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Abstract— In this paper we describe a system that carries
out SLAM using a stereo pair moving with 6DOF as the only
sensor. Textured point features are extracted from the images
and stored as 3D points if seen in both images with sufficient
disparity, or stored as inverse 3D points otherwise. This allows
the system to make use of both near and far features that
provide distance and orientation, or orientation information,
respectively. Unlike other vision only SLAM systems, stereo
does not suffer from ’scale drift’ because of unobservability
problems, and thus requires no other information such as
gyroscopes or accelerometers. Our SLAM algorithm generates
sequences of conditionally independent local maps that can
share information related to the camera motion and common
features being tracked. The system computes the full map using
the Divide and Conquer algorithm adapted for conditionally
independent local maps, allowing linear time execution. We
show experimental results in outdoor urban environments that
demonstrate the robustness and scalability of our system.

I. INTRODUCTION

The interest in using cameras in SLAM has grown
tremendously in recent times. Cameras have become much
more inexpensive than lasers, and also provide texture rich
information about scene elements at practically any distance
from the camera. In applications where it is not practical to
carry heavy and bulky sensors, such as egomotion for people
tracking and environment modelling in rescue operations,
cameras are light weight sensors that can be easily adapted
to helmets used by rescuers, or simply worn.

Currently, visual SLAM systems have been demonstrated
to be viable for small environments, such as MonoSLAM [1]
as well as moderately large ones, such as Hierarchical Visual
SLAM [2]. A single camera is used in both these systems,
and thus scale unboservability is a fundamental limitation
in both. Either the scale is fixed by observing a known
object as is usually done in MonoSLAM, or drift in scale
can occur, as is reported in the Hierarchical Visual SLAM
system. Furthermore, MonoSLAM is an EKF SLAM system,
and cannot be used to map large environments. Hierarchical
Visual SLAM can be used for large scale mapping because
the system works on local maps of limited size, achieving
constant time execution most of the time. These local maps
are organized in a hierarchical structure, with an adjacency
graph at the upper level where the relative transformation be-
tween consecutive or loop closing local maps is maintained.

Another important requirement of the Hierarchical Visual
SLAM system is that local maps be statistically independent,
so that the adjacency graph can be efficiently maintained.
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This is achieved by creating a new local map from scratch
every time the current local map size limit has been reached.
This impedes sharing valuable information between local
maps, such as the camera velocity, or information about
features being currently observed. A recent SLAM algorithm
also based on local mapping and of linear time execution,
Divide and Conquer SLAM [3], can only accommodate
independent local maps in its current version.

Since the initial results of [4] great progress has been made
in the related problem of visual odometry [5], [6]. Visual
odometry systems are however incapable of closing loops,
and thus eventual drift is inevitable. We consider this one
of the main advantages of SLAM, and thus are interested in
developing a real time, low cost robust visual SLAM system.

In this paper we propose a visual SLAM system with the
following two main highlights:

1) Unlike any other visual SLAM system, we consider
information from features both close and far from the
cameras. Stereo provides 3D information from nearby
scene points, and each camera also provides angular
information from distant scene points. Both types of
information are incorporated into the map and used to
improve the estimation of both the camera pose and
velocity, as well as the map. Nearby scene points also
provide scale information through the stereo baseline,
eliminating the scale unobservability problem.

2) We use Conditionally Independent Divide and Conquer
SLAM, a novel combination of conditionally indepen-
dent local maps [7] and the Divide and Conquer SLAM
algorithm that allows to maintain both camera velocity
information and current feature information during
local map initialization. This adds robustness to the
system without sacrificing precision or consistency in
any way. It also allows linear time execution, enabling
the system to be used for large scale indoor/outdoor
SLAM.

This paper is organized as follows: the general structure of
the system and the feature detection process are described in
section II. In section III we detail the process of building
conditionally independent local maps. In section IV we
describe the Conditionally Independent Divide and Conquer
SLAM algorithm. In section V we detail two experiments
carried out to test the system: and indoor 220m loop and an
outdoor 140m loop. Section VI contains our conclusions and
future work.



Fig. 1. Bumblebee Stereo vision system used to acquire images sequences.
Picture on the left shows the experimental setup during the data acquisition
for the indoor experiment.

II. DETECTION AND TRACKING OF 3D POINTS AND
INVERSE 3D POINTS

Our 6DOF system consists of a stereo camera carried
in hand and a laptop to record and process a sequence of
images, Fig. 1. As it is known, a stereo camera can provide
depth estimation of points up to a certain distance determined
by the baseline between left and right cameras. Therefore,
two regions can be identified: one close to the camera in
which it behaves as a range and bearing sensor, and the
other in which the stereo becomes a monocular camera, only
providing bearing measurements of points. To take advantage
of both types of information, we combine depth points and
inverse 3D points in the state vector in order to build a map
and estimate the camera trajectory.

During the estimation process right image is chosen as
reference to initialize new features. Interesting points are
extracted from it and classified according to their disparity
with the left image. Those points whose disparity reveals a
close distance are initialized as 3D features, otherwise they
are modelled as inverse depth points and initialized using the
bearing information obtained from the right image. When the
camera moves, these features are tracked in order to update
the filter and produce the corresponding corrections. To track
a feature, its position is searched in both images inside
a bounded region given by the uncertainty in the camera
motion and the corresponding uncertainty of the feature.

The algorithm to select, initialize and manage these fea-
tures is explained in the following subsections.

A. Selection and Management of Trackable points

To ensure tracking stability of map features, distinctive
points have to be selected. Following a similar idea presented
in [8], we use Shi-Tomasi variation of Harris corner detector
to select good trackable image points and the associated
11x11 surrounding patch to perform correlation when solving
data association.

From the first step, the right image is split up in regular
buckets so that the point with the best detector response per
cell is selected, see Fig. 2 top. This structure is maintained
during the following steps to add features when we found
empty cells, which allow us to distribute features uniformly
in the image. The approach is accompanied by a feature

management strategy, so that non-persistent features are
deleted from the state vector to avoid an unnecessary growth
in population.

B. 3D points Initialization

Corners classified as depth points are transformed to 3D
points given the disparity information that comes from the
stereo pair. We take advantage of the stereo camera capability
to provide rectify images. Then the back-projection equations
to obtain the 3D point correspond to a pinhole camera model.
Consider Eq.(1)

d = ul − ur

x =
b(ur − u0)

d

y =
b(vr − v0)

d

z =
fb

d
(1)

this equation relates images points and 3D points using the
transformation function x3d = f(ur, vr, ul, vl) = (x, y, z)T ,
where (ur, vr) and (ul, vl) are the pixels on the right and
left images with an associated pixel uncertainty, and d is the
horizontal disparity. The remainder terms in the equations
are the calibrated parameters of the camera where (u0, v0)
is the central pixel of the images, b is the baseline and f is
the focal length.

C. Inverse points Initialization

Current research on Monocular SLAM has shown that
the inverse-depth points parametrization introduced in [9] is
suitable to represent the distribution of the features at the
infinity as well as perform undelayed initialization. Given
the camera location

xc =
[

rc

Θc

]
(2)

from which the feature in the image was first observed, an
inverse-depth point can be defined as

xinv =




rc

θ
φ

1/ρ


 (3)

This vector depends on the optical center pose rc, the
orientation of the ray passing through the image point (i.e.
azimuth θ, elevation φ), and the inverse of its depth, ρ.

D. Predicting observations in a stereo pair

In each step, all features in the camera field of view have
to be projected on the current stereo pair in order to carry out
an active search. The prediction equation for Inverse-depth
features can be extended to represent its projective rays for
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Fig. 2. Points detected using a stereo camera. Projection of map features
(top): 3D features projections yield more precise search regions on both
images; inverse-depth produces larger regions on the left image in which
active search is perform. We show features uncertainties from a lateral
perspective (bottom): 3D features uncertainties are drawn using red ellipses
whereas we use samples to show the Inverse-depth features uncertainties.

the left and right cameras:

yR
rinv

= hrinv (xBR,xB
inv)

= Rot(ΘBR)T ((rB
c − rB

BR) +
1
ρ
mB)

yR
linv

= hlinv (xBR,xB
inv)

= Rot(ΘBR)T ((rB
c − rB

BR) +
1
ρ
mB)− xR

rl

(4)

These equations transform the inverse-depth feature xB
inv

expressed in the base map reference B to a 3D point yR
inv

in the current camera reference R being mB the unitary ray
directional vector:

m(θ, φ) =




cos(θ) cos(φ)
sin(θ) cos(φ)

sin(φ)


 (5)

Vector xR
rl = [0 b 0]T represents the rigid transformation

in the camera frame between left and right cameras, which
only depends on the baseline.

In a similar way, we describe observations corresponding
to 3D map features, for which we use composition operators:

yR
r3d

= hr3d
(xBR,xB

3d)

= ªxBR ⊕ xB
3d

yR
l3d

= hl3d
(xBR,xB

3d)

= ªxBR ⊕ xB
3d − xR

rl

(6)

Fig. 2 top shows the prediction of those 3D and inverse-depth
features that falls inside the field of view of both images.

Some interesting characteristics can be pointed out when
working with a stereo camera given that features projected in
both images can produce a pair of independent observations.
For instance, first time an inverse-depth feature is seen, larger
search regions are produced on the left image due to the
uncertainty projection. However, when the feature is updated
in the next step, the uncertainty is drastically reduced which
means that features can not be in the stereo nearby region.

When our system starts moving, features projection may
disappear from the field of view of one camera. Nevertheless,
information to update the state is still available if the feature
is projected in the other camera.

III. GENERATING CONDITIONALLY INDEPENDENT
LOCAL MAPS

Our implementation of the SLAM algorithm is based on
local map techniques since they provide good consistency
properties and low computational requirements during the
estimation. In addition, we are interested in sharing some
state vector components between consecutive submaps. Oth-
erwise, some camera states, such as linear and angular
velocities, that have been estimated in a map should be
suddenly discarded when a new submap is initiated. Further-
more, features that are near to the transition region between
adjacent submaps can be shared as well in order to improve
local maps relative location. Nevertheless, special care is
needed if both submaps are joined in a single map since
their estimates are not independent anymore.

The novel technique to achieve these requirements is based
on the Conditionally Independent Local Maps CI [7]. To ease
the explanation of the algorithm we will give a brief review
of the technique before going to the particular details of the
actual method.

A. Brief Review of Conditionally Independent Local Maps

Suppose that a local map 1 has been built and we want to
start a new submap 2 but sharing some elements in common
with 1. Submap 1 is described by the following probability
density function:

p(xA,xC |za) = N
([

x̂Aa

x̂Ca

]
,

[
PAa PACa

PCAa PCa

])
(7)

where xA are the components of the current submap that
only belong to 1, xC are the elements that will be shared
with 2 and za the observations gathered during the map
construction. Notice that upper case subindexes are for state
vector components whereas lower case subindexes describe
which observations z have been used to obtain the estimate.

Submap 2 is then started with the result of marginalizing
out the non common elements from 1.

p(xC |za) =
∫

p(xA,xC |za) dxA = N (x̂Ca , PCa) (8)

During the trajectory along map 2 new observations zb

are gathered from previous components xC as well as
observations of new elements xB that are incorporated to the



Submap 1 Submap 2

x
A

x
C

x
B

z
b

z
a

Fig. 3. Bayesian net that describes the relations between consecutive
submaps

map. When map 2 is finished, its estimate is finally described
by:

p(xC ,xB |za, zb) = N
([

x̂Cab

x̂Bab

]
,

[
PCab

PCBab

PBCab
PBab

])

(9)
where the subindexes in the estimates x̂Cab

and x̂Bab
reveal

that both sets of observations za and zb have been used in
the estimation process. This means that submap 2 is updated
with all the information gathered by the sensor. Recall that
map 1 in Eq(7) has been updated with the observation za

but not with the more recent observation zb.
Figure(3) shows a Bayesian network that describes the

probabilistic dependencies between elements of submaps 1
and 2. As can be seen, the only connection between the set
of nodes (xA, za) and (xB , zb) is through node xC , i.e. both
subgraphs are d-separated given xC [10]. This implies that
nodes xA and za are Conditionally Independent of nodes
xB and zb given node xC . Intuitively this means that if
xC is known, submaps 1 and 2 do not carry any additional
information about each other.

Taking this structure into account, it can be demonstrated
that the influence of the new observations zb in the xA

components of submap 1 can be back-propagated using the
following equations:

K = PACaP−1
Ca

= PACab
P−1

Cab
(10)

PACab
= KPCab

(11)
PAab

= PAa + K(PCAab
− PCAa) (12)

x̂Aab
= x̂Aa + K(x̂Cab

− x̂Ca) (13)

Therefore, using this technique we can independently build
local maps that have elements in common and afterwards
retrieve the global information in a consistent manner. The
process to join several local maps in a single state will be
explained in section IV.

B. Actual implementation for the stereo

We now explain how the technique of conditionally inde-
pendent local maps is applied in our implementation of the
stereo system.

Since the camera moves in 6DOF, the camera state is
composed of its position using cartesian coordinates, the ori-
entation in euler angles and its linear and angular velocities.
As we mentioned before, 3D points and inverse depth points
are included as features in the state vector. When a local map
mi is finished, the final map estimate is given by:

mi.x̂ =




x̂RiRj

v̂RiRj

x̂RiF1:m

x̂RiFm+1:n


 (14)

where x̂RiRj
is the camera location in local reference coor-

dinates, v̂RiRj are the linear and angular velocities, x̂RiF1:m

are 3D and inverse depth features that will only remain in
the current map and x̂RiFm+1:n are 3D and inverse depth
features that will be shared with the next submap mj .

Since the current camera velocity v̂RiRj
and some features

x̂RiFm+1:n are used to initialize the next local map, a local
copy of these elements have to be calculated and added to
the current submap.

mi.x̂ =




x̂RiRj

v̂RiRj

x̂RiF1:m

x̂RiFm+1:n

· · ·
ªx̂RiRj ⊕ v̂RiRj

ªx̂RiRj ⊕ x̂RiFm+1:n




=




x̂Aa

· · ·
x̂Ca


 (15)

where the new elements define the common part x̂Ca and the
original map defines x̂Aa . Notice that the appropriate com-
position operation have to be applied for each transformed
component and that the corresponding covariance elements
have to be added to the map.

In local mapping, a reference have to be identified to start
a new map. This common reference is represented by the
final vehicle position, which is the case of Rj between mi

and mj .
The initial state vector of the next submap is then given

by:

mj .x̂ =




x̂RjRj

ªx̂RiRj ⊕ v̂RiRj

ªx̂RiRj ⊕ v̂RiRj

ªx̂RiRj ⊕ x̂RiFm+1:n


 (16)

where x̂RjRj represents the location of the camera in the new
reference frame with zero uncertainty and zero correlation
with the rest of the elements of the initial map. Notice that
the initial velocity brought from the previous map has been
replicated twice. Since it is a dynamical quantity one of the
copies will change as the camera moves through the new
map carrying the current camera velocity. The other copy
will remain fixed and used with the transformed features
as a common element to backpropagate the information
adequately. The same process is successively repeated with
all local maps.



IV. CONDITIONALLY INDEPENDENT DIVIDE AND
CONQUER SLAM

Divide and Conquer SLAM (D&C) has proved to be a
good algorithm to join local maps minimizing the computa-
tional complexity of EKF-based SLAM and improving con-
sistency. The algorithm allows us to join efficiently several
local maps in a single state vector using Map Joining in a
Hierarchical tree structure [11].

We have adapted D&C SLAM to work with conditional
independent local maps by redefining the Map Joining pro-
cess. Consider two CI local maps that belong to the same
level of the tree. The resulting map after the join will be
defined by:

p(xA,xB ,xC |za, zb) =

= N






x̂Aab

x̂Cab

x̂Bab


 ,




PAab
PACab

PABab

PCAab
PCab

PCBab

PBAab
PBCab

PBab





(17)

Therefore, to recover the full map from Eqs. (7) and (9),
we have to apply the following steps:
• The first map has to be updated with the new observa-

tions obtained in the second map using equations (10),
(11), (12) and (13).

• The correlations terms between the non-common ele-
ments of both maps are computed with the next equa-
tion:

PABab
= PACab

P−1
Cab

PCBab

= KPCBab
(18)

which can be obtained taking into account the structure
of the CI maps [7].

• Replication of common elements are deleted in both
maps.

• Elements belonging to the second map are transformed
to the first map reference.

A. Data association for D&C SLAM

As it was seen in the previous sections (III, IV), we build
CI local maps in the spirit of a EKF-based SLAM and
perform D&C SLAM algorithm to carry out the map fusion
task. Given this outline we will consider the data association
problem from the conventional point of view when a local
map is built, and from the Map joining perspective.

1) Data association for CI local maps: Recent work on
large environments [2] has shown that Joint Compatibility
avoids map corruption by rejecting measurements that come
from moving objects. This framework turns out to be suit-
able in environments with a few number of observations.
However, even though impressive results were registered, a
Branch and Bound algorithm implementation (JCBB) limits
its use when the number of observations per step increases.
In this paper we have obtained more efficient results using
the Randomized Joint Compatibility version RJC proposed
in [11], in which a joint compatibility JC test is run with a
fixed set of measurements p selected randomly. In this case
correlation between patches and Individual compatibility

tests have been used as in the previous work to obtain
candidate matches. If all p measurements and its matches
are compatible, we apply the Nearest Neighbor rule to match
the remaining measurements. Once a total hypothesis H is
obtained, we check JC to avoid false positives. The process
is repeated t times in the spirit of an adaptive RANSAC
limiting the probability of missing a correct association.

2) Data association for the D&C Map Joining process:
The property of sharing common elements solves the data
association problem between consecutive local maps [11].
This leads us to solve data association just in loop closing
situations. We use Maximum Clique Algorithm in order
to detect an already visited area [2]. The algorithm finds
correspondences between features in different local maps,
taking into account the texture and the relative geometry
among features. Once corresponding features are found, an
ideal measurement equation that imposes the loop closing
constraint is applied.

V. EXPERIMENTS IN URBAN OUTDOOR AND INDOOR
ENVIRONMENTS

The most important characteristic of a real 6DOF SLAM
system using a stereo camera is the ability to solve the scale
problem. Therefore we have focused on proving its appli-
cability to recover the true scale in large environments. For
this propose, we have used two 320x240 images sequences
collected with a Point Grey Bumblebee stereo system at 25
fps (See Fig. 1). The system provides a 70 x 50 degree field
of view per camera. This characteristic makes this work a
real challenge, given that we have to ensure overlap between
consecutive images to perform sequential matching. Also, the
camera provides a baseline of 12cm, limiting the 3D point
features initialization up to a distance non far from 2 meters.
The sequences were processed with the proposed algorithms
on a desktop computer with an Intel 4 processor at 2,4GHz.

The first sequence is composed of 3441 stereo pairs gath-
ered in a public square of our home town. The full trajectory
is approximately 140 meters long from the initial camera
position. Figure 4 left shows the sequence of conditional
independent local maps obtained with the technique provided
in section III. Each map contains 100 features combining
inverse-depth and 3D points. The total number of maps
built during the stereo sequence is 11. The result of D&C
without applying the loop closing constraint is shown in
Fig. 4 middle. As it can be observed, the precision of
the map obtained is good enough to almost align the first
and last submaps after all the trajectory has been traversed,
even without applying loop closing constraints. Fig. 4 right
presents the final result after closing the loop.

Using Google maps tool we have checked that the map
scale obtained and the trajectory followed by the camera is
very close to the real scale. Fig. 6 illustrates comparative
results. Moreover, it can be noticed that angles between the
square sides and the shape of the walls of the surrounding
environment have been finely captured.

The second experiment was taken inside one of our
campus buildings in a walk of approximately 220 meters.



Fig. 4. 6DOF SLAM run in a public square. CI Local maps were carried to a common reference only to show the environment dimensions (left). D&C
Updates were performed to correct the estimates (middle). Final result obtained when we impose loop closing constraints (right). Scale factor and camera
positions are well recovered thanks to the combined observations of 3D points and inverse-depth points.

Fig. 5. 6DOF SLAM run in an indoor environment. Twelve CI local maps with 100 features each (left), D&C updates (middle) and final map estimate
(right).

The same process was run in order to obtain a full map
from 4081 stereo pairs. This environment has a particular
degree of difficulty due to the presence of extend zones
of glass windows such as offices, corridors and cafeterias.
This can be noticed in the long distance points estimated in
some of the maps, Fig.5 right. A bend appears when just
inverse-depth points are extracted yielding to a deviation in
the configuration of the final maps. Small corrections are
observed when D&C is run (see Fig. 5 middle), but as
shown in Fig.5 right, it was enough to make loop closing
task possible with successful results.

We have also verified that our 6DOF SLAM system,
even implemented in MATLAB, does not exceed 2 seconds
per step, which is the worst case when building CI local
maps. Fig. 7 shows how the running time system remains
constant in most of the steps. Moreover, time peaks that
appear when D&C takes place are below 6 seconds for the
square experiment and 8 seconds for the indoor experiment,
which are the maximum times required in the last step. These
results point out that our system is suitable for a real time
implementation.

VI. CONCLUSIONS

In this paper we have shown that the scale of large envi-
ronments can be efficiently and accurately recovered using

a stereo camera as the only sensor. During the experiments
the camera was moved in 6DOF. One of the contributions
of the paper is that information from features nearby and
far from the cameras has been simultaneously incorporated
to represent the 3D structure. Using close points provides
scale information through the stereo baseline avoiding ’scale-
drift’, while inverse-depth points are useful to obtain angular
information from distant scene points.

Another contribution of the paper is that combines two
recent local maps techniques to improve consistency and
reduce complexity. Using Conditionally Independent local
maps, our system is able to properly share information re-
lated to the camera motion model, as velocities, and common
features between consecutive maps. This points out that
smoother transitions from map to map are achieved as well as
better relative locations between local maps can be obtained.
By means of the simplicity and efficiency of D&C, we can
recover the full map allowing linear time execution. Thus,
we can say that the combination of both techniques adds
robustness to the estimation without sacrificing precision.

Although we are able to close the loop, the algorithm
shown for loop closing strongly depends on extracting sets
of features already stored in the map when the same area is
revisited. It would be interesting to analyze other types of
algorithms, for instance the image to map algorithm proposed



Fig. 6. Recovering true scale factor. The building environment (top) and
The Public square (bottom) were reconstructed finely.

in [12].
As future work, we will focuse on compare our system

with other stereo vision techniques as visual odometry. We
are also interested in studying the fusion of the stereo camera
with other sensors like GPS or inertial systems in order to
compare the precision obtained. As well we have verified
that the system is prone to the extraction of stable features.
Therefore, we will analyze the effects produced when the
features detector is changed.
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