
Sk o I 0 0 (18)
8xz‘...k OXR,E 0 0 OXR, B
OXR;R; OXR;E

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Note again that this linearization is carried out once the
map has been refined in the previous update step, thus using
a better estimate.

[2]

[3

=

[4

=

[5]

[7

—

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

L. M. Paz, P. Jensfelt, J. D. Tardés, and J. Neira, “EKF SLAM updates
in O(n) with Divide and Conquer SLAM,” in Proc. IEEE Int. Conf.
Robotics and Automation, Rome, Italy, April 2007.

L. M. Paz, J.Guivant, J. D. Tardds, and J. Neira, “Data Association in
O(n) for Divide and Conquer SLAM,” in Proc. Robotics: Science and
Systems, Atlanta, GA, USA, June 2007.

H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and Map-
ping: Part 1,” IEEE Robotics & Automation Magazine, vol. 13, no. 2,
pp- 99-110, 2006.

T. Bailey and H. Durrant-Whyte, “Simultaneous Localization and Map-
ping (SLAM): Part I1,” IEEE Robotics & Automation Magazine, vol. 13,
no. 3, pp. 108-117, 2006.

R. Chatila and J. Laumond, “Position referencing and consistent world
modeling for mobile robots,” in Proc. IEEE Int. Conf. Robotics and
Automation, vol. 2, 1985.

R. C. Smith and P. Cheeseman, “On the Representation and Estimation
of Spatial Uncertainty,” Int. J. Robotics Research, vol. 5, no. 4, pp.
56-68, 1986.

R. Smith, M. Self, and P. Cheeseman, “A Stochastic Map for Uncertain
Spatial Relationships,” in Robotics Research, The Fourth Int. Sympo-
sium, O. Faugeras and G. Giralt, Eds. The MIT Press, 1988, pp. 467—
474,

J. Leonard and H. Durrant-Whyte, “Simultaneous Map Building and
Localization for an Autonomous Mobile Robot,” in Proc. IEEE/RJS Int.
Conference on Intelligent Robots and Systems, Osaka, Japan, 1991, pp.
1442-1447.

J. A. Castellanos and J. D. Tardés, Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. Boston, Mass.: Kluwer
Academic Publishers, 1999.

J. E. Guivant and E. M. Nebot, “Optimization of the Simultaneous Lo-
calization and Map-Building Algorithm for Real-Time Implementation,”
IEEE Trans. Robotics and Automation, vol. 17, no. 3, pp. 242-257, 2001.
J. Knight, A. Davison, and I. Reid, “Towards Constant Time SLAM
using Postponement,” in Proc. IEEE/RJS Int. Conference on Intelligent
Robots and Systems, Maui, Hawaii, 2001, pp. 406—412.

S. J. Julier, “A Sparse Weight Kalman Filter Approach to Simultaneous
Localisation and Map Building,” in Proc. IEEE/RJS Int. Conference on
Intelligent Robots and Systems, vol. 1, Hawaii, October 2001, pp. 1251-
1256.

J. D. Tardés, J. Neira, P. M. Newman, and J. J. Leonard, “Robust
Mapping and Localization in Indoor Environments using Sonar Data,”
Int. J. Robotics Research, vol. 21, no. 4, pp. 311-330, 2002.

L. M. Paz and J. Neira, “Optimal Local map size for EKF-based SLAM,”
in Proc. IEEE/RJS Int. Conference on Intelligent Robots and Systems,
Beijing, China., October 2006.

S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous Localization and Mapping with Sparse Extended
Information Filters,” Int. J. Robotics Research, vol. 23, no. 7-8, pp. 693—
716, 2004.

R. Eustice, M. Walter, and J. Leonard, “Sparse extended information
filters: Insights into sparsification,” in Proc. IEEE/RJS Int. Conference
on Intelligent Robots and Systems, Edmonton, Alberta, Canada, August
2005.

M. Walter, R. Eustice, and J. Leonard, “A Provably Consistent Method
for Imposing Sparsity in Feature-based SLAM Information Filters,” in
Proc. Int. Symp. Robotics Research, 2004.

M. A. Paskin, “Thin Junction Tree Filters for Simultaneous Localization
and Mapping,” in Proc. Int. Joint Conf. Artificial Intelligence, San
Francisco, CA., 2003, pp. 1157-1164.

U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp. 103—
122, September 2006.

R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly Sparse Delayed-
State Filters for View-based SLAM,” IEEE Trans. Robotics, vol. 22,
no. 6, pp. 1100-1114, Dec 2006.

F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous Local-
ization and Mapping via Square Root Information Smoothing,” Int. J.
Robotics Research, vol. 25, no. 12, December 2006.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: Exact, Out-of-
Core, Submap-Based SLAM,” in Proc. IEEE Int. Conf. Robotics and
Automation, Rome, Italy, April 2007.

M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast Incremental
Smoothing and Mapping with Efficient Data Association,” in IEEE Intl.
Conf. on Robotics and Automation, ICRA, Rome, Italy, Apr 2007.

S. J. Julier and J. K. Uhlmann, “A Counter Example to the Theory of
Simultaneous Localization and Map Building,” in Proc. IEEE Int. Conf.
Robotics and Automation, Seoul, Korea, 2001, pp. 4238-4243.

J. A. Castellanos, J. Neira, and J. D. Tardds, “Limits to the Consis-
tency of EKF-based SLAM,” in 5th IFAC Symposium on Intelligent
Autonomous Vehicles, Lisbon, Portugal, 2004.

T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency
of the EKF-SLAM Algorithm,” in Proc. IEEE/RJS Int. Conference on
Intelligent Robots and Systems, 2006.

S. Julier and J. Uhlmann, “A new extension of the Kalman Filter to
nonlinear systems,” in International Symposium on Aerospace/Defense
Sensing, Simulate and Controls, Orlando, FL, 1997.

R. Martinez-Cantin and J. A. Castellanos, “Unscented SLAM for large-
scale outdoor environments,” in Proc. IEEE/RJS Int. Conference on
Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2005, pp.
pp- 328-333.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam 2.0: An
Improved Particle Filtering Algorithm for Simultaneous Localization and
Mapping that Provably Converges,” in Proc. Int. Joint Conf. Artificial
Intelligence, 2003.

S. Huang and G. Dissanayake, “Convergence and Consistency Analysis
for Extended Kalman Filter Based SLAM,” IEEE Trans. Robotics,
vol. 23, no. 5, pp. 1036-1049, October 2007.

M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map
building (SLAM) problem,” IEEE Trans. Robotics and Automation,
vol. 17, no. 3, pp. 229-241, 2001.

J. Leonard and H. Feder, “Decoupled Stochastic Mapping,” [EEE
Journal of Oceanic Engineering, vol. 26, no. 4, pp. 561-571, 2001.

J. Leonard and P. Newman, “Consistent, Convergent and Constant-
Time SLAM,” in Proc. Int. Joint Conf. Artificial Intelligence, Acapulco,
Mexico, August 2003.

M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller, “SLAM in large-
scale cyclic environments using the atlas framework,” Int. J. Robotics
Research, vol. 23, no. 12, pp. 1113-1139, December 2004.

C. Estrada, J. Neira, and J. D. Tardés, “Hierarchical SLAM: real-time
accurate mapping of large environments,” IEEE Trans. Robotics, vol. 21,
no. 4, pp. 588-596, August 2005.

S. B. Williams, “Efficient Solutions to Autonomous Mapping and
Navigation Problems,” Ph.D. dissertation, Australian Centre for
Field Robotics, University of Sydney, September 2001, available at
http://www.acfr.usyd.edu.au/.

W. E. L. Grimson, Object Recognition by Computer: The Role of
Geometric Constraints. Cambridge, Mass.: The MIT Press, 1990.

Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association.
Academic Press In., 1988.

J. Neira and J. D. Tardds, “Data Association in Stochastic Mapping Us-
ing the Joint Compatibility Test,” IEEE Trans. Robotics and Automation,
vol. 17, no. 6, pp. 890-897, 2001.

L. Clemente, A. J. Davison, I. D. Reid, J. Neira, and J. D. Tardos,
“Mapping Large Loops with a Single Hand-Held Camera,” in Proc.
Robotics: Science and Systems, Atlanta, GA, USA, June 2007.

J. Uhlmann, “Introduction to the Algorithmics of Data Association in
Multiple-Target Tracking,” in Handbook of Multisensor Data Fusion.
Boca Raton, FL: CRC Press, 2001.

J. Neira, J. D. Tardés, and J. A. Castellanos, “Linear time vehicle
relocation in SLAM,” in Proc. IEEE Int. Conf. Robotics and Automation,
Taipei, Taiwan, September 2003, pp. 427-433.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U. K.: Cambridge University Press, 2000.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

modeling.

Lina M. Paz was born in Cali, Colombia, in 1980.
She received the M.S. degree in Electronic Engineer-
ing from the Universidad del Valle, Cali, Colombia,
in 2003. Currently, she is a Ph.D. candidate at the
Department of Computer Science and Systems En-
gineering, University of Zaragoza, Zaragoza, Spain,
since 2004, in computer science.

She carries out research in mobile robotics, com-
puter vision for environment modeling and SLAM.

Juan D. Tardés was born in Huesca, Spain, in 1961.
He earned the M.S. and Ph.D. degrees in electrical
engineering from the University of Zaragoza, Spain,
in 1985 and 1991, respectively.

He is full professor with the Departamento de
Informética e Ingenierfa de Sistemas, University
of Zaragoza, where he is in charge of courses in
robotics, computer vision, and artificial intelligence.
His current research interests include SLAM, per-
ception and mobile robotics.

José Neira was born in Bogotd, Colombia, in 1963.
He received the M.S. degree from the Universidad de
los Andes, Bogot, Colombia, in 1986, and the Ph.D.
degree from the University of Zaragoza, Spain, in
1993, both in Computer Science.

He is an Associate Professor with the Department
of Computer Science and Systems Engineering,
University of Zaragoza, where he teaches courses
in compiler theory, computer vision, and mobile
robotics. His current research interests include au-
tonomous robots, data association, and environment

14

