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Summary

We analyze the convergence of quasi-Newton methods in exact and finite precision

arithmetic using three different techniques. We derive an upper bound for the stagna-

tion level and we show that any sufficiently exact quasi-Newton method will converge

quadratically until stagnation. In the absence of sufficient accuracy, we are likely to

retain rapid linear convergence. We confirm our analysis by computing square roots

and solving bond constraint equations in the context of molecular dynamics. In particu-

lar, we apply both a symmetric variant and Forsgren’s variant of the simplified Newton

method. This work has implications for the implementation of quasi-Newton methods

regardless of the scale of the calculation or the machine.
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1 INTRODUCTION

Newton’s method is a well-known iterative method for solving systems of nonlinear equations.1,2 Regardless, it remains an area of active research

and a recent SIAM Review paper by Kelley3 investigates the use of mixed precision arithmetic in the context of Newton’s method. In this paper we

consider the need for accuracy when executing general quasi-Newton methods. More formally, letΩ ⊆ R
m be open, let F ∶ Ω → R

m and consider the

problem of solving

F(x) = 0,

with respect to x ∈ Ω. If F is differentiable and if the Jacobian F′ of F is nonsingular, then Newton’s method is given by

xk+1 = xk + sk, F(xk) + F′(xk)sk = 0.

A quasi-Newton method is any iteration of the form

yk+1 = yk + tk, F(yk) + F′(yk)tk ≈ 0.

In exact arithmetic, we expect local quadratic convergence from Newton’s method.4 Quasi-Newton methods normally converge locally and at least

linearly and some methods, such as the secant method, have super-linear convergence.1,2 In finite precision arithmetic, we cannot expect our iter-

ation to converge and we must settle for stagnation near a zero. In this paper we analyze the convergence of quasi-Newton methods in exact

and finite precision arithmetic using three different techniques. We extend work by Ypma,5 Dennis and Walker6 and Tisseur7 and derive an upper

bound for the relative error where a general quasi-Newton method will stagnate. We extend work by Forsgren8 and show that any sufficiently exact
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quasi-Newton method will in fact converge quadratically until stagnation. We confirm our analysis by computing square roots and solving bond con-

straint equations in the context of molecular dynamics. This is an extended version of a paper that was presented at PPAM-2022.9 The new material

includes a presentation of the techniques applied by previous authors in order to compare their approach to ours. Moreover, we include details

and comments about our own work that were omitted from the conference paper due to page constraints. Finally, we include new experiments and

observations related to Forsgren’s variation8 of the simplified Newton method.1

1.1 Applications

In this section we explain why our topic is relevant for large-scale scientific computing. Consider the familiar problem of solving a nonsingular sparse

linear system Ax = b using a parallel computer. Let x̂ denote the computed solution and let 𝜖 = ||x−x̂||2

||x||2
denote the normwise relative error with respect

to the 2-norm. Without additional information about the underlying application that produced the linear system our natural instinct is to reduce 𝜖

as much as feasible. How will we solve the linear system? We need to choose a method. It will either be an iterative method or a direct method. If

we choose the GMRES algorithm, then the normwise residual ||b − Ax̂||2 will decay monotonically until stagnation. Therefore, we expect that 𝜖 will

decrease with the number of iterations. If our accuracy goal is tiny, then a large number of iterations is a realistic expectation. Every iteration requires

interprocessor communication which can be very expensive when the computer is large. In order to counter this issue, communication-avoiding

Krylov subspace methods have been developed, see the PhD-theses by Hoemmen,10 and Carson11 and the many references therein. If we choose

a direct method, say, a variant of Gaussian elimination, then we can reduce the backward error by applying pivoting during the LU-factorization

phase. However, pivoting requires dynamic data structures and interprocessor communication which we are trying to avoid. An alternative to piv-

oting is static pivoting, diagonal boosting and iterative refinement as implemented in SuperLUdist by Sherry Li et al.12 With this paper, we pause and

question the need for accuracy in the first place. We explain that high accuracy is not strictly necessary when solving the linear systems needed for

quasi-Newton methods for systems of nonlinear equations. We explain why the consequences of being inaccurate are rather mild. This information

is relevant to anybody solving large-scale nonlinear equations on a parallel computer.

2 BASIC ASSUMPTIONS AND NOTATION

We shall make the following assumptions. The setΩ ⊆ R
m is open. The function F ∶ Ω → R

m is of class C1 and F′(x) is nonsingular for all x ∈ Ω. There

exist positive real constants K and M such that for all x ∈ Ω

||F′(x)−1|| ≤ K, ||F′(x)|| ≤ M.

There exists a positive real constant L such that for all x, y ∈ Ω

||F′(x) − F′(y)|| ≤ L||x − y||.

These assumptions are in effect throughout the paper. They are far more powerful than absolutely necessary, but they will allow us to complete the

analysis rapidly and illustrate three different techniques without being distracted by technical details. If z ∈ R
m and 𝛿 > 0 then B(z, 𝛿) ⊂ R

m is the

open ball given by

B(z, 𝛿) = {x ∈ R
m ∶ ||x − z|| < 𝛿}.

If || ⋅ || is a norm on R
m, then we induce a submultiplicative matrix norm on R

m×m using the standard procedure, that is, if A ∈ R
m×m then

||A|| = sup{||Ax|| ∶ ||x|| ≤ 1}.

3 AUXILIARY RESULTS

In this section we derive a few well-known results that are useful in the analysis of quasi-Newton methods. It is convenient to define Newton’s

method as the functional iteration

xk+1 = g(xk), g(x) = x − F′(x)−1F(x),

and utilize this function when analyzing quasi-Newton methods. The following result shows that our assumptions ensure that F is Lipschitz with

Lipschitz constant M. We shall use this result to bound the residual F(x) near a zero z of F as ||F(x)|| ≤ M||z − x||.
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Lemma 1. If z ∈ Ω and B(z, 𝛿) ⊆ Ω, then for all x, y ∈ B(z, 𝛿)

||F(x) − F(y)|| ≤ M||x − y||.

Proof. Let x, y ∈ B(z, 𝛿) be given and consider the auxiliary function 𝜙 ∶ [0,1]→ R
m given by

𝜙(t) = F(tx + (1 − t)y).

The 𝜙 is well-defined because B(z, 𝛿) is convex and the chain rule implies that 𝜙 ∈ C1([0,1],Rm)with

𝜙
′(t) = F′(tx + (1 − t)y)(x − y).

By the fundamental theorem of calculus we have

F(x) − F(y) = 𝜙(1) − 𝜙(0) =
∫

1

0
F′(tx + (1 − t)y)(x − y)dt =

(

∫

1

0
F′(tx + (1 − t)y)dt

)

(x − y).

By the triangle inequality we have

||F(x) − F(y)|| ≤
∫

1

0
||F′(tx + (1 − t)y)||dt||(x − y)||.

By applying our basic assumption that F′ is bounded we can immediately conclude that

||F(x) − F(y)|| ≤
∫

1

0
Mdt||x − y|| = M||x − y||.

This completes the proof. ▪

The following result allows us to measure the effect of a single iteration of Newton’s method.

Lemma 2. If z is a zero of F and B(z, 𝛿) ⊆ Ω, then for all x ∈ B(z, 𝛿)

z − g(x) = C(x)(z − x),

where

C(x) = F′(x)−1

(

∫

1

0

[
F′(x) − F′(tx + (1 − t)z)

]
dt

)

.

Moreover, the new error z − g(x) can be bounded in terms of the current error z − x, that is,

||z − g(x)|| ≤ 1
2

LK||z − x||2
.

Proof. Let x ∈ B(z, 𝛿) ⊆ Ω. Then the function g is defined at x and

g(x) − z = (x − z) − F′(x)−1(F(x) − F(z)) = F′(x)−1
[
F′(x)(x − z) − (F(x) − F(z))

]

= F′(x)−1

∫

1

0

[
F′(x) − F′(tx + (1 − t)z)

]
(x − z)dt = C(x)(x − z).

It follows that

||z − g(x)|| ≤ ||C(x)||||z − x||.

By the triangle inequality we have

||C(x)|| ≤ ||F(x)−1||
∫

1

0

‖
‖F′(x) − F′(tx + (1 − t)z)‖‖ dt||(x − z)||.
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4 of 21 KJELGAARD MIKKELSEN ET AL.

Since F′ is Lipschitz continuous with Lipschitz constant L we have

||C(x)|| ≤ ||F′(x)−1||
∫

1

0
L(1 − t)||x − z||dt = 1

2
||F′(x)−1||L||x − z||.

By applying our bound on the inverse of F(x), we can now conclude that

||z − g(x)|| ≤ ||C(x)||||z − x|| ≤ 1
2
||F′(x)−1||L||z − x||2

≤
1
2

KL||z − x||2
.

This completes the proof. ▪

Lemma 2 implies that Newton’s method will converge locally and that the order of convergence will be at least quadratic. The analysis of

quasi-Newton methods in terms of the so-called relative residual will include an application of this lemma, see Section 4.1.

Lemma 3. Let z ∈ Ω be a zero of F. Then there is a 𝛿 > 0 such that if x0 ∈ B(z, 𝛿), then Newton’s method is defined, xk ∈ B(z, 𝛿) and {xk}∞k=0

is convergent with limit z. Moreover, the order of convergence is at least quadratic.

Proof. SinceΩ is open there is a 𝛿 > 0 such that B(z, 𝛿) ⊆ Ω and by Lemma 2 we have

||z − g(x)|| ≤ C||z − x||2
,

where C = 1

2
LK. Without loss of generality, we may assume that 𝛿 ≤ C−1. It follows that

||z − g(x)|| ≤ (C𝛿)||z − x|| ≤ ||z − x|| < 𝛿.

This shows that if xk ∈ B(z, 𝛿), then xk+1 = g(xk) ∈ B(z, 𝛿). Moreover, if xk ∈ B(z, 𝛿) then

C||z − xk+1|| ≤ C2||z − xk||
2 = (C||z − xk|)2.

By applying the principle of mathematical induction we conclude that

C||z − xk|| ≤ (C||z − x0||)2
k
.

Since C||z − x0|| < C𝛿 < 1 we see that the sequence {xk}∞k=0
is convergent with limit z and that the order of convergence is at least

quadratic. This completes the proof. ▪

The following lemma allows us to write any approximation as a very simple function of the target vector. This lemma will be used to analyze

quasi-Newton methods in terms of the distance to Newton’s method, see Section 4.3.

Lemma 4. Let x ∈ R
m be nonzero, let y ∈ R

m be an approximation of x and let E ∈ R
n×n be given by

E = 1
xT x

(y − x)xT
.

Then

y = (I + E)x, ||E|| = O
(
||x − y||
||x||

)

, y → x, y ≠ x.

In the special case of the 2-norm we have

||E||2 =
||x − y||2

||x||2
.

Proof. It is straightforward to verify that

(I + E)x = x + 1
xT x

(y − x)xT x = x + (y − x) = y.
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Moreover, if z is any vector, then

||Ez|| ≤ 1

||x||2
2

||y − x||||xT||||z|| =

(
||xT||||x||

||x||2
2

)(
||x − y||
||x||

)

||z||.

In the case of the 2-norm, we have

||Ez||2 ≤
||x − y||2

||x||2
||z||2,

for all z ≠ 0 and equality holds for z = x. This completes the proof. ▪

4 ANALYSIS OF QUASI-NEWTON METHODS

In this section we shall illustrate three different techniques for analyzing the convergence of quasi-Newton methods.

4.1 Using the relative residual

This is the approach introduced by Dembo, Eisenstat and Steinhaug in the seminal paper.13 Let x ∈ Ω and let t = t(x) denote the correction needed

to compute the quasi-Newton approximation x + t, that is,

F(x) + F′(x)t ≈ 0.

Then the relative residual 𝜂 = 𝜂(x, t) is given by

𝜂 = ||F(x) + F′(x)t||
||F(x)||

.

We shall now explain how quasi-Newton methods can be analyzed and controlled in terms of the relative residual. Let z ∈ Ω denote a zero of F and

choose 𝛿 > 0 such that B(z, 𝛿) ⊆ Ω. Let x ∈ B(z, 𝛿) and let s denote the correction needed to compute Newton’s approximation x + s, that is,

F(x) + F′(x)s = 0.

Now consider the quasi-Newton approximation x + t. It is straightforward to use the definition of g to verify that

z − (x + t) = z − g(x) − F′(x)−1(F(x) + F′(x)t).

By the triangle inequality and our bound for the inverse of F′(x)we find

||z − (x + t)|| ≤ ||z − g(x)|| + K||F(x) + F′(x)t||.

At this point it becomes apparent how the relative residual enters into the analysis. We simply write ||F(x) + F′(x)t|| = 𝜂||F(x)|| so that

||z − (x + t)|| ≤ ||z − g(x)|| + 𝜂K||F(x)||.

We can now use Lemma 1 and Lemma 2 and estimate

||z − (x + t)|| ≤ 1
2

KL||z − x||2 + 𝜂KM||z − x||.

We can now conclude that

||z − (x + t)|| ≤ 𝜆(x, 𝜂)||z − x||,
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6 of 21 KJELGAARD MIKKELSEN ET AL.

where we have defined

𝜆(x, 𝜂) = 1
2

KL||z − x|| + 𝜂KM.

Now given any fixed 𝜆 ∈ (0,1)we are free to choose 𝜂 > 0 and 𝛿 > 0 such that

1
2

KL𝛿 + 𝜂KM ≤ 𝜆.

Now if x0 ∈ B(x, 𝛿) and if we ensure that the relative residuals all satisfy 𝜂k ≤ 𝜂, then

||z − xk+1|| ≤ 𝜆||z − xk||.

We can now conclude that our quasi-Newton sequence{xk}∞k=0
is contained in B(z, 𝛿)and convergent with limit z. Moreover, the order of convergence

is at least linear. If we are prepared to gradually reduce the relative residual as we approach the zero, then higher orders of convergence can be

achieved. In particular, if we ensure that

𝜂 ≤ C′||F(x)||,

for some C′ > 0 independent of x, then we can estimate

||z − (x + t)|| ≤ ||z − g(x)|| + C′K||F(x)||2
≤ C||z − x||2

, C = 1
2

KL + C′KM2
.

This is precisely the situation analyzed in Lemma 2. We need only choose 𝛿 > 0 such that B(z, 𝛿) ⊆ Ω and C𝛿 < 1. If x0 ∈ B(z, 𝛿) and if the relative

residuals satisfy

𝜂k ≤ C′||F(xk)||,

then our quasi-Newton sequence {xk}k=0 is contained in B(z, 𝛿) and convergent with limit z, Moreover, the order of convergence is at least quadratic.

The advantage of using the relative residual is particularly clear when we are using an iterative solver to solve the linear equation

F(x) + F′(x)s = 0,

with respect to s. Since the nonlinear residual is readily available, the iteration can be terminated when the linear residual satisfies

||F(x) + F′(x)t|| ≤ C′||F(x)||2
.

4.2 Using forward and backward errors

This is the approach applied by Ypma,5 Dennis and Walker,6 and Tisseur.7 While Tisseur’s primary objective was to understand the impact of rounding

errors on Newton’s method, this approach applies to general quasi-Newton methods. We shall now illustrate the main idea.

Let z ∈ Ω be a zero of F and let x ∈ Ω denote our current approximation of z. Let t = t(x) denote the correction needed to compute the

quasi-Newton approximation x + t. Due to the limitations of floating point arithmetic we cannot hope to compute the exact value of t and we have

to settle for an approximation which we denote t̂. Let F̂(x) denote the computed value of F(x). We assume that the function value F(x) is computed

with a forward error E1(x) that is small in the normwise relative sense, that is,

F̂(x) = F(x) + E1(x), ||E1(x)|| ≤ 𝜖||F(x)||,

where the size of 𝜖 > 0 reflects the difficulty of computing F(x) and our skill as computer programmers. We shall now suppress most references to

the point x and write, say, F instead of F(x). Moreover, we shall write J (short for “Jacobian”) instead of F′(x) as this is shorter. We shall now treat t̂ as

an approximation of the solution of the linear system

Js + F̂ = 0. (1)
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KJELGAARD MIKKELSEN ET AL. 7 of 21

Let 𝜂 = 𝜂(t̂) denote the normwise relative backward error. By theorem 7.1 of Higham’s textbook14 there exists a square matrix ΔJ and a vector ΔF̂

such that t̂ is the exact solution of the perturbed equation

(J + ΔJ)t̂ + F̂ + ΔF̂ = 0,

and

||ΔJ|| = 𝜂||J||, ||ΔF̂|| = 𝜂||F̂||.

Let ŷ denote the computed value of quasi-Newton approximation y = x + t. Our objective is to bound the error z − ŷ in terms of the current error

z − x. We shall now assume that

𝜂𝜅(J) < 1,

where 𝜅(J) is the condition number of J, that is,

𝜅(J) = ||J−1||||J||.

This assumption ensures that

q = ||J−1ΔJ|| < 1,

so that Banach’s lemma implies that J + ΔJ is nonsingular with

(J + ΔJ)−1 = (I + S)J−1
, S = S(x) =

∞∑

k=1

(−J−1ΔJ)k, ||S|| ≤
q

1 − q
≤

𝜂𝜅(J)
1 − 𝜂𝜅(J)

.

It follows that the computed value ŷ of y = x + t satisfies

ŷ = (I + D)(x − (I + S)J−1(F̂ + ΔF̂)),

where D = D(x) is a diagonal matrix that represent the floating point error associated with the addition x + t̂. We shall now isolate the expression

for the function g that defines Newton’s method, that is,

g(x) = x − F′(x)−1F(x),

which we shall write as g = x − J−1F. It follows that

ŷ = (I + D)
(

x − (I + S)J−1(F + E1 + ΔF̂)
)

= (I + D)
(

x − J−1F − J−1(E1 + ΔF̂) − SJ−1(F + E1 + ΔF̂)
)

= (I + D)(g − J−1(E1 + ΔF̂) − SJ−1(F̂ + ΔF̂).

We now define

h = J−1(E1 + ΔF̂) + SJ−1(F̂ + ΔF̂),

so that we can write

ŷ = (I + D)(g − h).

Now let z denote a zero of F. We have

z − ŷ = z − (I + D)(g − h) = z − g + h − D(g − h).
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It follows that

||z − ŷ|| ≤ ||z − g|| + ||h|| + ||D||(||g|| + ||h||).

It is now convenient to write g = z − (z − g) so that we may bound ||g|| using

||g|| ≤ ||z|| + ||z − g||,

and

||z − ŷ|| ≤ (1 + ||D||)||z − g|| + (1 + ||D||)||h|| + ||D||||z||.

We shall now estimate h. We begin with the simple upper bound

||h|| ≤ ||J−1||(||E1|| + ||ΔF̂||) + ||S||||J−1||(||F̂|| + ||ΔF̂||).

We now consider the individual terms on the right-hand side. We have

||J−1|| ≤ K, ||E1|| ≤ 𝜖||F||, ||F̂|| ≤ (1 + 𝜖)||F||, ||ΔF̂|| = 𝜂||F̂||, ||S|| ≤
𝜂𝜅(J)

1 − 𝜂𝜅(J)
, ||F|| ≤ M||z − x||.

It follows that

||h|| ≤
[

𝜖 + 𝜂(1 + 𝜖) + 𝜂𝜅(J)
1 − 𝜂𝜅(J)

(1 + 𝜖)(1 + 𝜂)
]

KM||z − x||.

We can now conclude that

||z − ŷ|| ≤ (1 + ||D||)C(x, 𝜖, 𝜂)||z − x|| + ||D||||z||,

where we have defined

C(x, 𝜖, 𝜂) = 1
2

LK||z − x|| +
[

𝜖 + 𝜂(1 + 𝜖) + 𝜂𝜅(J)
1 − 𝜂𝜅(J)

(1 + 𝜖)(1 + 𝜂)
]

KM.

It follows that the normwise relative error satisfies

||z − ŷ||
||z||

≤ (1 + ||D||)C(x, 𝜖, 𝜂) ||z − x||
||z||

+ ||D||.

We observe that the function C satisfies

C(x, 𝜖, 𝜂) → 0, (x, 𝜖, 𝜂) → (z,0,0).

We are certain that the relative error will be reduced provided that

(1 + ||D||)C(x, 𝜖, 𝜂) ||z − x||
||z||

+ ||D|| <
||z − x||
||z||

,

or equivalently

||D||
1 − (1 + ||D||)C(x, 𝜖, 𝜂)

<
||z − x||
||z||

. (2)

Conversely, if inequality (2) is not satisfied, then there is no guarantee that the relative error will be reduced. In this case we expect the iteration to

stagnate. As observed by Ypma,5 we note that this threshold, below which we cannot guarantee that the relative error will be reduced, is controlled

by the size of 𝜖 and 𝜂. As observed by Tisseur,7 we see that if the software used to evaluate the function F is sufficiently normwise forward stable

(𝜖 small) and if the software used to evaluate the Jacobian and solve the linear system F(x) + F′(x)s = 0 is sufficiently normwise backward stable (𝜂
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KJELGAARD MIKKELSEN ET AL. 9 of 21

small) and if MK is not too large, then Newton’s method will converge at least linearly until stagnation, provided that we start sufficiently close to

our zero. This is very reassuring.

4.3 Using the distance to Newton’s correction

This is the approach that has recently been applied by the authors of the present paper, that is, Kjelgaard Mikkelsen, López-Villellas and

García-Risueño.9 We proceed as follows. Let z ∈ Ω be a zero of F and let x ∈ B(z, 𝛿) ⊆ Ω. Let t denote the correction needed to compute the

quasi-Newton approximation y = x + t and let t̂ denote the computed value of t. Let ŷ denote the computed value of y. Our first objective is to bound

the new error z − ŷ in terms of the current error z − x. We shall write

ŷ = (I + D)(x + t̂),

where D is a diagonal matrix that represents the floating point errors associated with the addition x + t̂. Let s denote the correction needed to

compute Newton’s approximation x + s, that is, the solution of the linear system F(x) + F′(x)s = 0. We now choose to view t̂ as an approximation

of s. We now use Lemma 4 to write

t̂ = (I + E)s, ||E|| = O
(
||s − t̂||
||s||

)

, ||E||2 =
||s − t̂||2

||s||2
.

We shall now relate ŷ to g = x + s. We have

ŷ = (I + D)(x + (I + E)s) = x + (I + E)s + D(x + (I + E)s) = x + s + Es + D(x + s + Es) = g + Es + D(g + Es) = g + k,

where we have introduced

k = (I + D)Es + Dg.

It follows that

z − ŷ = (z − g) − k.

We shall use Lemma 2 to bound z − g as

||z − g|| ≤ 1
2

LK||z − x||2
.

In order to bound k, it is convenient to write

g = z − (z − g),

and estimate

||g|| ≤ ||z − g|| + ||z||.

It follows that

||k|| ≤ ||D||||z − g|| + (1 + ||D||)||E||||s|| + ||D||||z||.

We can now conclude that

||z − ŷ|| ≤ (1 + ||D||)||z − g|| + (1 + ||D||)||E||||s|| + ||D||||z||.

Since s = F−1(x)F(x)we can use Lemma 1 to obtain the bound

||s|| ≤ KM||z − x||.
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10 of 21 KJELGAARD MIKKELSEN ET AL.

It follows that

||z − ŷ|| ≤ 1
2
(1 + ||D||)LK||z − x||2 + (1 + ||D||)||E||MK||z − x|| + ||D||MK||z − x|| + ||D||||z||.

In summary, we have established the following theorem (cf. theorem 1 of Reference 9).

Theorem 1. Let z denote a zero of F and consider a general quasi-Newton method xk+1 = xk + tk. Then the computed values x̂k of xk satisfy a

functional iteration of the form

x̂k+1 = (I + Dk)(x̂k + (I + Ek)sk),

where Dk is a diagonal matrix that represents the rounding error associated with the addition x̂t + t̂k and Ek represents the relative error between

the computed value t̂k of the correction tk needed for the quasi-Newton approximation x̂k + tk and the correction sk needed for the Newton

approximation x̂k + sk. Moreover, the error z − x̂k satisfies the functional iteration

z − x̂k+1 = z − g(x̂k) − Eksk − Dk(g(x̂k) + Eksk),

and the bound

||z − x̂k+1|| ≤
1
2
(1 + ||Dk||)LK||z − x̂k||

2 + (1 + ||Dk||)||Ek||KM||z − x̂k|| + ||Dk||||z||. (3)

We shall now explore the consequences of this result. It is convenient to focus on the case of z ≠ 0 and restate inequality (3) as

rk+1 ≤
1
2

LK(1 + ||Dk||)||z||r2
k + ||Ek||KM(1 + ||Dk||)rk + ||Dk||, (4)

where rk is the normwise relative forward error given by

rk = ||z − xk||∕||z||.

4.3.1 Stagnation

There is every reason to believe that rounding errors will prevent our iteration from converging to z. It is clear that we cannot hope to do better than

rk+1 ≈ ||Dk||.

because inequality (4) reduces to rk+1 ≲ ||Dk|| when rk ≈ 0. In practice, we can only do finitely many iterations, so we choose kmax < ∞, define

D = max{||Dk|| ∶ k ≤ kmax}, E = max{||Ek|| ∶ k ≤ kmax}, (5)

and impose the restriction

k ≤ kmax,

for the remainder of this subsection. By inequality (4) we can now conclude that

rk+1 ≤
1
2

LK(1 + D)||z||r2
k + EMK(1 + D)rk + D.

It is certain that the relative error will be reduced, that is, rk+1 < rk when

D < rk −
(

1
2

LK(1 + D)||z||r2
k + EMK(1 + D)rk

)

= (1 − EMK(1 + D))rk −
1
2

LK(1 + D)||z||r2
k .

This condition is equivalent to the following inequality:

D − [1 − EMK(1 + D)]rk +
1
2

LK(1 + D)||z||r2
k < 0.
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KJELGAARD MIKKELSEN ET AL. 11 of 21

The left-hand side is a polynomial in rk of the second degree. We have equality when r = r± where r± is given by

r± =
[1 − EMK(1 + D)] ±

√
[1 − EMK(1 + D)]2 − 2LK(1 + D)D||z||

LK(1 + D)||z||
.

If D and E are sufficiently small then the roots are positive real numbers and the error will certainly be reduced provided

r− < rk < r+.

It follows that we cannot expect to do better than

rk =
||z − xk||

||z||
≈ r−.

If D and E are sufficiently small, then a Taylor expansion ensures that

r− ≈
D

(1 − EMK(1 + D))2
,

is a good approximation. We cannot expect to do better than rk+1 = r−, but this value is not particularly sensitive to the size of E.

4.3.2 The decay of the error

As in Section 4.3.1 we accept that any practical application is necessarily limited to finitely many iterations. We therefore choose kmax <∞, define

D and E using Equation (5) so that

∀k ≤ kmax ∶ (||Dk|| ≤ D ∧ ||Ek|| ≤ E) , (6)

and impose the restriction k ≤ kmax for the remainder of this subsection. Now suppose that

D ≤ Crk. (7)

for C > 0. In this case, inequality (4) implies

rk+1 ≤ 𝜌krk, 𝜌k =
1
2

LK(1 + D)||z||rk + EKM(1 + D) + C. (8)

If C < 1, then we may have 𝜌k < 1, when rk and E are sufficiently small. This explains when and why local linear decay is possible. We now strengthen

our assumptions. Suppose that there is a 𝜆 ∈ (0,1] and C1 > 0 such that

||Ek|| ≤ C1r𝜆k , (9)

and that

D ≤ C2r1+𝜆
k , (10)

for C2 > 0. In this case, inequality (4) implies

rk+1 ≤

[
1
2

LK(1 + D)||z||r1−𝜆
k + C1KM(1 + D) + C2

]

r1+𝜆
k . (11)

This explains when and why local superlinear decay is possible.

4.3.3 Convergence

We cannot expect a quasi-Newton method to converge unless the addition xk+1 = xk + tk is exact. Then Dk = 0 and inequality (4) implies

rk+1 ≤ 𝜂krk, 𝜂k =
(

1
2

LK||z||rk + ||Ek||KM
)

.
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12 of 21 KJELGAARD MIKKELSEN ET AL.

We may have 𝜂k < 1 for all k, provided E = sup ||Ek|| and r0 are sufficiently small. This explains when and why local linear convergence is possible. We

now strengthen our assumptions. Suppose that there is a 𝜆 ∈ (0,1] and a C > 0 such that

∀k ∈ N ∶ ||Ek|| ≤ Cr𝜆k .

In this case, inequality (4) implies

rk+1 ≤

(
1
2

LK||z||r1−𝜆
k + CKM

)

r1+𝜆
k .

This inequality allows us to establish local convergence of order at least 1 + 𝜆.

5 HOW ACCURATE DO WE HAVE TO BE?

Our objective is to answer what is essentially the titular question of this paper, that is, what accuracy is required to achieve quadratic convergence

when computing the corrections needed for Newton’s method. We will assume the use of normal IEEE floating point numbers and we will apply the

analysis given in Section 4.3.2. If we use the 1-norm, the 2-norm or the∞-norm, then we may choose D = u, where u is the unit roundoff. Suppose

that Equations (9) and (10) are satisfied with 𝜆 = 1. Then

||Ek|| ≤ C1rk, ||D|| ≤ C2rk,

and inequality (11) reduces to

rk+1 ≤

[
1
2

LK(1 + u)||z|| + C1KM(1 + u) + C2

]

r2
k . (12)

Due to the basic limitations of IEEE floating point arithmetic we cannot expect to do better than

rk+1 = O(u), u → 0, u > 0. (13)

From inequality (12) we see that Equation (13) is satisfied provided

rk = O
(√

u
)

.

Because we assumed that ||Ek|| ≤ C1rk we can now conclude that we never need to do better than

||Ek|| = O(
√

u), u → 0, u > 0.

There is a simple argument that can be used to support this observation. Quadratic convergence is often loosely described by the fact that the number

of correct significant figures doubles from one iteration to the next. This is not really true! What is true is that the number of new correct significant

figures is doubling from one iteration to the next. In particular, a sequence such as 10−6
,10−7

,10−9
,10−13 is displaying quadratic convergence toward

zero. Now suppose that we are executing Newton’s method using IEEE double precision floating point arithmetic and that we are experiencing

quadratic convergence and that we have just gained four significant figures compared with the previous approximation. Rounding errors aside, we

now expect to gain eight significant figures from computing xk+1 = xk + sk . To that end we do not need to know all 16 digits of sk . It is sufficient to

know the eight most significant digits of sk .

6 NUMERICAL EXPERIMENTS

In this section we consider three different numerical experiments that illustrate and support the main Theorem 1 and its consequences. In Section 6.1

we consider the problem of computing square roots of real numbers. This experiment is suitable for a lecture on elementary numerical analysis.

In Section 6.2 we use quasi-Newton methods to solve nonlinear equations in the context of molecular dynamics with constraints using the GRO-

MACS15 package. Section 6.2.2 supports the main theorem through the use of a quasi-Newton method with a fixed symmetric approximation of the
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KJELGAARD MIKKELSEN ET AL. 13 of 21

Jacobian. This method exhibits linear convergence. Section 6.2.3 demonstrates the quadratic convergence of Forsgren’s variation of the simplified

Newton method.

6.1 Computing square roots

Let 𝛼 > 0 and consider the problem of solving the nonlinear equation

f(x) = x2 − 𝛼 = 0,

with respect to x > 0 using Newton’s method. Let rk denote the relative error after k Newton iterations. A simple calculation based on Lemma 2 yields

|rk+1| ≤ |rk|
2∕2, |rk| ≤ 2(|r0|∕2)2

k

.

We see that convergence is certain when |r0| < 2. The general case of 𝛼 > 0 can be reduced to the special case of 𝛼 ∈ [1,4)by accessing and manipu-

lating the binary representation directly. Let x0 ∶ [1,4] → R denote the best uniform linear approximation of the square root function on the interval

[1,4]. Then

x0(𝛼) = 𝛼∕3 + 17∕24, |r0(𝛼)| ≤ 1∕24.

In order to illustrate Theorem 1 we execute the iteration

xk+1 = xk − (1 + ek)f(xk)∕f′(xk)

where ek is a randomly generated number. Specifically, given 𝜖 > 0 we choose ek such that |ek| is uniformly distributed in the interval [ 1

2
𝜖, 𝜖] and the

sign of ek is positive or negative with equal probability. Three choices, namely 𝜖 = 10−2 (left), 𝜖 = 10−8 (center) and 𝜖 = 10−12 (right) are illustrated in

Figure 1. We used IEEE double precision arithmetic to execute this experiment. In each case, eventually the perturbed iteration reproduces either

the computer’s internal representation of the square root or stagnates with a relative error that is essentially the double precision unit roundoff

u = 2−53 ≈ 10−16. When 𝜖 = 10−2 the quadratic convergence is lost, but the relative error is decreased by a factor of approximately 𝜖 = 10−2 from

one iteration to the next, that is, extremely rapid linear convergence. Quadratic convergence is restored when 𝜖 is reduced to 𝜖 = 10−8 ≈
√

u. Further

reductions of 𝜖 have no effect on the convergence as demonstrated by the case of 𝜖 = 10−12. We shall now explain exactly how far this experiment

supports the theory that is presented in this paper.

6.1.1 Stagnation

By Section 4.3.1 we expect that the level of stagnation is essentially independent of the size of E, the upper bound on the relative error between the

computed step and the step needed for Newton’s method. This is clearly confirmed by the experiment.

6.1.2 Error decay

Since we are always very close to the positive zero of f(x) = x2 − 𝛼 we may choose

L ≈ 2, K|z| ≈ 1∕2, MK ≈ 1,

In the case of 𝜖 = 10−2, Figure 1 (left) shows that we satisfy inequality (7) with D = u and C = 𝜖 < 1, that is,

u ≤ 𝜖rk, 0 ≤ k < 5.

By Equation (8) we must have

rk+1 ≤ 𝜌krk, 𝜌k ≈ 2𝜖, 0 < k < 5.
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F I G U R E 1 The impact of inaccuracies on the convergence of Newton’s method for computing square roots. Newton’s corrections have been
perturbed with random relative errors of size 𝜖 ≈ 10−2 (left), 𝜖 ≈ 10−8 (center) and 𝜖 ≈ 10−12 (right). In each case, the last iteration produces an
approximation that matches the computer’s value of the square root at many sample points. In such cases, the computed relative error is 0.
Therefore, it is not possible to plot a data point and this is why the last curve of each plot is discontinuous.

This is exactly the linear convergence that we have observed. In the case of 𝜖 = 10−8, Figure 1 (center) shows that we satisfy inequality (10) with

C2 = 1 and 𝜆 = 1, that is,

u ≤ r2
k , k = 0,1.

By inequality (11) we must have quadratic decay in the sense that

rk+1 ≤ Cr2
k , C ≈ 3

2
, k = 0,1.

Manual inspection of Figure 1 reveals that the actual constant is close to 1 and certainly smaller than C ≈ 3

2
. By Section 5 we do not expect any

benefits from using an 𝜖 that is substantially smaller than
√

u. This is also supported by the experiment.

6.2 Constrained molecular dynamics

The present paper deals with a question that arose naturally during our ongoing investigation of constrained molecular dynamics.9,16,17 We therefore

choose to illustrate Theorem 1 in using constrained molecular dynamics. Molecular dynamics (MD) is a popular method for simulating time-evolution

of atomic systems, MD simulations are frequently performed by imposing constraints on the internal degrees of freedom of the analyzed molecules.

In this case, some degrees of freedom (usually bond lengths) are set to a constant value. This procedure permits the use of larger time steps, and

hence the simulation of longer time intervals and the analysis of a wider range of physical phenomena. However, it is now necessary to compute

the constraint forces that maintain the selected degrees of freedom at their chosen values. In constrained MD the objective is to solve a system of

differential algebraic equations

q̇(t) = v(t),

Mv̇(t) = f(q(t)) − g′(q(t))T𝜆(t),

g(q(t)) = 0.
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KJELGAARD MIKKELSEN ET AL. 15 of 21

Here q and v are vectors that represent the position and velocity of all atoms, M is a nonsingular diagonal mass matrix and f represents the external

forces acting on the atoms, q → g(q) is a vector function where each component represents a unique constraint, g′(q) is the Jacobian of g at q and 𝜆 is

the vector of Lagrange multipliers. The constraint forces are represented by the term−g′(q)T𝜆. In the field of computational chemistry, the standard

method for solving this particular system of differential algebraic equations is the SHAKE algorithm.18 It uses a pair of staggered uniform grids and

takes the form

vn+1∕2 = vn−1∕2 + hM−1
(

f(qn) − g′(qn)T𝜆n

)
,

qn+1 = qn + hvn+1∕2,

g(qn+1) = 0, (14)

where h > 0 is the fixed time step and qn ≈ q(tn), vn+ 1
2
≈ v(tn+1∕2), where tn = nh and tn+ 1

2
= (n + 1∕2)h. Equation (14) is usually a nonlinear equation

for the unknown Lagrange multiplier 𝜆n, specifically

g(𝜙n(𝜆)) = 0, 𝜙n(𝜆) = qn + h
(

vn− 1
2
+ hM−1

(
f(qn) − g′(qn)T𝜆

))

.

In this context, Newton’s method takes the form

g
(

𝜙n

(

𝜆
(k)
n

))

+ An(𝜆(k)n )sk = 0

𝜆
(k+1)
n = 𝜆

(k)
n + sk, (15)

where n identifies the current time, k is the index used by Newton’s method and the central matrix An is the Jacobian of the mapping 𝜆→ g(𝜙n(𝜆))
with respect to 𝜆. By the chain rule of differentiation we have

An(𝜆) = (g(𝜙n(𝜆)))′ = g′(𝜙n(𝜆))𝜙′n(𝜆) = −h2g′(𝜙n(𝜆))M−1g′(qn)T .

We observe that An is almost symmetric because

𝜙n(𝜆) = qn + O(h), h → 0, h > 0,

so that

An(𝜆) ≈ Sn(𝜆),

where

Sn(𝜆) = −h2g′(qn)M−1g′(qn)T , (16)

is symmetric negative semi-definite.

The most popular methods for constrained molecular dynamics are the SHAKE18 and LINCS19 algorithms. In the original SHAKE algorithm the

constraint equations are solved using the nonlinear Gauss–Seidel method. Parallel versions of SHAKE exist that apply Newton’s method and use the

preconditioned conjugate gradient method to solve the necessary linear systems.20 The LINCS19 algorithm and its parallelization PLINCS21 rely on

a truncated Neumann series to approximate the solution of the relevant linear systems. As an alternative to SHAKE and (P)LINCS we are developing

our own constraint algorithm based on direct solvers (ILVES22), which solves the same differential algebraic equations as SHAKE, yet using Newton’s

method together with a specialized parallel solver that exploits the topology of the molecule.17

6.2.1 Description of our experiments

We shall now describe the physical details and the parameters that are shared between our experiments with constrained molecular dynamics. We

simulated a single lysozyme molecule submerged in water inside a cubic box. Lysozyme23 is a protein consisting of 129 amino acid residues and

1960 atoms with 1984 covalent bonds, four of them being disulfide bonds. Water molecules were simulated as rigid bodies. Our simulation included

all the stages of a realistic MD calculation.24 The first one was solvation, that is, including explicit water molecules which fill the simulated box.
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F I G U R E 2 Data generated during a simulation of lysozyme in water using GROMACS. The GROMACS solver has been replaced with the
quasi-Newton method given by Equation (17). (A) The maximum relative constraint violation always stagnates at a level that is essentially the IEEE
double precision unit roundoff after 6 quasi-Newton iterations. The convergence is always linear and the rate of convergence is 𝜇 ≈ 10−2. (B) The

evolution of the relative error rk between the relevant zero z, that is, the Lagrange multiplier 𝜆n for the current time step and the approximations
generated by k iterations of the quasi-Newton method. The convergence is always linear and the rate of convergence is 𝜇 ≈ 10−2. Further
information about this experiment can be found in Figure 3. (A) Constraint violation; (B) relative error.

We then added ions to the system (protein and water) to make it electrically neutral. Afterwards we performed an energy minimization using the

steepest descent algorithm until the module of the maximum force on every single atom was below 1000.0 kJ/(mol⋅nm). Then we executed 100 ps of

a temperature equilibration step using a V-Rescale thermostat in the NVT ensemble (with 𝜏T set to 0.1 ps) to stabilize the temperature of the system

at 310 K; in this stage the bond lengths of the protein which involve one hydrogen atom were constrained using LINCS with its default parameters

in GROMACS. We then stabilized the pressure of the system at 1 bar for another 100 ps using a V-Rescale thermostat and a Parrinello-Rahman

barostat (with 𝜏P set to 2.0 ps) in the NPT ensemble; the H-bonds were also constrained using LINCS. After these preparatory stages we executed

the production run, from which we extracted the information summarized in Figures 2–6. The production run, in the NPT thermodynamic ensemble,

simulated a total time of 100 ps, with a time step of 2 fs (i.e., 50k time steps). Again, the employed thermostat and barostat were V-Rescale and

Parrinello-Rahman’s, respectively (with 𝜏T= 0.1 ps, 𝜏P = 2.0 ps). In the production stage all bond lengths of the protein were constrained using our

own implementation of Newton’s method.

We shall now describe the details of the hardware and the software used to complete our simulations of molecular dynamics. The experi-

ments were conducted using GROMACS 2021 compiled using GCC-10.1.0 in double precision mode (-DGMX_DOUBLE=on). Our experimental setup

consisted of a system featuring one Intel Xeon Platinum 8160 processor and 48 GB of DDR4 main memory operating at 2667 MHz.

6.2.2 A quasi-Newton method with a fixed symmetric approximation of the Jacobian

For this experiment we simulated lysozyme using the GROMACS package as explained in Section 6.2.1. We replaced GROMACS’s constraint solver

with our own implementation of Newton’s method (15) as well as the quasi-Newton method given by

g
(

𝜙n

(

x(k)n

))

+ Sntk = 0

x(k+1)
n = x(k)n + tk, (17)

where Sn is the symmetric approximation of the Jacobian given by Equation (16). For a subsequence of all time steps (every 5 ps, starting at t = 5

ps, for a total of 20 sample points) we first computed a good approximation of the Lagrange multiplier 𝜆n by running Newton’s method until stag-

nation. We then recomputed the Lagrange multiplier using the quasi-Newton method (17). For each quasi-Newton iteration, we computed the

following data:
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KJELGAARD MIKKELSEN ET AL. 17 of 21

F I G U R E 3 This figure and Figure 2 are based on the same experiment, that is, a simulation of lysozyme in water using GROMACS and the

quasi-Newton method given by Equation (17). In this figure the fractions 𝜈k = rk+1∕(rk||Ek||2) are plotted for k = 0,1,2,3,4,5. When 𝜈k is O(1)we
have experimental verification that the rate of convergence is essentially ||Ek||. This is the case for k = 0,1,2,3,4, but not k = 5 because the
iteration has stagnated when k = 6.

1. The maximum relative constraint violation, specifically the maximum relative error for any bond length, see Figure 2A.

2. The normwise relative error of x(k)n against the value 𝜆n obtained by Newton’s method, that is,

rk =
||𝜆n − x(k)n ||2

||𝜆n||2
.

3. The normwise relative error of the correction tk against the correction sk needed for Newton’s method, that is,

||Ek||2 =
||sk − tk||2

||sk||2
.

Figure 2A shows that the quasi-Newton method solves the constraint equation and that the convergence is linear. Figure 2B

shows that the quasi-Newton method finds the same solution as Newton’s method. These two observations are mainly of inter-

est to computational chemists. We now turn to the theory developed in this paper. By Equation (8) we have rk+1 ≤ 𝜌krk , but

we cannot hope for more than rk+1 ≈ 𝜌krk where 𝜌k = O(||Ek||2) and this is indeed what we see in Figure 3 right until the point

where we hit the level of stagnation and the impact of rounding errors is keenly felt. This shows that the rate of convergence is

essentially ||Ek||2.
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18 of 21 KJELGAARD MIKKELSEN ET AL.

(A) (B)

F I G U R E 4 The convergence of the simplified Newton method and Forsgren’s variant. The simplified Newton method shows rapid linear
convergence toward the target, while Forsgren’s variant shows quadratic convergence. Both methods stagnate at essentially the same level. (A)
Simplified Newton method; (B) Forsgren’s algorithm.

(A) (B)

F I G U R E 5 Total running time and total (outer) iteration count for the three analyzed algorithms for constrained molecular dynamics. (A)

Execution time in seconds; (B) Number of outer iterations.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7853 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [04/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KJELGAARD MIKKELSEN ET AL. 19 of 21

F I G U R E 6 The total number of linear solves completed by three different algorithms.

6.2.3 Forsgren’s variant of the simplified Newton method

For this experiment we also simulated lysozyme using the GROMACS package, see Section 6.2.1. However, instead of GROMACS’s constraint solvers,

we used our own implementation of three different constraint solvers. Specifically, we used Newton’s method (15), the simplified Newton method

(Algorithm 1) and Forsgren’s variant of the simplified Newton method (Algorithm 2).

The advantage of Algorithm 1 is that the Jacobian F(x0) is computed only once and if we can compute one of the standard factorizations (LU,

QR, Cholesky) of F(x0), then this factorization can be recycled and used to compute the corrections tk . The disadvantage is that the order of con-

vergence is linear and not quadratic. Forsgren8 has proposed an interesting variation of the simplified Newton method that restores the quadratic

convergence. This is Algorithm 2. This variant uses mk = 2k iterations of the simplified Newton method in order to approximate the solution of the

linear equation

F(xk) + F′(xk)sk = 0,

needed for Newton’s method.

We see that kmax iterations of the outer for-loop of Algorithm 2 requires
∑kmax−1

k=0
2k = 2kmax − 1 linear solves using the fixed (constant)

matrix F′(x0). This is the same number of linear solves that is required to do 2kmax − 1 iterations of the simplified Newton method. There-

fore it may appear that kmax iterations of Algorithm 2 is essentially equivalent to 2kmax − 1 iterations of the simplified Newton method.

The key difference between the two algorithms is the number of function evaluations that are performed. In order to complete kmax

outer iterations of Algorithm 2 we do kmax evaluations of the function F and the Jacobian F′. In order to complete 2kmax − 1 iterations of

the simplified Newton method we do 2kmax − 1 evaluations of F and F′. The difference between k and 2k − 1 is significant even for mod-

est values of k. Finally, by theorem 3.2 of Forsgren’s paper8 the convergence of Algorithm 2 is at least quadratic in the number of outer

iterations.

We shall now describe the data that we collected. For a subsequence of time-steps we first computed a good approximation of the exact

Lagrange multiplier by running Newton’s method until stagnation. We then recomputed the Lagrange multiplier using the simplified Newton method

as well as Forsgren’s algorithm. We computed the normwise relative error of the Lagrange multipliers against the approximation produced by New-

ton’s method. We did this for each iteration of the simplified Newton method and for each outer iteration of Forsgren’s method. The results were

Algorithm 1. The simplified Newton method

1: for k = 0,1,2,… until convergence do

2: Solve F(xk) + F′(x0)tk = 0 with respect to tk

3: xk+1 ← xk + tk

4: end for
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20 of 21 KJELGAARD MIKKELSEN ET AL.

Algorithm 2. Forsgren’s variation of the simplified Newton method

1: for k = 0,1,2,… until convergence do

2: mk ← 2k

3: dk,0 ← 0 ∈ R
m

4: for i = 0,1,2… ,mk − 1 do

5: Solve F′(x0)pk,i = −(F(xk) + F′(xk)dk,i)with respect to pk,i

6: dk,i+1 ← dk,i + pk,i

7: end for

8: tk ← dk,mk

9: xk+1 ← xk + tk

10: end for

exactly as expected, see Figure 4. The quasi-Newton method converges linearly and Forsgren’s variant converges quadratically with the number

of outer iterations. We repeated the experiment and measured the total time needed to reduce the relative constraint violation below a variety of

tolerances by applying Newton’s method, the simplified Newton method and Forsgren’s variant. The results are given in Figures 5 and 6. This experi-

ment emphasizes a very practical limitation of Forsgren’s variant. Specifically, the number of linear solves completed is limited to the set of numbers

consisting of {1,3,7,15,31, …}, whereas the simplified Newton has the opportunity to terminate after the completion of each linear solve. As a

specific example, consider the case of 𝜏 = 10−8. For each time step we need essentially four iterations (four linear solves) of the simplified Newton

method while we need three outer iterations (seven linear solves) of Forsgren’s variant. Since four is significantly smaller than seven, it is not surpris-

ing that the simplified Newton method is actually faster than Forsgren’s variant in this particular case. This point is emphasized by Figure 6 which

illustrates the total number of linear solves completed by each algorithm. Naturally, this does not imply that Forsgren’s variant cannot be faster under

the right circumstances. The issue here is the rapid convergence of the simplified Newton method. Had the simplified Newton method converged

very slowly and had the function evaluations been very expensive, then the outcome of the experiment would have been quite different.

7 CONCLUSION

The convergence of quasi-Newton methods can be analyzed and controlled in terms of the relative residual as done by Dembo, Eisenstat, and Stein-

haug,13 in terms of forward and backward errors as done by Ypma,5 Dennis and Walker,6 and Tisseur,7 and in terms of the distance to the correction

needed to execute a Newton iteration.9 The first approach is very well suited to the situation where the correction needed for the next approximation

is computed using an iterative solver. The second approach yields very mild conditions on the software that ensure that many quasi-Newton methods

will converge at least linearly until stagnation. The third approach imposes even milder conditions on the implementation of general quasi-Newton

methods xk+1 = xk + tk and reveals that quadratic convergence is restored provided that we approximate the corrections sk = F′(xk)−1F(xk) needed

for Newton’s method with an accuracy that is O(||sk − tk||∕||sk||) and which need never exceed O(
√

u) where u is the unit roundoff. This fact rep-

resents an opportunity for improving the time-to-solution for certain nonlinear equations. When implementing a quasi-Newton method it is very

natural and proper to rely on a general purpose library for solving the relevant linear systems. However, such libraries are normally written with the

express goal of delivering solutions with maximum accuracy. In particular, a direct solver based on Gaussian elimination will usually pivot in order to

reduce the backward error. However, parallel pivoting requires interprocessor communication and if the system is sufficiently sparse, then we may

wish to consider whether pivoting is truly necessary. In the context of quasi-Newton methods, the consequences of an inaccurate solve are rather

mild. Specifically, while we certainly expect to lose quadratic convergence, we have reason to expect rapid linear convergence. This may well be fast

enough for the task at hand. Therefore, it may be worthwhile to use parallel sparse direct solvers that do not pivot for the sake of numerical stability.
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