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Abstract

This paper presents a method to perform a goal di-
rected reactive navigation in unknown indoor environ-
ments. Two sensors cooperate to accomplish this task:
trinocular vision and 3D laser rangefinder. Trinocu-
lar vision selects the initial goal location for the nav-
igation task. Laser is used to accomplish a reactive
navigation to avoid the obstacles. Laser is also used
to periodically relocate the goal with respect to the ro-
bot, so the dead-reckoning drift is compensated. An
Extended Kalman Filter is used to solve the data as-
sociation problem and to perform the goal relocation
while the robot navigates. Experimental results involu-
ing a real mobile robot are presented, validating the
proposed method.

Keywords: Mobile Robot Navigation, Robot Reloca-
tion, Vision and Laser Cooperation, Extended Kalman
Filter.

1 Introduction

Potential field based techniques are often used for
mobile robot navigation purposes. In [2] some limi-
tations of potential based methods are described, in
particular the difficulty to go through narrow spaces
between obstacles (e.g., door frames). Recent works
[4] improve and adapt the classical reactive naviga-
tion potential field techniques. Moreover, several re-
cent works solve the problem of accurately locating a
mobile robot in indoor environments, by continuously
fusing the information of several kinds of sensors to
build geometric maps [3]. In [9] a technique based on
evidence grids is proposed for continuous robot loca-
tion, correcting the odometry information, but using
an a priori map of the environment. There have been

*This work was partially supported by spanish CICYT
project TAP97-0992-C02-01

!
Trinocular system

Ultrasonic ring
Laser sensor

On-board host

Figure 1: Location of laser and trinocular vision systems
on our Labmate robot.

efforts to perform safe autonomous navigation using
only trinocular stereo vision systems [7], but using
specialized processors (DSP, transputers). In [10] a
neural networks based robot location from landmarks
—such as doors— is described, but a time consuming
learning step is highlighted as its inconvenient.

In this work a cooperation between complementary
sensors to achieve a real time navigation is presented.
No a priori information about the environment is used,
and no dense maps are built while the robot moves
(only relevant landmark locations are included in the
map). A stereo vision system obtains a 3D geomet-
ric reconstruction of the scene, useful to locate several
significant features, which allow the robot to plan a
navigation task. The features considered in this pa-
per are the doors present in the scene. Additionally,
a laser rangefinder sensor provides simple and precise
information that is processed in real time. We use the
laser information for: a) performing a reactive nav-
igation using a potential field technique [5]; and b)
periodically reestimating the goal location using data
association, while the robot moves. The problem of



passing through a narrow passage has been solved by
estimating its center to accurately place an interme-
diate goal. The goal is reestimated with respect to
a reference associated to the robot, which is enough
to perform the navigation. Moreover, these periodic
reestimations allow to reduce the accumulated loca-
tion errors due to the odometry drift. Hereinafter, the
process to reestimate the goal with respect to a refer-
ence associated to the robot will be simply referred as
the relocation process.

In section 2 we present the robot platform and its
sensorial system. The technique to detect and locate a
high-level feature from the vision system is briefly pre-
sented in section 3. The proposed technique to obtain
the relocation of the feature while avoiding obstacles
is explained in section 4. In section 5 experimental
results are presented, which show how the coopera-
tion between the two sensors improves the navigation
task. Some conclusions and future works are related
in section 6.

2 The robot and its sensorial system

The Labmate robot is a differentially driven mo-
bile robot (developed by Helpmate Robotics, Inc). It
has two active and four passive wheels. Its maximum
speed is 1 m/sec. A control software has been de-
veloped to have a controller from an on-board host
computer.

The stereo trinocular system is composed of 3 CCD
monochrome cameras connected to each of the RGB
inputs of a color frame grabber, so the three images are
simultaneously taken. The 3D lidar laser rangefinder
(Helpmate), radially scans the environment around
the robot. The maximum range is 6.5 meters, and
the accuracy of the distance measurement is 2.5 cm
irrespective of the distance to the target. The loca-
tion of the trinocular vision system and the 3D laser
sensor on the robot structure can be viewed in Fig. 1.

3 High-level feature location

Due to the limited range of the laser sensor, the
only way to locate some features placed far from the
robot is using the vision system. Using the trinocular
system on board the robot, a straight segment based
3D reconstruction of the scene is achieved. The re-
construction technique uses a probabilistic model to
represent the location of the segments. Each segment
is represented by a reference system attached to it,
and by a covariance matrix representing its location
uncertainty. To find a high level feature, such a door
as presented in this paper, the system looks for a door

pattern in the 3D reconstruction. The uncertainty in-
formation associated to each segment is used to find
the pattern, also defined up to an uncertainty level. In
the matching process to find the door, several unary
and binary geometric constraints are verified, using
tests based on the Mahalanobis distance to accept or
reject hypotheses, following the formalism proposed in
[8]. The whole process is summarized in the following
steps:

1. Segments in the three gray-level images are de-
tected.

2. Matching and 3D reconstruction are computed
using the trinocular algorithm proposed in [6].

3. Small or non-vertical 3D segments are removed.

4. Pairs of 3D vertical segments whose distance be-
longs to an interval compatible with the width
of a typical door are selected; thus, each selected
pair is a possible door.

5. Possible doors which have a horizontal 3D seg-
ment over it are definitely considered as a door in
the scene.

6. To test if the door is open or closed, the existence
of a horizontal 3D segment at the door bottom
is considered. Since this step is no so reliable as
previous ones, the laser sensor is used to verify
the door status when the robot is close to it.

This algorithm has been tested in indoor environ-
ments including corridors and rooms. As a result, the
system locates 50% of the visible doors. The rest of
the doors have not been detected due to bad illumina-
tion conditions, or have been imprecisely located and
are considered as bad doors. Precision in the door
location is about 10 cm in depth and 4 cm in its per-
pendicular direction. The precision decreases with the
distance from the robot to the feature.

Finally, the system obtains one open door in the
room, whose location xg and location uncertainty co-
variance matrix Py are used as initial values in the fol-
lowing navigation and relocation processes, explained
below. It must be noted that other high-level features,
such as corridors, intersection between corridors, etc.,
could be located from the 3D reconstruction, and then
used for path planning purposes.

4 Continuous feature relocation

The task the robot must accomplish can be defined
as follows: from any initial location in a room, it must
pass through an open door, while avoiding obstacles
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Figure 2: Laser scan information p vs. 0

and relocating the door. There is no a priori informa-
tion of the environment. The first step is to use the
trinocular vision system to detect and obtain a first
estimation for the door location, as described in the
previous section.

Once the door location has been estimated, a goal
beyond the door is computed, and a reactive navi-
gation based on the laser information is performed,
driving the robot towards the goal. The reactive navi-
gation is based on artificial potential fields techniques:
an attractive force is exerted by the goal, while repul-
sive ones are exerted by obstacles (and since there is
no e priori information, walls are also considered as
obstacles). The information provided by the laser is
used both to perform the reactive navigation and to
periodically relocate the feature with respect to the ro-
bot. To speed up the information processing required
for navigation, only some points around the robot are
used to compute the repulsive forces: the environment
is scanned every 0.1 sec., this scan is sectored, and one
representative point for each sector is selected. Since
the scans are taken while the robot moves, the location
of the selected points are updated using: a) the robot
internal state information (location, and both linear
and angular velocities) estimated from the odometry;
and b) the time at which the scan has been taken
(tscan)- This updating process is made in two steps:
1) selected points are referred to the laser location at
tscan; and 2), an integration of the selected points of
the last 10 scans is performed, transforming the rela-
tive location of the sensed points to the current sensor
location. See [5] for details about this technique. A
wall-following technique is used to exit from potential
field minima.

For relocation purposes, a set of possible features
—doors, in this case— are detected from the laser in-
formation, and the nearest to the previous location
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Figure 3: Scan obtained from an experimental location.

estimation is selected by means of a probabilistic data
association method. Thus, there are two main steps
in the process to relocate the feature. First, a set of
holes are detected in a planar scan (section 4.1). Then,
a data association method is applied to perform the
matching process (section 4.2).

4.1 The hole detector

The first step is to obtain a set of holes from
the available environmental information. The aim in
this phase is to make the simplest laser information
processing that could serve to obtain a set of holes,
from which a new door location could be obtained in
the second phase. The low computation load of this
phase allows to implement this method in real time
on the mobile robot. This process is carried out as
follows:

Scan acquisition. The laser sensor scans the en-
vironment at different elevation angles. In spite of
this, the laser controller gives the data projected on
a horizontal plane. One out of ten scans has an el-
evation angle between 0 and 7 degrees, which makes
it useful to obtain the set of holes; this kind of scans
will be called quasi-planar scans. The laser provides a
quasi-planar scan every second, and all its points are
corrected for the feature relocation task, in a similar
way to the correction made for navigation purposes
—in this case only selected points are corrected (see
above).

Scan filtering. Fig. 2 shows a typical quasi-planar
scan. Fach scan consists of a set of points in polar
coordinates (p,6) with respect to the laser sensor ref-
erence; when the laser beam does not return, it sets
p = 0; these points can be considered to be more dis-
tant than the maximum laser range. First a distance
filter is applied: this avoids to take into account the
environment beyond the door, because this can con-
fuse the hole detector. The distance used as reference



Figure 4: References used in the relocation process. R =
robot, D = door

is the distance between the robot and the door edges,
which is estimated from the previous door location
relative to the robot, and from the odometry system
(though the odometry system has a drift, the travelled
distance between two consecutive relocations is short,
and the precision obtained is enough to accomplish
the task). Since one of the scan component available
is the distance p, this algorithm is extremely fast.
Due to reflections and other problems, isolated
points can appear in the scan (see Fig. 3). These iso-
lated points are considered spurious and are removed
using a median filter applied to the distance compo-
nent p of the scan, in a similar way as the one used in
computer vision to filter the salt-and-pepper noise.
Hole detection. A hole is defined as a set of consec-
utive measurements with p = 0. Obviously, not all the
holes are valid candidates to be a door, and distance
between the extreme points that delimit each hole is
computed to reject all the holes that are not within a
width interval. It must be noted that with this sim-
ple method there is not needed to apply any kind of
segmentation process to the sensorial information.

4.2 The relocation process

Once the set of possible doors has been detected,
there is a data association problem that must be
solved: only one hole must match the previous es-
timation for the door —it is even possible that none
of the holes match the door. The data association
problem is solved using an Extended Kalman Fil-
ter (EKF), with its three typical phases: prediction,
matching and updating [1]. The variable estimated
by the EKF is the location of the door relative to the
robot, x = xgp = (z,y,¢)T. In Fig. 4 the relative
locations involved in the algorithm are shown. The
state equation is:

Xk+1 = OXR,Rpy1 O Xk (1)

Figure 5: One image from the trinocular system.

being @ and © the location vector composition and its
inverse, and where Xg, g, ,, is taken from the odome-
try (see Fig. 4). And the measurement equation is:

XR,, Dy = Xk (2)

where the measurement Xg,p, = Xgr,L, © XL,Ds>
XR,L, is the location of the laser sensor relative to
the robot reference —that is constant and known—, and
XL, D, is the measured location for the door, relative
to the laser reference.

EKF initialization. The vision system provides
both an initial estimated location for the door xg,
and an estimation for the geometric uncertainty with
which the door has been detected —that is represented
through a covariance matrix, Pg (see section 3).

Prediction. The prediction stage follows the next
equations:

AN AY
Xptilk = OXRyRipr DXk (3)
Piiig = Pry+FrQiF) (4)

where Py, is the covariance matrix that represents the
uncertainty of x, Qj is the covariance matrix that
represents the uncertainty of xg, r,,, and Fj is the
matrix that translates this uncertainty to the robot
reference at k + 1,

Fy, = I (;\(’HW") J! (XRkRk+1) ()

where J is the jacobian matrix to deal with the change
in the base reference:

cos¢p —sing y
J{x}=| sing cos¢ -z (6)
0 0 1

Matching and updating. A nearest neighbor match-
ing process is performed in order to select the hole —if



one exists— that corresponds to the door which loca-
tion must be estimated. The matching process uses a
probabilistic test: the hole with smallest Mahalanobis
distance is matched with the predicted door location
(only if this distance is less than a threshold).
From the measurement equation 2, the innovation
is computed as follows:
A
V = XRy41Dpq1 — Xkt1lk (7
where the operator — has been used in place of the op-
erator © since the equation has been linearized. From
the innovation, the Mahalanobis distance is computed
as follows:
D* =v'S; v (8)
where Sj41 is the covariance matrix associated to the
measurement prediction, computed as:

Skt+1 = Pryajp + Gry1Re1 Gy 9)

In this equation, Ry41 is the covariance matrix asso-
ciated to the measurement —that is obtained from the

sensor measurement characteristics—, and

quﬁ —sing 0
Gri1 = 8ing  cosg 0 (10)
\ o 0 1

is used to translate the measurement uncertainty from
the associated to the door location (D in the Fig. 4)
to the robot location.

Since —under linear-Gaussian assumptions— the Ma-
halanobis distance follows a chi-square probability
density with 3 d.o.f., the statistical test for accept-
ing the data association is that D? < a, where a can
be found in the chi-square tables (a = D}_; ,)-

Only if a hole matches the door location estimation
A .

X1k, the rest of computations needed for the door
relocation are done. This avoids to do these computa-
tions for bad holes, reducing the overall computation

. . A
load. The new door location estimation X141 after
an observation xg, ., p,,, has been matched is:

AN A
Xk+1|k+1 = Xk+1|k +Wv (11)
and its associated covariance matrix is:
T
Pk+1|k+1 = (I—W) Pk-i—l‘k (I—W) +
WG 11 Rk11Gi  WT (12)

where W = Pk+1‘ksl;—il-1‘
If there is no valid measurement to relocate the
door, the best possible estimation is

AN AN
Xptilk+1 = Xpyilk (13)
Priik+1 = Prya (14)
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Figure 6: Experimental trajectories: — with feature relo-
cation, and — — without it.

This implies a bigger uncertainty, because the robot
has moved.

5 Experimental results

To validate the proposed method, the following ex-
periment has been done. The robot is placed in a room
(9 x 3.5 meters), close to one of its corners, and it must
exit through the door located at the other end (see Fig.
6). At the initial robot location, the trinocular vision
system takes three images (one of them is shown in
Fig. 5), and from these images a segment based 3D
reconstruction of the environment is computed. Thus,
the door location shown in Fig. 6 is obtained, with
the error that can be seen in the same figure, in which
its uncertainty ellipse for the z and y components is
represented.

Then, the robot performs a reactive navigation in
order to cross the initial door provided by the vision
system. The reactive nature of the navigation allows
to avoid the obstacles that appear in the trajectory —
like the cylinders that can be shown in the image and
in Fig. 6. When the robot is close enough to see the
door with the laser sensor (Fig. 7), the implemented
algorithm is able to relocate it. For this purpose, one
planar scan is obtained each second, and used to relo-
cate the door as the robot moves at an average speed
of 0.25 m/s. The location door is relocated in 16 of
the 41 planar scans made in this experiment run.

Being all the relocation steps similar, let us analyze
the first for which a new location door is obtained from
laser readings. This is represented in Fig. 7, where the
accumulated odometry drift causes the differences be-
tween the environment and the plotted laser readings.
This is the most critical step on the trajectory, due
to the big uncertainty associated to the door predic-
tion, since the robot has moved ~ 4.5 meters from the
only door estimation available until this moment: the
one obtained from the vision system. At this step the
covariance matrix Py, associated to the prediction
has grown due to the odometry drift. In spite of this,
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Figure 7: First door relocation.

the bad door is rejected, and the good door is matched
with the previous door estimation. The Mahalanobis
distance for the rejected door represented in Fig. 7 is
high because of the door orientation. In this sense, a
well tuned covariance model is essential to reject the
measured holes that are slightly misoriented. These
kind of holes, if matched, can cause the robot to cross
the door from a non perpendicular direction. The ro-
bot can even bump against the door frame or can fall
in a potential field minimum.

When the match between the previous door estima-
tion and the correct hole has been done, the door lo-
cation uncertainty is highly reduced —it is represented
through the little ellipse in Fig. 7. Then, a goal be-
yond the relocated door is computed and passed to
the reactive navigation task executor.

In Fig. 6 the door estimation obtained by the vision
system is shown, with two experimental trajectories:
one without periodic door relocation, and the other
with the relocation process active. In the first the ro-
bot cannot reach the next room because it has become
confused by the growing odometry drift (it has fallen
into a potential field minimum) and stops.

6 Conclusions

Navigation of a mobile robot without a priori in-
formation in partially cluttered indoor environments
is presented in this work. The cooperation between
a fast and precise sensor (laser, with a limited scan
range) with a sensor that provides geometric and se-
mantic information (trinocular vision system, with a
higher visibility range) is carried out. The vision sys-
tem provides the goal location from a high level feature
—a door— that is recognized and located from the 3D
segment based reconstruction of the scene. The laser
information is used both to perform a safe reactive
navigation to the goal, and to periodically relocate the
feature. The data association problem is solved using
a probabilistic method (Extended Kalman Filter) that

takes into account the geometric uncertainties. In this
way, relocation notoriously improves the navigation
task allowing the robot to pass through narrow ways,
where a navigation based only on dead-reckoning fails
due to the monotonically growing drift.

The proposed technique will be generalized to other
typical indoor features used as landmarks, such as cor-
ridors or intersections in corridors. Thus, located fea-
tures will be used as absolute references to the robot
location when robot moves in the next room. In this
way, a special high-level feature locations map of the
environment will be built and used to reference the
robot location in each step of the navigation process.
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