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Abstract—In this paper we show thatall processes associated constant time most of the time, although they require period
to the move-sense-update cycle of EKF SLAM can be carried jcal O(n?) updates (given a certain environment and sensor
out in time linear in the number of map features. We describe oparacteristics, an optimal local map size can be derived to

Divide and Conquer SLAM, an EKF SLAM algorithm where L .
the computational complexity per step is reduced fromO(n2) to MiNIMize the total computational cost [13]). More recently

O(n) (the total cost of SLAM is reduced from O(rn?) to O(n?)). researchers have pointed out the approximate sparseness of
In addition, the resulting vehicle and map estimates have lier the Information matrixXY, the inverse of the full covariance
consistency properties than standard EKF SLAM in the sense matrix P. This suggests using the Extended Information Filter,
that the computed state covariance more adequately represts the dual of the Extended Kalman Filter, for SLAM updates.

the real error in the estimation. Both simulated experimens and . . .
the Victoria Park Dataset are used to provide evidence of the The Sparse Extended Information Filter (SEIF) algorithr] [1

advantages of this algorithm. approximates the Information matrix by a sparse form that
_Index Terms—SLAM, Computational Complexity, Consistency, allows O(1) updates on the information vector. Nonetheless,
Linear Time. data association becomes more difficult when the state and

covariance matrix are not available, and the approximation
can yield overconfident estimations of the state [15]. This
The Simultaneous Localization and Mapping (SLAM) probeverconfidence is overcome by the Exactly Sparse Extended
lem deals with the construction of a model of the environmemformation Filter (ESEIF) [16] with a strategy that prodhsc
being traversed with an onboard sensor, while at the sa@me exactly sparse Information matrix with no introductidn o
time maintaining an estimation of the sensor location withinaccuracies through sparsification.
the model [1], [2]. Solving SLAM is central to the effort The Thin Junction Tree Filter algorithm [17] works on
of conferring real autonomy to robots and vehicles, but alsbe Gaussian graphical model represented by the Informatio
opens possibilities in applications where the sensor maviths matrix, and achieves high scalability by working onapprox-
six degrees of freedom, such as egomotion and augmenitedtion, where weak links are broken. The Treemap algorithm
reality. SLAM has been the subject of much attention sing&8] is a closely related technique, which also uses a weak
the seminal work in the late 80s [3], [4], [5], [6]. link breakage policy. Recently insight was provided tha th
The most popular solution to SLAM considers it a stochastfall SLAM problem, the complete vehicle trajectory plus the
process in which the Extended Kalman Filter (EKF) is usedap, is sparse in information form (although ever incregsin
to compute an estimation of a state vectorepresenting the [19], [20]. Sparse linear algebra techniques allow to cotmpu
sensor and environment feature locations, together wigh tthe state, without the covariance, in time linear with the
covariance matriXP representing the error in the estimationwhole trajectory and map size. The T-SAM algorithm [21]
Currently, most of the processes associated to the mowseseprovides a local mapping version to reduce the computdtiona
update cycle of EKF SLAM are linear in the number of mapost. However, the method remains a batch algorithm and
featuresn: vehicle prediction and inclusion of new featuregovariance is not available to solve data association.
[7], [8], continuous data association [9], global locafiea A second important limitation of standard EKF SLAM is
[10]. The exception is the update of the covariance matrix tfe effect that linearizations have in the consistency ef th
the stochastic state vector that represents the vehiclenapd final vehicle and feature estimates. Linearizations inioed
states, which i$)(n?). The EKF solution to SLAM has beenerrors in the estimation process that can render the result
used successfully in small scale environments, however tineonsistent, in the sense that the computed state coearian
O(n?) computational complexity limits the use EKF-SLAM indoes not represent the real error in the estimation [22]}, [23
large environments. This has been a subject of much intergst]. Among other things, this shuts down data association,
in research. Postponement [11], the Compressed EKF filtghich is based on contrasting predicted feature locatidtts w
[8], and Local Map Sequencing [12] are alternatives thabservations made by the sensor. Thus, important prociesses
work on local areas of the stochastic map and are essenti@lyAM like loop closing are crippled. The Unscented Kalman

I. INTRODUCTION



Filter [25] avoids linearization via a parametrization oéams Algorithm 1 : ekf _sl am

and covariances through selected points to which the neslin

transformation is applied. Unscented SLAM has been shown zo,Ro = get_measurements
to have improved consistency properties [26]. These swiati %0,Po = new_map(zo,Ro)
however ignore the computational complexity problem. All

algorithms for EKF SLAM based on efficiently computing an for & =1 to stepsdo

approximation of the EKF solution [17], [18] will inevitapl

suffer from this problem_. N ﬁg"’l,Qk = get_odometry
In this paper we describe Divide and Conquer SLAM (D&C " o Be_
SLAM), an EKF SLAM algorithm that overcomes these two ~ Xkt—1: Fr, Gi - = prediction(Xg—1,Xp, ')
fundamental limitations: Pipo1 = FiPr1Fl + G QiG] (1)
1) The computational cost per step is reduced flam?)
:o (O)((n)g;)the total cost of SLAM is reduced fro@(n?) 21, Ry get_measurements
0 O(n?®); .
2) the resulting vehicle and map estimates have better My, Hy, = data_assoc(Xgjk—1, Pyjp—1, 24, Ry)
consistency properties than standard EKF SLAM in the
sense that the compute_d state c_ovariance adequately Sy, = HHkPk\k—lHak + Ry, (2)
represents the real error in the estimation. Ky, = Pk\k—lH%k/SHk ®)
_Unlike many current large scale EKF_SLAI\/_I techniqu_es, Py = (I— Ko Ho )Prip @)
this algorithm computes an exact solution, without relying BT )T Rl
on approximations or simplifications to reduce computation v, = 2k — g (Rgjp—1) ()
complexity. Also, estimates and covariances are available X = Xgpp-1 T Kwvn, (6)
when needed by data association without any further com- %0, Py = add_feat(X, Py, zi, Ry, Hy)

putation. Empirical results show that, as a by-product of
reduced computations, and without losing precision bexzafis  €nd for
approximations, D&C SLAM has better consistency propsrtie €turn m = (xx, Py)
than standard EKF SLAM.

This paper is organized as follows: in section Il we briefly

review the standard EKF SLAM algorithm and its compu- . : .
The computational complexity of carrying out the move-

tational properties. Section Il contains a descriptionttod . ;
: : . sense-update cycle of algorithm 1 at stemvolves the com-
proposed algorithm. We study of its computational cost in", " : ; . . .
utation of thepredicted mapky, 1, Pyx—1, Which requires

comparison with EKF SLAM, as well as its consistenc - : A :
roperties. In section IV we descrif®IJC, an algorithm for btaining also the computation of the corrgspondln_g i
P ’ ! Fi., Gk, and theupdated mapx,Px, which requires the

carrying out data association in D&C SLAM also in linear . S
. i L computation of the corresponding jacobiHi,, , the Kalman
time. In section V we use the Victoria Park dataset to carty 0U i matrix K as well as the innovation and its
an experimental comparison between EKF SLAM and D& s M

SLAM. Finally in section VI we draw the main Conclusionscovanancék (the complexity of data association is analyzed

. In section V).
of this work. . . : :
The fundamental issue regarding computational complexity
Il. THE EKF SLAM ALGORITHM is that all jacobians arsparsematrices [7], [8], [20]. Thus,
The EKF SLAM algorithm (see alg. 1) has been wideljheir computation isO(1), but more importantly, since they
used for mapping. Several authors have described the comi@e part in the computation of both the predicted and update
tational complexity of this algorithm [7], [8]. With the ppose Map, the computational cost of egs. (1) to (6) can also be
of comparing EKF SLAM with the proposed D&C SLAM reduced. Consider as an example the innovation covariance
algorithm, in this section we briefly analyze its computatib matrix S, in eq. (2). Normally, the computation of this

complexity. r x r matrix would requirern? 4 r2n multiplications and
_ _ rn? + r?n + r? sums, that isO(n?) operations (see fig. 1).
A. Computational complexity of EKF SLAM per step But given that matrixH, is sparse, with an effective size

For simplicity, assume that in the environment beingf r x ¢, the computation requirescn + r2c multiplications
mapped features are distributed more or less uniformlyéf tand ren + r2¢ + r2 sums, that isO(n) operations. Similar
vehicle is equipped with a sensor of limited range and bgariranalysis leads to the conclusion that the cost of computing
the amount of measurements obtained at any location will beth the predicted covariand@;,,—, and the Kalman gain
more or less constant. Assume that at some &tépe map matrix K4, is O(n), and that the greatest cost in an EKF
containsn features, and the sensor provideaneasurements, SLAM update is the computation of the covariance matrix
r of which correspond to re-observed features, asdm —r Py, which isO(n?). Thus, the computational cost per step of
which correspond to new features. EKF SLAM is quadratic on the size of the map:
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Fig. 1. Computation of the innovation covariarg matrix: the computation P P l P r|. Y p - llocal maps
requiresO(n) operations #cn + r2¢ multiplications andrcn + 72 + r2
sums).

Fig. 2. Binary tree representing the hierarchy of maps thatceeated and
joined in D&C SLAM. The red line shows the sequence in whichpmare
created and joined.

Ceri.k = O0(n?) (7)
Figure 3 shows the results of carrying out EKF SLAM I1l. THE DIVIDE AND CONQUER ALGORITHM

in_ fo.ur ;imulated ;cenarios. In an envirpnment with uniform The Divide and Conquer algorithm for SLAM (D&C

distribution of point features, the vehicle performsla SLAM) is an EKF-based algorithm in which a sequence of
motion at every step. The odometry of the vehicle has standgg) maps of minimum size is produced using the standard
devi_ation error olecm_in the « direction (th(_e dire_ction of EKF SLAM algorithm [27]. These maps are then joined using
motion),5¢m in y direction, and(0.5deg) for orientation. We  he map joining procedure of [12], [28] (or the improved

simulate an onboard range and bearing sensor with a raRgesion 2.0 detailed in [27]) to produce a single final sttica
of 3m, so thatl6 features are normally seen at every Steﬁ’hap.

The standard deviation error is 5% of the distance in range, nstead of joining each new local map to a global map

and 1deg in bearing. Four di_fferer_lt trajectories are _Ca”iegequentially, as Local Map Sequencing does [12], D&C SLAM
out: straight forward exploration (first column); loop dli$  c4rries out map joining in a binary hierarchical fashion, as
(second column), lawn mowing (third column), and snail palflepicted in fig. 2. Although algorithms like Treemap [18] use
(fourth column). The execution time of EKF SLAM per step, gimilar structure, the tree is not used here to sort fesgitre
for each of these trajectories is shown in fig. 3, second rOWepresents the hierarchy of local maps that are computesl. Th
B. Total computational complexity of EKF SLAM Ie_aves of the tree are the sequence of local maps of minimal
o i sizep that the algorithm produces with standard EKF-SLAM.
_ Assu_me that th_e process of building amap of _slzfeat_ures The intermediate nodes represent the maps resulting fagm th
is carried out with an exploratory trajectory, in which th,i mediate map joining steps that are carried out, and the
sensor obtains, measurements per step as said beferel . ¢ the tree represents the final map that is computed. D&C
which are new (all four examples in fig. 3, straight forwar llows algorithm 2, which performs postordertraversal of

qup clo§|ng, I"’,‘W” mowing and spiral path, are exploratogy, yree using a stack to save intermediate maps. This allows
trajectories). Given that new features are added to the mag sequential execution of D&C SLAM

per stepyn/s steps are required to obtain the final map of size

n, and thus the total computational complexity will be: A. Total computational complexity of D&C SLAM
In D&C SLAM, the process of building a map of size
n/s producesl = n/p maps of sizep, at costO(p®) each (see
Cexr = O Z(k5)2 eq. (8)), which are joined intdé/2 maps of size2p, at cost
k=1 O((2p)?) each. These in turn are joined int64 maps of size
n/s 4p, at costO((4p)?) each. This process continues until two
= 02 Z k2 local maps of size:/2 are joined into 1 local map of size,
1 at a cost ofO(n?). Thus, the total computational complexity
of D&C SLAM is (note that the sum represents all costs
= 0 (,92 (n/5)(n/s +61)(2n/5 i 1)) associated to map Eoining, which 3(n?) [12]):
1
= O =2n%/s+3n% +ns log, !
0 Cpc = O|p'l+ Z i(21-1?)2
= 0O(n®) (8) P 2i
The total cost of computing a map is cubic with the final logz n/p n/
size of the map. The total execution time of EKF SLAM for = O|pn/p+ > 2ip(2ip)2

each of these trajectories is shown in fig. 3, third row. i=1
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Fig. 3. Four simulated experiments for comparing the EKF B&L SLAM algorithms: detail of a straight forward trajecyoffirst colum); loop closing

(second column); lawn mowing (third column); snail pathugtb column). Ground truth environment, trajectory andtfasd second halves/2 of maps
features for data association analysis (top row); exeotitine per step of EKF .vs. D&C SLAM (second row); total exeécnttime of EKF .vs. D&C SLAM
(third row); execution time per step of EKF .vs. amortize@@xion time per step of D&C SLAM (bottom row).

logy n/p n
= O|p’n+ Z p@(?)z
i=1
logy n/p
= O|p*n+pn Z 2°
1=1

glog; n/p+1 _ 9
Che = )

O(p%—i—pn 51

= O(Pn+pn(2n/p—2))
O (pzn +2n?% — 2pn)

= 0O(n?

9)

The sum in the
the type:

equation above is a geometric progression of
This means that

D&C SLAM performs SLAM with a total

ko k+1

Thus, in this case:

cost quadratic with the size of the environment, as compared
with the cubic cost of standard EKF-SLAM. The difference
between this approach and other approaches that also use
map joining, such as Local Map Sequencing, is that in D&C
SLAM the number of map joining operations carried out is
proportional tolog(n), instead ofn. This allows the total cost



Algorithm 2 : dc_sl am
sequential inplenmentation using a stack.

stack = new()
mgy = ekf sl am()
stack = push(mg, stack)

{

Main loop: postorder traversing of the map tree.
¥
repeat
my, = ekf sl am()
while — enpt y( stack) and then
size(my) > size(top(stack)) do
m = top(stack)
stack = pop( stack)
my; = join(m, my)
end while
stack = push(myg, stack)
until end_of _map

the amortized version of this algorithm divides up the latge
join at stepk into stepsk + k/2 to 2k — 1 in equalO(2k)
computations for each step. Amortization is very simple, th
computation of the elements @, is divided ink/2 steps.

If Py is of sizen x n, 2n? /k elements have to be computed
per step.

Fig. 3 (bottom row) shows the resulting amortized cost per
step for the four simulated experiments. Note that at steps
i = 2, the cost falls steeply. As said before, in these sfeps
joins should be computed, but since jainmequired the map
resulting from joini — 1, all | joins are postponed. We can
see that the amortized cost of D&C SLAM @(n) always
lower than that of EKF SLAM. D&C SLAM is an anytime
algorithm, if at any moment during the map building process
the full map is required for another task, it can be computed
in a singleO(n?) step.

C. Consistency in Divide and Conquer SLAM

{ Apart from computational complexity, another important as
Wrap up: join all maps in stack for full map recovery. pect of the solution computed by the EKF has gained attention
recently: map consistency. When the ground truth soluion
for the state variables is available, a statistical testfifter
consistency can be carried out on the estimationP), using

the Normalized Estimation Error Squared (NEES), defined as:

while = enpt y( stack) do
m = top(stack)
stack = pop( stack)
my = join(m, my)

end while

return (my)

D?=(x-%)" P! (x—%) (10)

Consistency is checked using a chi-squared test:

D<A, (12)
to remain quadratic with. ) ] ) o

Figure 3, second and third rows, show the execution tinjd'€ré 7 = dim(x) and o is the desired significance level
per step and total execution time, respectively, for D&C SLA (usually0.05). If we define the consistency index of a given
vs. EKF SLAM for the four simulations of straight forward,eStimation(x, P) with respect to its true valug as:
loop closing, lawn mowing and spiral path. It can be seen that D2
the total cost of D&C SLAM very quickly separates from the Cl=—
total cost of EKF SLAM. The reason is that the computational Xr1-a
cost per step of D&C SLAM is lower than that of EKF SLAMwhenCI < 1, the estimation is consistent with ground truth,
most of the time. EKF SLAM works with a map of non-and whenCI > 1, the estimation is inconsistent (optimistic)
decreasing size, while D&C SLAM works on local maps oWith respect to ground truth.
small size most of the time. In some steps though (in theWe tested consistency of both standard EKF and D&C
simulation those which are a multiple of 2), the computailonSLAM algorithms by carrying20 Monte Carlo runs on the
cost of D&C is higher than EKF. In those steps, one or mogémulated experiments. We have used simulated experiments
map joining operations take place (in those that are a powertest consistency because this allows to have ground truth
of 2, 2!, I map joining operations take place). easily available. Additionally, Monte Carlo runs allow to
gather statistically significant evidence about the caesty
properties of the algorithms being compared, while a single

In D&C SLAM, the map to be generated at stépwill experiment allows to carry out only one run of the algorithms
not be required for joining until step k. We can therefore  Figure 4 (top) shows the evolution of the mean consistency
amortize the cosD(k?) at this step by dividing it up betweenindex of the vehicle orientation during all steps of the igtna
stepsk to 2k — 1 in equalO(k) computations for each step.forward trajectory simulation. We can see that the D&C
We must however take into account all joins to be computedtimate on vehicle location is always more consistent than
at each step. Ik is a power of2 (k = 2!),i = 1---1 joins the standard EKF estimate, EKF falls out of consistency
will take place at steg:, with a costO(22)...0((2")?). To while D&C remains consistent. In order to obtain a value for
carry out joini we need joini — 1 to be complete. Thus if we consistency in all steps, we emptied the stack and carriéd ou
wish to amortize all joins, we must wait until stép+-%/2 for all joins at every step to obtain the full map, but this is not
join i —1 to be complete, and then start jainFor this reason, done normally.

(12)

B. Computational complexity of D&C SLAM per step



O(nm) = O(n), linear on the size of the map. This cost can
be easily reduced t®(m), constant, by a simple tessellation
or grid of the map computed during map building, which
allows to determine individual candidates for a measureémen
in constant time, simply by checking the grid element in vahic
the predicted feature falls.

In cases where clutter or vehicle error are high, there
may be many more than one possible correspondence for
each measurement. More elaborate algorithms are required
to disambiguate in these cases. Nevertheless, the overlap
between the measurements and the map is the size of the
sensor range plus the vehicle uncertainty, and thus more or
LR s e ke less constant. After individual compatibility is sortedtou

= ' - - = - any disambiguation algorithm, such a€BB [9], will then

steps disambiguate between the measurements and a region of
the map of constant size, regardless of map size, and thus wil
execute in constant time.

We useJCBB in the case of building the local maps of size
p, given that it is a standard EKF-SLAM process. However,
data association for D&C SLAM is a critical issue because
map joining involves finding correspondences between two
local maps of similar size, in accordance with their levethia
tree. For instance, before of obtaining the final map, tha dat
association problem has to be solved between two maps of size
) n/2 maps and so computing individual compatibility becomes
O(n?). Fortunately, this can be easily reduced to linear again
' using a simple tessellation or grid for the maps.

The size of the region of overlap between two maps in D&C
SLAM depends on the environment and type of trajectory.
250 Consider the simulated examples of fig. 3 where tw@®

maps are shown (features in the first map are red crosses,
Fig. 4. Mean consistency index for the robot orientatiop)tdMean absolute features in the second are blue circles). In the second case,
angular robot error (bottom). the square loop, the region of overlap between two maps will
be of constant size, basically dependent on the sensor.range

In the case of the lawn mowers trajectory, the overlap will be

Figure 4 (bottom) shows the evolution of the mean absolytgsportional to the length of the trajectory before the ciehi
angular error of the vehicle. Ther bounds for the theoretical ,-ng pack, still independent of map size, and thus constant

(without noise) and computed (with noise) uncertainty ahbohe fourth case, the snail path, the region of overlap betwee
standard EKF an®ivide and ConqueSLAM algorithms are ihe jnner map and the encircling map is proportional to the

also drawn. We can see how the error increases more sloyily,| map size. In these cases, data association algoriikens |
in the case of D&C SLAM, but we can also see that thg§cgg will not execute in constant time.

main cause of inconsistency in the standard EKF SLAM is | order to limit the computational cost of data association
the fast rate at which the computed uncertainty falls belsw iyetween local maps in D&C SLAM, we usegandomized joint
theoretical value. compatibilityalgorithm. OurRJC approach (see algorithm 3)
is a variant of the lineaRS algorithm [10]) used for global
localization.

Consider two consecutive maps; andms, of sizen; and

The data association problem in continuous SLAM consists respectively, to be joined. First, the overlap between the
in establishing a correspondence between each ofitkensor two maps is identified using individual compatibility. Sedo
measurements and one (on none) of themap features. instead of performing branch and bound interpretation tree
The availability of a stochastic model for both the map angearch in the whole overlap as J€BB, we randomly select
the measurements allows to check each measurement-feabuieatures in the overlapped area of the second map and use
correspondence fandividual compatibilityusing a hypothesis JCBB*: a version ofJCBB without exploring the star node
test on the innovation of the pairing and its covariance lj®]. i.e., considering allb measurements good. This produces a
standard EKF SLAM, and for a sensor of limited range anuypothesis? of b jointly compatible features in the first
bearing, m is constant and thus individual compatibility ismap. Associations for the remaining features in the overlap
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250

are obtained using the simple nearest neighbor rule given
hypothesisH, which amounts to finding pairings that are
compatible with the first features. In the spirit of adaptative 2001
RANSAC [29], we repeat this procedstimes, so that the
probability of missing a correct association is limitedRg,;;.

.
@
S

Algorithm 3 : RIC
P o = 0.01, Pyooq = 0.8, b =4
i =1, Best =]
while (¢ <t) do
mj; = randomselectns, b)
‘H = JCBB*(m;, mj})
H = NN(H, m;, m3)
if pairings({) > pairingsBest) then
Best ='H 250
end if
P yood = max(P good, pairings(Best)\m)
t = log P qi1/ log(l — Pgood)
=141
end while

y position (m)
=
[=}
8

50

200

.
@
S

y position (m)
=
[=}
8

SinceJCBB* is executed using a fixed number of features,
its cost remains constant. Finding the nearest neighbor for
each remaining feature among the ones that are individually s
compatible with it, a constant number, will be constant. The
cost of each try is thu®(n). The number of tries depends of
on the number of features randomly selecté)l, on the
probability that a selected feature in the overlap can be T . - . . .
actually found in the first mapH,..q), and on the acceptable X position (m)

robability of failure in this probabilistic algorithmH;,;;). It
P y P 9 nﬂmz) Map for Victoria Park dataset: according to the staddEKF

does not depend on the size of either map. In this wa F'é?' > . _ _
s TS p. vay, WEAM algorithm (top); according to the D &C SLAM algorithm i€ results
can maintain data association in D&C SLAM linear with thare essentially equivalent; some missed associations msyltrin minor

size of the joined map. differences. The estimated position along the whole ttajgcis shown as a
red line for EKF SLAM, and the vehicle locations are drawn ed triangles
\/. EXPERIMENTS when available in D&C SLAM. Green points are GPS readingsoith lzases.

We have used the well known Victoria Park data set to vali-
datg the algorithms D&C SLAM angJC. Th|§ experiment is cost of D& C SLAM is one tenth of the total cost of standard
particulary adequate for testing SLAM due its large scabe, ke (fig. 6, b

e . . g. 6, bottom).
the significant level of spurious measurements. The experim
also provides critical loops in absence of reliable feature

For RJC, we choseb = 4 as the number of map features
to be randomly selected as seed for hypothesis generationn this paper we have shown that EKF SLAM can be carried
Two features are sufficient in theory to fix the relative lemat out in timelinear with map size. We describe and EKF SLAM
between the maps, but we have fouhtb adequately disam- variant: Divide and ConquerSLAM, a simple algorithm to
biguate. The probability that a selected feature in the laper implement. In contrast with many current efficient SLAM
iS not spuriousP .4 is set t00.8, and the probability of not algorithms, all information required for data associatisn
finding a good solution when one exisBy,; is set to0.01. available when needed with no further processing. D&C
These parameters make the data association algorithm ca&hAM computes the exact EKF SLAM solution, the stated
out 9 random tries. its covariance, with no approximations, and with the addéi

Figure 5 shows the resulting maps from standard EKa&tlvantage of providing always a more precise and consistent
SLAM .vs. D&C SLAM, which are essentially equivalent;vehicle and map estimate. Data association can also bedarri
there are some minor differences due to missed associationtin linear time per step. We hope to have shown that D&C
in the case of EKF. Figure 6, top, shows the amortized cost 8EAM is the algorithm to use in all applications in which the
D&C SLAM. We can see that in this experiment an EKF stepxtended Kalman Filter solution is to be used.
can take0.5 seconds, while the amortized D&C SLAM step Despite of the differences with other methods presented in
will take at most0.05 seconds. In this experiment, the totakection I, a very important fact to be emphasized is that the

VI. CONCLUSIONS
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D&C map splitting strategy can also be incorporated in those

recent algorithms. This idea is part of our future work.
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