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Abstract—In this paper we show that all processes associated
to the move-sense-update cycle of EKF SLAM can be carried
out in time linear in the number of map features. We describe
Divide and Conquer SLAM, an EKF SLAM algorithm where
the computational complexity per step is reduced fromO(n2) to
O(n) (the total cost of SLAM is reduced from O(n3) to O(n2)).
In addition, the resulting vehicle and map estimates have better
consistency properties than standard EKF SLAM in the sense
that the computed state covariance more adequately represents
the real error in the estimation. Both simulated experiments and
the Victoria Park Dataset are used to provide evidence of the
advantages of this algorithm.

Index Terms—SLAM, Computational Complexity, Consistency,
Linear Time.

I. I NTRODUCTION

The Simultaneous Localization and Mapping (SLAM) prob-
lem deals with the construction of a model of the environment
being traversed with an onboard sensor, while at the same
time maintaining an estimation of the sensor location within
the model [1], [2]. Solving SLAM is central to the effort
of conferring real autonomy to robots and vehicles, but also
opens possibilities in applications where the sensor moveswith
six degrees of freedom, such as egomotion and augmented
reality. SLAM has been the subject of much attention since
the seminal work in the late 80s [3], [4], [5], [6].

The most popular solution to SLAM considers it a stochastic
process in which the Extended Kalman Filter (EKF) is used
to compute an estimation of a state vectorx representing the
sensor and environment feature locations, together with the
covariance matrixP representing the error in the estimation.
Currently, most of the processes associated to the move-sense-
update cycle of EKF SLAM are linear in the number of map
featuresn: vehicle prediction and inclusion of new features
[7], [8], continuous data association [9], global localization
[10]. The exception is the update of the covariance matrix of
the stochastic state vector that represents the vehicle andmap
states, which isO(n2). The EKF solution to SLAM has been
used successfully in small scale environments, however the
O(n2) computational complexity limits the use EKF-SLAM in
large environments. This has been a subject of much interest
in research. Postponement [11], the Compressed EKF filter
[8], and Local Map Sequencing [12] are alternatives that
work on local areas of the stochastic map and are essentially

constant time most of the time, although they require period-
ical O(n2) updates (given a certain environment and sensor
characteristics, an optimal local map size can be derived to
minimize the total computational cost [13]). More recently,
researchers have pointed out the approximate sparseness of
the Information matrixY, the inverse of the full covariance
matrixP. This suggests using the Extended Information Filter,
the dual of the Extended Kalman Filter, for SLAM updates.
The Sparse Extended Information Filter (SEIF) algorithm [14]
approximates the Information matrix by a sparse form that
allows O(1) updates on the information vector. Nonetheless,
data association becomes more difficult when the state and
covariance matrix are not available, and the approximation
can yield overconfident estimations of the state [15]. This
overconfidence is overcome by the Exactly Sparse Extended
Information Filter (ESEIF) [16] with a strategy that produces
an exactly sparse Information matrix with no introduction of
inaccuracies through sparsification.

The Thin Junction Tree Filter algorithm [17] works on
the Gaussian graphical model represented by the Information
matrix, and achieves high scalability by working on anapprox-
imation, where weak links are broken. The Treemap algorithm
[18] is a closely related technique, which also uses a weak
link breakage policy. Recently insight was provided that the
full SLAM problem, the complete vehicle trajectory plus the
map, is sparse in information form (although ever increasing)
[19], [20]. Sparse linear algebra techniques allow to compute
the state, without the covariance, in time linear with the
whole trajectory and map size. The T-SAM algorithm [21]
provides a local mapping version to reduce the computational
cost. However, the method remains a batch algorithm and
covariance is not available to solve data association.

A second important limitation of standard EKF SLAM is
the effect that linearizations have in the consistency of the
final vehicle and feature estimates. Linearizations introduce
errors in the estimation process that can render the result
inconsistent, in the sense that the computed state covariance
does not represent the real error in the estimation [22], [23],
[24]. Among other things, this shuts down data association,
which is based on contrasting predicted feature locations with
observations made by the sensor. Thus, important processesin
SLAM like loop closing are crippled. The Unscented Kalman



Filter [25] avoids linearization via a parametrization of means
and covariances through selected points to which the nonlinear
transformation is applied. Unscented SLAM has been shown
to have improved consistency properties [26]. These solutions
however ignore the computational complexity problem. All
algorithms for EKF SLAM based on efficiently computing an
approximation of the EKF solution [17], [18] will inevitably
suffer from this problem.

In this paper we describe Divide and Conquer SLAM (D&C
SLAM), an EKF SLAM algorithm that overcomes these two
fundamental limitations:

1) The computational cost per step is reduced fromO(n2)
to O(n); the total cost of SLAM is reduced fromO(n3)
to O(n2);

2) the resulting vehicle and map estimates have better
consistency properties than standard EKF SLAM in the
sense that the computed state covariance adequately
represents the real error in the estimation.

Unlike many current large scale EKF SLAM techniques,
this algorithm computes an exact solution, without relying
on approximations or simplifications to reduce computational
complexity. Also, estimates and covariances are available
when needed by data association without any further com-
putation. Empirical results show that, as a by-product of
reduced computations, and without losing precision because of
approximations, D&C SLAM has better consistency properties
than standard EKF SLAM.

This paper is organized as follows: in section II we briefly
review the standard EKF SLAM algorithm and its compu-
tational properties. Section III contains a description ofthe
proposed algorithm. We study of its computational cost in
comparison with EKF SLAM, as well as its consistency
properties. In section IV we describeRJC, an algorithm for
carrying out data association in D&C SLAM also in linear
time. In section V we use the Victoria Park dataset to carry out
an experimental comparison between EKF SLAM and D&C
SLAM. Finally in section VI we draw the main conclusions
of this work.

II. T HE EKF SLAM ALGORITHM

The EKF SLAM algorithm (see alg. 1) has been widely
used for mapping. Several authors have described the compu-
tational complexity of this algorithm [7], [8]. With the purpose
of comparing EKF SLAM with the proposed D&C SLAM
algorithm, in this section we briefly analyze its computational
complexity.

A. Computational complexity of EKF SLAM per step

For simplicity, assume that in the environment being
mapped features are distributed more or less uniformly. If the
vehicle is equipped with a sensor of limited range and bearing,
the amount of measurements obtained at any location will be
more or less constant. Assume that at some stepk the map
containsn features, and the sensor providesm measurements,
r of which correspond to re-observed features, ands = m− r
which correspond to new features.

Algorithm 1 : ekf_slam

z0,R0 = get measurements

x̂0,P0 = new map(z0,R0)

for k = 1 to stepsdo

x̂
Rk−1

Rk
,Qk = get odometry

x̂k|k−1,Fk,Gk = prediction(x̂k−1, x̂
Rk−1

Rk
)

Pk|k−1 = FkPk−1F
T
k + GkQkG

T
k (1)

zk,Rk = get measurements

Hk,HHk
= data assoc(x̂k|k−1,Pk|k−1, zk,Rk)

SHk
= HHk

Pk|k−1H
T
Hk

+ RHk
(2)

KHk
= Pk|k−1H

T
Hk

/SHk
(3)

Pk = (I − KHk
HHk

)Pk|k−1 (4)

νHk
= zk − hHk

(x̂k|k−1) (5)

x̂k = x̂k|k−1 + KHk
νHk

(6)

x̂k,Pk = add feat(x̂,Pk, zk,Rk,Hk)

end for
return m = (xk,Pk)

The computational complexity of carrying out the move-
sense-update cycle of algorithm 1 at stepk involves the com-
putation of thepredicted map̂xk|k−1,Pk|k−1, which requires
obtaining also the computation of the corresponding jacobians
Fk,Gk, and theupdated mapxk,Pk, which requires the
computation of the corresponding jacobianHHk

, the Kalman
gain matrix KHk

, as well as the innovationνHk
, and its

covarianceSk (the complexity of data association is analyzed
in section IV).

The fundamental issue regarding computational complexity
is that all jacobians aresparsematrices [7], [8], [20]. Thus,
their computation isO(1), but more importantly, since they
take part in the computation of both the predicted and updated
map, the computational cost of eqs. (1) to (6) can also be
reduced. Consider as an example the innovation covariance
matrix Sk in eq. (2). Normally, the computation of this
r × r matrix would requirern2 + r2n multiplications and
rn2 + r2n + r2 sums, that is,O(n2) operations (see fig. 1).
But given that matrixHk is sparse, with an effective size
of r × c, the computation requiresrcn + r2c multiplications
and rcn + r2c + r2 sums, that is,O(n) operations. Similar
analysis leads to the conclusion that the cost of computing
both the predicted covariancePk|k−1 and the Kalman gain
matrix KHk

is O(n), and that the greatest cost in an EKF
SLAM update is the computation of the covariance matrix
Pk, which isO(n2). Thus, the computational cost per step of
EKF SLAM is quadratic on the size of the map:
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Fig. 1. Computation of the innovation covarianceSk matrix: the computation
requiresO(n) operations (rcn + r2c multiplications andrcn + rc2 + r2

sums).

CEFK,k = O(n2) (7)

Figure 3 shows the results of carrying out EKF SLAM
in four simulated scenarios. In an environment with uniform
distribution of point features, the vehicle performs a1m
motion at every step. The odometry of the vehicle has standard
deviation error of10cm in the x direction (the direction of
motion),5cm in y direction, and(0.5deg) for orientation. We
simulate an onboard range and bearing sensor with a range
of 3m, so that16 features are normally seen at every step.
The standard deviation error is 5% of the distance in range,
and 1deg in bearing. Four different trajectories are carried
out: straight forward exploration (first column); loop closing
(second column), lawn mowing (third column), and snail path
(fourth column). The execution time of EKF SLAM per step
for each of these trajectories is shown in fig. 3, second row.

B. Total computational complexity of EKF SLAM

Assume that the process of building a map of sizen features
is carried out with an exploratory trajectory, in which the
sensor obtainsm measurements per step as said before,s of
which are new (all four examples in fig. 3, straight forward,
loop closing, lawn mowing and spiral path, are exploratory
trajectories). Given thats new features are added to the map
per step,n/s steps are required to obtain the final map of size
n, and thus the total computational complexity will be:

CEKF = O





n/s
∑

k=1

(ks)2





= O



s2

n/s
∑

k=1

k2





= O

(

s2 (n/s)(n/s + 1)(2n/s + 1)

6

)

= O

(

1

6
2n3/s + 3n2 + ns

)

= O(n3) (8)

The total cost of computing a map is cubic with the final
size of the map. The total execution time of EKF SLAM for
each of these trajectories is shown in fig. 3, third row.
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Fig. 2. Binary tree representing the hierarchy of maps that are created and
joined in D&C SLAM. The red line shows the sequence in which maps are
created and joined.

III. T HE DIVIDE AND CONQUER ALGORITHM

The Divide and Conquer algorithm for SLAM (D&C
SLAM) is an EKF-based algorithm in which a sequence of
local maps of minimum sizep is produced using the standard
EKF SLAM algorithm [27]. These maps are then joined using
the map joining procedure of [12], [28] (or the improved
version 2.0 detailed in [27]) to produce a single final stochastic
map.

Instead of joining each new local map to a global map
sequentially, as Local Map Sequencing does [12], D&C SLAM
carries out map joining in a binary hierarchical fashion, as
depicted in fig. 2. Although algorithms like Treemap [18] use
a similar structure, the tree is not used here to sort features, it
represents the hierarchy of local maps that are computed. The
leaves of the tree are the sequence of local maps of minimal
sizep that the algorithm produces with standard EKF-SLAM.
The intermediate nodes represent the maps resulting form the
intermediate map joining steps that are carried out, and the
root of the tree represents the final map that is computed. D&C
follows algorithm 2, which performs apostordertraversal of
the tree using a stack to save intermediate maps. This allows
a sequential execution of D&C SLAM.

A. Total computational complexity of D&C SLAM

In D&C SLAM, the process of building a map of sizen
producesl = n/p maps of sizep, at costO(p3) each (see
eq. (8)), which are joined intol/2 maps of size2p, at cost
O((2p)2) each. These in turn are joined intol/4 maps of size
4p, at costO((4p)2) each. This process continues until two
local maps of sizen/2 are joined into 1 local map of sizen,
at a cost ofO(n2). Thus, the total computational complexity
of D&C SLAM is (note that the sum represents all costs
associated to map joining, which isO(n2) [12]):

CDC = O



p3l +

log
2

l
∑

i=1

l

2i
(2i p)2





= O



p3n/p +

log
2

n/p
∑

i=1

n/p

2i
(2i p)2




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Fig. 3. Four simulated experiments for comparing the EKF andD&C SLAM algorithms: detail of a straight forward trajectory (first colum); loop closing
(second column); lawn mowing (third column); snail path (fourth column). Ground truth environment, trajectory and first and second halvesn/2 of maps
features for data association analysis (top row); execution time per step of EKF .vs. D&C SLAM (second row); total execution time of EKF .vs. D&C SLAM
(third row); execution time per step of EKF .vs. amortized execution time per step of D&C SLAM (bottom row).
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p2n +

log
2

n/p
∑

i=1

p
n

2i
(2i)2





= O



p2n + p n

log
2

n/p
∑

i=1

2i





The sum in the equation above is a geometric progression of
the type:

k
∑

i=1

ri =
r − rk+1

1 − r

Thus, in this case:

CDC = O

(

p2n + p n
2log

2
n/p+1 − 2

2 − 1

)

= O
(

p2n + p n(2 n/p− 2)
)

= O
(

p2n + 2n2 − 2pn
)

= O(n2) (9)

This means that D&C SLAM performs SLAM with a total
cost quadratic with the size of the environment, as compared
with the cubic cost of standard EKF-SLAM. The difference
between this approach and other approaches that also use
map joining, such as Local Map Sequencing, is that in D&C
SLAM the number of map joining operations carried out is
proportional tolog(n), instead ofn. This allows the total cost



Algorithm 2 : dc_slam
sequential implementation using a stack.

stack = new()
m0 = ekf_slam()
stack = push(m0, stack)
{
Main loop: postorder traversing of the map tree.
}
repeat

mk = ekf_slam()
while ¬ empty(stack) and then
size(mk) ≥ size(top(stack)) do

m = top(stack)
stack = pop(stack)
mk = join(m, mk)

end while
stack = push(mk, stack)

until end_of_map
{
Wrap up: join all maps in stack for full map recovery.
}
while ¬ empty(stack) do

m = top(stack)
stack = pop(stack)
mk = join(m, mk)

end while
return (mk)

to remain quadratic withn.
Figure 3, second and third rows, show the execution time

per step and total execution time, respectively, for D&C SLAM
.vs. EKF SLAM for the four simulations of straight forward,
loop closing, lawn mowing and spiral path. It can be seen that
the total cost of D&C SLAM very quickly separates from the
total cost of EKF SLAM. The reason is that the computational
cost per step of D&C SLAM is lower than that of EKF SLAM
most of the time. EKF SLAM works with a map of non-
decreasing size, while D&C SLAM works on local maps of
small size most of the time. In some steps though (in the
simulation those which are a multiple of 2), the computational
cost of D&C is higher than EKF. In those steps, one or more
map joining operations take place (in those that are a power
of 2, 2l, l map joining operations take place).

B. Computational complexity of D&C SLAM per step

In D&C SLAM, the map to be generated at stepk will
not be required for joining until step2 k. We can therefore
amortize the costO(k2) at this step by dividing it up between
stepsk to 2 k − 1 in equalO(k) computations for each step.
We must however take into account all joins to be computed
at each step. Ifk is a power of2 (k = 2l), i = 1 · · · l joins
will take place at stepk, with a costO(22) . . .O((2l)2). To
carry out joini we need joini−1 to be complete. Thus if we
wish to amortize all joins, we must wait until stepk+k/2 for
join i−1 to be complete, and then start joini. For this reason,

the amortized version of this algorithm divides up the largest
join at stepk into stepsk + k/2 to 2 k − 1 in equalO(2 k)
computations for each step. Amortization is very simple, the
computation of the elements ofPk|k is divided ink/2 steps.
If Pk|k is of sizen×n, 2n2/k elements have to be computed
per step.

Fig. 3 (bottom row) shows the resulting amortized cost per
step for the four simulated experiments. Note that at steps
i = 2l, the cost falls steeply. As said before, in these stepsl
joins should be computed, but since joini required the map
resulting from joini − 1, all l joins are postponed. We can
see that the amortized cost of D&C SLAM isO(n) always
lower than that of EKF SLAM. D&C SLAM is an anytime
algorithm, if at any moment during the map building process
the full map is required for another task, it can be computed
in a singleO(n2) step.

C. Consistency in Divide and Conquer SLAM

Apart from computational complexity, another important as-
pect of the solution computed by the EKF has gained attention
recently: map consistency. When the ground truth solutionx

for the state variables is available, a statistical test forfilter
consistency can be carried out on the estimation(x̂, P), using
the Normalized Estimation Error Squared (NEES), defined as:

D2 = (x − x̂)
T

P−1 (x− x̂) (10)

Consistency is checked using a chi-squared test:

D2 ≤ χ2
r,1−α (11)

where r = dim(x) and α is the desired significance level
(usually0.05). If we define the consistency index of a given
estimation(x̂, P) with respect to its true valuex as:

CI =
D2

χ2
r,1−α

(12)

whenCI < 1, the estimation is consistent with ground truth,
and whenCI > 1, the estimation is inconsistent (optimistic)
with respect to ground truth.

We tested consistency of both standard EKF and D&C
SLAM algorithms by carrying20 Monte Carlo runs on the
simulated experiments. We have used simulated experiments
to test consistency because this allows to have ground truth
easily available. Additionally, Monte Carlo runs allow to
gather statistically significant evidence about the consistency
properties of the algorithms being compared, while a single
experiment allows to carry out only one run of the algorithms.

Figure 4 (top) shows the evolution of the mean consistency
index of the vehicle orientation during all steps of the straight
forward trajectory simulation. We can see that the D&C
estimate on vehicle location is always more consistent than
the standard EKF estimate, EKF falls out of consistency
while D&C remains consistent. In order to obtain a value for
consistency in all steps, we emptied the stack and carried out
all joins at every step to obtain the full map, but this is not
done normally.
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Fig. 4. Mean consistency index for the robot orientation(top); Mean absolute
angular robot error (bottom).

Figure 4 (bottom) shows the evolution of the mean absolute
angular error of the vehicle. The2σ bounds for the theoretical
(without noise) and computed (with noise) uncertainty of both
standard EKF andDivide and ConquerSLAM algorithms are
also drawn. We can see how the error increases more slowly
in the case of D&C SLAM, but we can also see that the
main cause of inconsistency in the standard EKF SLAM is
the fast rate at which the computed uncertainty falls below its
theoretical value.

IV. DATA ASSOCIATION FORDIVIDE AND CONQUER

SLAM

The data association problem in continuous SLAM consists
in establishing a correspondence between each of them sensor
measurements and one (on none) of then map features.
The availability of a stochastic model for both the map and
the measurements allows to check each measurement-feature
correspondence forindividual compatibilityusing a hypothesis
test on the innovation of the pairing and its covariance [9].In
standard EKF SLAM, and for a sensor of limited range and
bearing,m is constant and thus individual compatibility is

O(nm) = O(n), linear on the size of the map. This cost can
be easily reduced toO(m), constant, by a simple tessellation
or grid of the map computed during map building, which
allows to determine individual candidates for a measurement
in constant time, simply by checking the grid element in which
the predicted feature falls.

In cases where clutter or vehicle error are high, there
may be many more than one possible correspondence for
each measurement. More elaborate algorithms are required
to disambiguate in these cases. Nevertheless, the overlap
between the measurements and the map is the size of the
sensor range plus the vehicle uncertainty, and thus more or
less constant. After individual compatibility is sorted out,
any disambiguation algorithm, such asJCBB [9], will then
disambiguate between them measurements and a region of
the map of constant size, regardless of map size, and thus will
execute in constant time.

We useJCBB in the case of building the local maps of size
p, given that it is a standard EKF-SLAM process. However,
data association for D&C SLAM is a critical issue because
map joining involves finding correspondences between two
local maps of similar size, in accordance with their level inthe
tree. For instance, before of obtaining the final map, the data
association problem has to be solved between two maps of size
n/2 maps and so computing individual compatibility becomes
O(n2). Fortunately, this can be easily reduced to linear again
using a simple tessellation or grid for the maps.

The size of the region of overlap between two maps in D&C
SLAM depends on the environment and type of trajectory.
Consider the simulated examples of fig. 3 where twon/2
maps are shown (features in the first map are red crosses,
features in the second are blue circles). In the second case,
the square loop, the region of overlap between two maps will
be of constant size, basically dependent on the sensor range.
In the case of the lawn mowers trajectory, the overlap will be
proportional to the length of the trajectory before the vehicle
turns back, still independent of map size, and thus constant. In
the fourth case, the snail path, the region of overlap between
the inner map and the encircling map is proportional to the
final map size. In these cases, data association algorithms like
JCBB will not execute in constant time.

In order to limit the computational cost of data association
between local maps in D&C SLAM, we use arandomized joint
compatibilityalgorithm. OurRJC approach (see algorithm 3)
is a variant of the linearRS algorithm [10]) used for global
localization.

Consider two consecutive mapsm1 andm2, of sizen1 and
n2 respectively, to be joined. First, the overlap between the
two maps is identified using individual compatibility. Second,
instead of performing branch and bound interpretation tree
search in the whole overlap as inJCBB, we randomly select
b features in the overlapped area of the second map and use
JCBB* : a version ofJCBB without exploring the star node,
i.e., considering allb measurements good. This produces a
hypothesisH of b jointly compatible features in the first
map. Associations for the remaining features in the overlap



are obtained using the simple nearest neighbor rule given
hypothesisH, which amounts to finding pairings that are
compatible with the firstb features. In the spirit of adaptative
RANSAC [29], we repeat this processt times, so that the
probability of missing a correct association is limited toPfail.

Algorithm 3 :RJC

Pfail = 0.01, Pgood = 0.8, b = 4
i = 1, Best = []
while (i ≤ t) do

m∗
2 = randomselect(m2, b)

H = JCBB*(m1, m∗
2)

H = NN(H, m1, m∗
2)

if pairings(H) > pairings(Best) then
Best = H

end if
Pgood = max(Pgood, pairings(Best)\m)
t = logPfail/ log(1 − Pb

good)
i = i + 1

end while

SinceJCBB* is executed using a fixed number of features,
its cost remains constant. Finding the nearest neighbor for
each remaining feature among the ones that are individually
compatible with it, a constant number, will be constant. The
cost of each try is thusO(n). The number of tries depends
on the number of features randomly selected (b), on the
probability that a selected feature in the overlap can be
actually found in the first map (Pgood), and on the acceptable
probability of failure in this probabilistic algorithm (Pfail). It
does not depend on the size of either map. In this way, we
can maintain data association in D&C SLAM linear with the
size of the joined map.

V. EXPERIMENTS

We have used the well known Victoria Park data set to vali-
date the algorithms D&C SLAM andRJC. This experiment is
particulary adequate for testing SLAM due its large scale, and
the significant level of spurious measurements. The experiment
also provides critical loops in absence of reliable features.

For RJC, we choseb = 4 as the number of map features
to be randomly selected as seed for hypothesis generation.
Two features are sufficient in theory to fix the relative location
between the maps, but we have found4 to adequately disam-
biguate. The probability that a selected feature in the overlap
is not spurious,Pgood is set to0.8, and the probability of not
finding a good solution when one exists,Pfail is set to0.01.
These parameters make the data association algorithm carry
out 9 random tries.

Figure 5 shows the resulting maps from standard EKF
SLAM .vs. D&C SLAM, which are essentially equivalent;
there are some minor differences due to missed associations
in the case of EKF. Figure 6, top, shows the amortized cost of
D&C SLAM. We can see that in this experiment an EKF step
can take0.5 seconds, while the amortized D&C SLAM step
will take at most0.05 seconds. In this experiment, the total
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Fig. 5. Map for Victoria Park dataset: according to the standard EKF
SLAM algorithm (top); according to the D &C SLAM algorithm. The results
are essentially equivalent; some missed associations may result in minor
differences. The estimated position along the whole trajectory is shown as a
red line for EKF SLAM, and the vehicle locations are drawn as red triangles
when available in D&C SLAM. Green points are GPS readings in both cases.

cost of D& C SLAM is one tenth of the total cost of standard
EKF (fig. 6, bottom).

VI. CONCLUSIONS

In this paper we have shown that EKF SLAM can be carried
out in timelinear with map size. We describe and EKF SLAM
variant: Divide and ConquerSLAM, a simple algorithm to
implement. In contrast with many current efficient SLAM
algorithms, all information required for data associationis
available when needed with no further processing. D&C
SLAM computes the exact EKF SLAM solution, the stateand
its covariance, with no approximations, and with the additional
advantage of providing always a more precise and consistent
vehicle and map estimate. Data association can also be carried
out in linear time per step. We hope to have shown that D&C
SLAM is the algorithm to use in all applications in which the
Extended Kalman Filter solution is to be used.

Despite of the differences with other methods presented in
section I, a very important fact to be emphasized is that the
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Fig. 6. Time per step of EKF and D&C SLAM for Victoria experiment
(top); time per step of EKF SLAM .vs. amortized time per step of D& SLAM
(middle); accumulated time of EKF SLAM .vs. D& SLAM.

D&C map splitting strategy can also be incorporated in those
recent algorithms. This idea is part of our future work.
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