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Abstract

A sensor-based motion control system was designed to autonomously drive vehicles free of collisions in unknown, troublesome
and dynamic scenarios. The system was developed based on a hybrid architecture with three layers (modeling, planning and
reaction). The interaction of the modules was based on a synchronous planner–reactor configuration where the planner computes
tactical information to direct the reactivity. Our system differs from previous ones in terms of the choice of the techniques
implemented in the modules and in the integration architecture. It can achieve robust and reliable navigation in difficult scenarios
that are troublesome for many existing methods. Experiments carried out in these scenarios with a real vehicle confirm the
effectiveness of this technique.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

More and more research and industrial interests in
obotics are focused on improving the degree of system
utonomy. Robots are being developed that operate
nder a wide variety of conditions, with an emphasis
n long work periods without human intervention.
hese include specific tasks that are tedious or involve
angerous or hostile surroundings. Autonomous nav-
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igation systems are used in applications like ser
robots, surveillance, or exploration, where the veh
moves and carries out the main task at the same t

One of the key aspects of these robots is mo
ity, since it is the basis on which to incorporate m
subsystems with different functionalities. However,
performance of the motion system strongly affects
performance. Special problems arise in applicat
that may lead to fatal consequences (e.g., robots
transport dangerous materials).

Mobility is closely related with the nature of the s
nario. In many applications, the environment can
be specified with an a priori map and can be dyna
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Under these circumstances, sensors collect information
about the environment and adapt robot motions to any
new contingency or event. Sensor-based motion sys-
tems appear to be the natural choice; however, most of
them cannot carry out robust and trustworthy naviga-
tion in very complicated environments. These usually
involve spaces with little room to maneuver, highly
dynamic environments or that lead to trap situations.
An example is an office (Fig. 1a), where the robot
moves among the chairs, tables and shelves (all with
unknown positions) and humans (who make the sce-
nario highly dynamic). Maneuvering is also extremely
difficult in certain circumstances when there is lit-
tle room to maneuver (Fig. 1b). Here we address the
motion control of a vehicle under these work condi-
tions.

We designed and tested a sensor-based system with
three modules that work together to carry out the
motion task. Our design is constructed over some
requirements that we identified to drive vehicles in trou-
blesome scenarios. The system differs from previous
works in the choice and implementation of the modules
and in the architecture of integration. Key contribu-
tions include the functional and computational aspects
of module design and integration, and the experimental
validation with an emphasis on highly dynamic envi-
ronments that are unknown and indoors. This paper

includes a strong experimental component, and all the
results are from tests using a real vehicle (see Appendix
A for further details of the robot).

The sensor-based motion control subsystem was
developed to move the vehicle to the desired positions
without collisions. This functionality is only a subset of
the complete mobility problem. Other aspects involve
perception, planning, modeling and control. They will
not be addressed in this manuscript, but are essential
to construct a complete autonomous motion system.
Related works include motion planning[1] location
and map building[2–5] and supervision[6,7]. How-
ever, in this paper, we also discuss the integration of our
motion subsystem in a complete motion architecture
(high level planning, localization, motion control and
supervision), and we present, discuss and compare the
real results qualitatively and quantitatively with other
methods.

The work is organized as follows: first we discuss
related work (Section2), and the basic requirements to
design a sensor-based motion control system (Section
3). Next, we provide an overview of the system (Sec-
tion 4), the modules and their integration (Section5).
Finally, we present the experimental results (Section6)
and the integration in a complete motion system. We
compare out subsystem with other methods in Section
7 and present the conclusions in Section8.

F d close re are also
p ghly dy situations
w es thro
ig. 1. (a) A typical indoor environment with tables, chairs an
eople working in the office, which makes the surroundings hi
ith difficult maneuverability (for example when the robot pass
ts whose positions cannot be specified a priori in a map. The
namic. (b) Navigation in this type of scenario must overcome
ugh a door with 5 cm maneuvering room on either side).
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2. Related work

The topic of motion in evolving environments
includes issues such as knowledge representation
(model construction), global deliberation and reactiv-
ity. Navigational planning without considering execu-
tion is restricted to a small domain of the problem.
This is because it becomes difficult to consider all con-
tingencies and it is unrealistic to formulate plans that
do not reflect a changing environment. On the other
hand, reactive systems limit their scope of application
to perception–action, gaining flexibility and robustness
of motions. The overall problem cannot be solved by
these systems individually, since they need more exten-
sive models of knowledge and some way to incorporate
memory. The interest is focused on synthesizing a con-
trol mode that incorporates both methodologies and not
on extending both worlds separately[8]. Hybrid sys-
tems attempt to combine both paradigms by including
the best artificial intelligence to represent and use the
knowledge, with the best reactivity, robustness, adap-
tation and flexibility. Basically, these schemes should
combine a planner (deliberation) and a reactor (exe-
cution). The main differences among them are: (i) the
interaction between the planner and the reactor (i.e.
how the reactive method uses the information avail-
able of the planner); and (ii) the techniques used to
implement each module.

One way to specify the interaction between delibera-
tion and reaction is to consider planning as a component
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putational resources, but use complete planners (they
always find a path if it exists). Other techniques com-
pute a path that is deformed in execution based on the
evolution of the environment (in the workspace[19],
or in the configuration space[20]). Nevertheless, these
methods need to replan when the path is invalidated
or when it moves far away from the initial configura-
tion due to unexpected obstacles. Alternatively,[21]
presents a strategy to create trees of paths obtained by
executing the reactive algorithm some steps ahead of
the execution. This system obtains good results in plat-
forms with low computational resources, but does not
assure a convergence to the target. Another possibility
is to compute a channel of free space that contains sets
of ways, leaving the choice up to the execution[22].

These issues are closely linked to the choice and
implementation of techniques for each module. All the
previous strategies use the planner to obtain a way
to guide the reactive control. The planner is usually
an efficient numerical technique executed in real time
[23,24]. Another key module is the reactive method
itself. Some techniques are based on potential meth-
ods [10,25,26], but they have limitations[27]. Other
techniques compute a set of intermediate motion com-
mands to choose the next one.

The commands are directions of motion[28,21], sets
of speeds[29,30], or sets of trajectories[31,32]. How-
ever, these reactive methods are of limited use when the
scenario makes it difficult to maneuver the vehicle (usu-
ally with high obstacle density)[33], identified some
c and
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hat fixes the composition between different behav
uring execution[9]. For example, these behaviors c
e implemented with potential fields[10], so that mod

fying their weights changes the overall behavior
he system. Another possibility is to use the plann
o advise the reactive control[11], or as a system th
dapts parameters of the reactive component bas

he evolution of the surroundings[12]. In both cases
lanning plays a tactical role while the reactor has
xecution degree of freedom. The advantage of
lanner–reactor configuration is that it combines
eliberative component (the plan is always availa

n execution and improves with the time[13]) and the
eactive component (executor of the motion). A p
pective on hybrid architectures is given in[14]. Focus
ng on the motion context, one common strategy
ompute a path and use its course to direct the rea
odule[15–18]. These techniques require large co
onsequences like local trap situations, irregular
scillating motions, or the impossibility of driving t
ehicle towards areas with a high obstacle density o
way from the goal direction. These behaviors acq
reater relevance in the development of robust app

ions to navigate without depending on the difficulty
he environment. The navigation systems that rel
eactive methods also inherit these drawbacks, lim
heir use in realistic applications. Finally, in this type
rchitecture, models are usually constructed to ser

he basis for the planner and provide short-time m
ry for the reactive behavior. In indoor environme

he occupancy grids are usually used with ultraso
15,34,35]and laser[16–18].

In this paper, we describe a hybrid system with a
hronous and heterogeneous planner–reactor co
ation, where both modules use the model constru
n execution to carry out the motion task. Our m
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contribution is the choice and design of the modules
and their integration. As a result, the new system can
move vehicles in very difficult environments, where
other systems may find difficulties.

3. Requirements of the sensor-based motion
control system

The basic version of these systems moves the vehi-
cle among positions without collision. The operation
is governed by a perception–action process repeated at
a high frequency. Sensors gather information from the
environment (obstacles) and the robot, which is pro-
cessed to compute the motion. The vehicle executes
the motion and the process restarts. The result is an
on-line sequence of motions that drive the vehicle to
the destination without collisions. In this Section, we
specify some general requirements for these systems:

(1) Integration of information: the successive sensorial
measures must be stored or integrated to construct
a representation of the environment. This is nec-
essary to avoid obstacles that are not perceived
at the moment (visibility constraints of the sen-
sor), and to increase the reach of the information
used (increasing the spatial dominion). In addi-
tion, changes in dynamic scenarios must be rapidly
reflected in the model. Otherwise, the robot will
avoid areas perceived as free space or will not avoid
perceived obstacles (since in both cases, the infor-
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specification, coordination and failure detection
and recovery. The integration must close the
perception–action cycle at a high frequency, since
it fixes the reactivity of the system to unforesee-
able changes (detected by the sensors). Further-
more, this favors the portability between different
platforms and sensors (the interactions between
modules are not designed from scratch when the
modules are replaced).

Here we attempt to make our system fulfil these
requirements.

4. Overview of the system

We provide a general view of our hybrid system
which has three modules and one architecture for super-
vision. The functionalities of the modules are model
construction, planning and reactive navigation:

• Modeling module: it constructs a model of the
environment (integrating the sensorial information).
We used a binary occupancy grid whose cells are
updated whenever a new sensorial measurement is
available. The grid has a limited size (represent-
ing a fixed portion of the space), and whose loca-
tion is continuously recomputed to include robot
location.

• Planning module: it extracts the connectivity of free
space (used to avoid the trap situations and cycli-
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mation could not be still reflected in the model
2) Avoidance of trap situations and cyclical behav-

iors: the system has to be equipped with a stra
to avoid these situations. Many different confi
rations of obstacles can trap the robot (the m
typical being U-shape obstacles or end-zone
create cyclical motion (e.g., symmetrical distri
tions of obstacles). The robot will never reach
final location under these circumstances.

3) Generation of robust motion: the final motion mus
be computed by a robust reactive method. T
algorithm should be able to avoid collisions in
pendently of the inherent difficulty of the enviro
ment. As a rule, the most problematic scena
have a large obstacle density where maneuve
is difficult and critical.

4) Integration of functionalities: all functionalities
must be integrated within an architecture
cal motions). We used theNavigation Function 1
[23] (NF1 in short) which is based on the fro
wave expansion by free space. The planner is
of potential minima, can work on a grid (existi
representation), and can be efficiently execute
real time (at least once in each perception cycle
Reactive navigation module: it computes th
collision-free motion. The method used is the Ne
ness Diagram Navigation[33] (ND method in short)
which is based on selecting a navigational situa
at every moment and applying the associated mo
law. This method is very efficient and robust in en
ronments with little space to maneuver.
Architecture of integration: it integrates the module
following a synchronous planner–reactor config
tion[12], where both parts use the model constru
in execution time. The synchrony of the modu
avoids problems of time-inconsistencies.
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Fig. 2. It shows the perception–action cycle of the sensor-based motion control system. Perceptions are measures of the obstacles and the
odometry of the robot, and the action computes the collision-free motion commands. The system has three modules that cooperate to carry out
this task: the model construction, the tactical planner and the reactive navigation method.

The system works as follows (Fig. 2). Given a laser
scan and the odometry of the vehicle, the model builder
incorporates this information into the existing model.
Next, the information about obstacles and free space in
the grid is used by the planning module to compute the
course to the destination. Finally, the reactive module
uses the information about obstacles in the grid and
information of the tactical planner to generate motion
(to drive the vehicle towards the destination without
collisions). The motion is executed by the vehicle con-
troller and the process restarts. It is important to stress
that the three modules work synchronously within the
cycle of perception–action. This reinforces the impor-
tance of the choice and computational aspects of the
techniques used in each module. Next, we describe the
design of the modules and the integration architecture.

5. Design and integration of the functionalities

Here, we present the design of the modules in the
system. We discuss the modeling module (Subsection
5.1), the planning module (Subsection5.2), the navi-
gation method (Subsection5.3) and the architecture of
integration (Subsection5.4).

5.1. Model builder module

This module integrates the successive sensorial
measures to create a local model of the environment.
We chose a binary occupancy grid whose cells areoccu-
pied, free or unknown.1 We did not use traversability
or uncertainty factors, since the laser has a high preci-
sion in indoor environments. The grid has a fixed size
that represents a limited part of the workspace (large
enough to represent the portion of space necessary to
solve the navigation) and whose position is recomputed
to maintain the robot in its central zone (the obstacles
that surround the robot are always available even if they
are not visible from the current location).

The design of this module includes: (i) the integra-
tion of the scans in the model; and (ii) the update of the
grid position to maintain the robot-centered. To inte-
grate a laser scan in the model, we consider that a scan
is a cloud of points where: (a) in each point, there is an
obstacle (cell updated occupied); and (b) the line that
joins each obstacle point and the sensor is free space
(cells updated free), seeFig. 3a. We implemented this

1 To all purposes, the unknown cells are assumed to be free (binary
grid); however, we use them to clarify the figures.
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Fig. 3. It shows how the laser measures are integrated in the grid and how the grid position is recomputed for the robot to remain in the central
zone. (a) In a laser scan, the cells are occupied for obstacle points, and the cells in the lines that join the obstacle points and the sensor are updated
as free. (b) At timet = i, the robot is within the control zone of grid. Next, att = i + 1, the robot has left the control zone and the grid location is
recomputed (in multiples of cell sizes and without rotation) so the new position the robot is within this zone.

procedure using theBresenham algorithm[36], which
is optimal in the number of cells visited to project a
line in a grid. This algorithm considerably reduces the
integration time of a sensorial measurement.

Secondly, to keep the robot in the central zone of
the grid, we define an area calledcontrol zone. When
the robot leaves this area, the new position of the grid
is recomputed to center the robot within this zone.
The robot is always in the central zone of the grid,
whose position does not change until the robot leaves.
The recomputation of the grid position is always made
in multiples of the cell dimension and rotation is not
allowed (this strategy reduces the dissemination of false
information of the obstacles in the cells, which is an
important source of error). In addition, this strategy
can be efficiently implemented with memory shifts to
reduce the computation time.

Fig. 4shows an experiment when two people move
in front of the robot.

A typical strategy consists in integrating the scans
as a short-time memory. If we use this integration
(Fig. 4a–c), the result does not reflect the change
rapidly, since the people leave a temporary shadow
(obstacles that do not exist,Fig. 4d). For the same
experiment, we used this module with a grid of
200× 200 cells and 0.05 m each cell. The resulting
grid (Fig. 4e) rapidly reflects the change in dynamic

environments because the whole area covered by the
last scan is updated (the obstacles and the free space).
Furthermore, the obstacles not visible from the cur-
rent location remain in the grid and can be used for
the avoidance task. Other important issues include: (i)
the last laser scan integrated in the grid does not have
odometry errors with respect to the present position
(only the cells not updated with this scan accumulate
these errors); and (ii) the spurious measures are elimi-
nated from the grid as new measures are added. These
advantages justify the usage of binary grids for naviga-
tion purposes with regard to probabilistic approaches
(that would require to accumulate evidence of both free
and occupied space to be reflected in the model).

With respect to the functional and computational
aspects of this module, the grid represents a portion of
the environment of 10 m× 10 m around the robot (large
enough to include the goal location), and with a cell size
of 0.05 m (0.01 m larger than the sensor nominal error).
With these settings, the module takes about 0.08 s, thus
it can work within the laser cycle (0.20 s).

In summary, this module integrates the sensor
data so that the spatial domain of the information is
increased as the robot progresses. Furthermore, the
model rapidly represents changes in evolving scenarios
by updating the whole space covered by the last per-
ception. For these reasons, this module complies with
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Fig. 4. It shows the calculation of the grid when two people walk in front of the robot. (a–c) show the robot location and the scan att = 0, 1 and
2 s (3 of 10 measures). (d) The result of the 10 scans integrated as a short-time memory, where some obstacles appear where they do not exist
(this representation is not a rapid reflection of the evolution of the environment), and (e) the grid obtained by this module using the same scans.
The dynamism of the environment is rapidly represented because the scans are integrated when available, updating the obstacle and the free
space in the model.

the information integration requirement in Section3.
Next, we address the planning module.

5.2. Planning module

This module uses a motion planner to obtain tac-
tical information to avoid trap situations and cyclical
motions (not to control the vehicle). The planner con-
structs a navigation function (NF1) over the grid of the
previous module, and then computes a path to the desti-
nation using a steepest descendent strategy. We selected
this planner because the navigation function does not
have potential minima (if a path exists, it is found), and
it is a numerical function that works efficiently on a
grid (i.e., the existing representation).

The planner uses a two step process to compute a
path from the robot location to the destination (Fig. 5).
First, the navigation function is computed. Each obsta-
cle is enlarged with the robot radius, and then the NF1

is constructed by propagating a wave from the desti-
nation over the free cells (each cell is labeled with the
distance measured in number of cells until the goal is
reached). Secondly, a path is calculated using a gradi-
ent search strategy on the potential. However, this path
is optimal in the metric defined over the grid. Thus,
in an iterative process, the path is stretched to make it
optimal in configuration space. This avoids the border
effects of the NF1 and paths that point out or graze the
obstacles (Fig. 5a).

Two types of information are obtained from the
path. First, the possibility of reaching the goal from
the present position (the planner finds the path if
it exists). Second, theinstantaneous motion direc-
tion (main course of the first part of the path, see
Figs. 5a and 6). This direction will be used to advise
about the motion, but not as a path to execute (since the
motion generation will be handled by the reactive mod-
ule). That is, the instantaneous direction is the tactical
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Fig. 5. It shows the operation of the planner. First, the obstacles are enlarged with robot radius (a). Next, the NF1 is computed by propagating a
wave from the final position, where each cell is labeled with the accumulated cost of the wave (b). On this function, a path is computed with a
gradient search strategy, NF1 path in (a). Finally, the path is stretched (to be optimized) in order to obtain the instantaneous direction of motion
from the first part of the path.

information computed by the planner to avoid trap sit-
uations. This is graphically illustrated inFig. 6, where
the robot was in front of a U-shape obstacle where it
could be trapped. Nevertheless, when we compute the
path and extract the instantaneous direction, it aims
towards the exit. Using this direction as course avoids
the trap situation.

The computational aspect of this module is bounded
with the size of grid. With a size of 200× 200 cells, the

Fig. 6. It shows an experiment where the planning module computes
a path to the destination over the grid. The instantaneous direction
of motion is extracted from the main direction of the path. This
direction aims towards the exit of the U-shape obstacle, which is
u

module takes about 0.08 s (worst case) and thus can
be used within the sensorial cycle after the modeling
module. With regard to the integration, the computa-
tion time of the navigation function is proportional to
the square of the number of cells. Thus, increasing the
size of the grid would increase the computation time
(penalizing the inclusion in the sensorial cycle). On the
other hand, reducing the size of the grid or its resolution
diminishes the spatial domain or the precision. That is,
the size of the model (portion of the space and preci-
sion) creates a commitment with the computation time
of the planner, and they both have to be balanced in the
real implementation.

It should be noted that the instantaneous motion
direction contains tactical information toavoid cycli-
cal motions and trap situations (requirement settle in
Section3). In the following Sections, we analyze how
the system uses this information to solve these situa-
tions. Next, we describe the module that computes the
motion.

5.3. Reactive navigation module

The reactive navigation module computes the
collision-free motion to drive the vehicle towards the
final location. The ND method employs a “divide and
conquer” strategy to simplify the navigation by identi-
fying situations and applying the corresponding motion
laws. It can solve complex navigation cases for robust
m
sed as a course to avoid the trap situation.
 otion in troublesome scenarios.
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The ND method uses a methodology to design
behaviors called the situated-activity paradigm (see
[14]). First, a set of situations is defined to represent the
navigational problem and mode of conduct (actions).
Here, the situations represent all the cases between
robot positions, obstacles and the goal (navigational sit-
uations). In addition, for each of these cases, a motion
law (action) is associated. During the execution phase,
we use information about the obstacles, the robot and
the destination to identify one of these situations. Then
the corresponding action is applied that computes the
motion. The motion is executed by the robot and the
process restarts (Fig. 7). Next, we outline the situations
and actions.

We used a binary decision tree to define the situa-
tions (Fig. 7). The inputs are the obstacles, the robot and
goal locations. The output is a situation that is chosen by
selecting one branch after applying criteria that depend
on the inputs and on their relations. The relations are
obtained from asecurity zone around the robot bound-
aries and from an entity that we call thefree zone. Using
the security zone, we check whether there are risky
obstacles, and with the free zone, we select a suitable
area of motion (Fig. 8). The set of situations cover all

the possible cases among robot and goal locations and
obstacle distributions, and only one is identified in each
case (the set of situations is complete and exclusive).

Each situation has an associated action that com-
putes a motion command (v, w) to adapt the behavior
to the navigational situation. To compute the direc-
tion of motion, we use geometric information about
the obstacle distribution and the free zone. The module
of the velocity depends on the security context, which is
maximum when there are no obstacles within the secu-
rity distance (safe situation). This module is reduced
linearly with the distance to the closest obstacle. We
establish a rotation speedw to align the robot with the
instantaneous direction of motion.

In summary, this reactive method identifies a nav-
igational situation and applies a motion law to obtain
the motion commands. The commands are sent to the
vehicle and the process restarts. The advantage of this
method is that it can drive vehicles in very dense, clut-
tered and complex scenarios. As Minguez and Mon-
tano[33] point out, this method: (i) avoids local trap
situations due to the perceived environment structure
(i.e. U-shape obstacles and two very close obstacles);
(ii) computes stable and oscillation free motion; (iii)

F et of na s). During
e ationa ng action is
e the cas ne side, and
L ithin th of this area
b

ig. 7. It shows the ND method design, which is made up of a s
xecution, the sensory information is used to choose a navig
xecuted to compute the motion. LS situations correspond to
S2 at both). HS situations are when there are not obstacles w
ut wide, HSWV, or narrow, HSNV.
vigation situations and their corresponding actions (motion law
l situation (using a binary decision tree) and the correspondi
e where there are obstacles within the security zone (LS1 at o
e security zone. If the goal is in the motion area, HSGV, or out



J. Minguez, L. Montano / Robotics and Autonomous Systems 52 (2005) 290–311 299

Fig. 8. It shows the computation of the motion solution with the ND
in one situation. To identify the situation, the process is to check some
criteria. For example in the figure, there are not obstacles closer that
the security distanceDs. Next, the target is not within the motion area.
Third, the motion area is wide. With these three criteria, we identify
the current situation, HSWV. In this situation, the associated action
computes the commandvi = (θsol, vsol), wherevsol is the maximum
velocity andθsol is computed as a deviationα from the limit direction
of the motion area.

selects directions of motion towards the obstacles; (iv)
exhibits a high goal in-sensitivity (i.e. choosing direc-
tions of motion far away from the goal direction); and
(v) selects regions of motion with a robust navigable
criterion.

Fig. 9 shows an experiment carried out with this
reactive module. The vehicle reached the final posi-
tion (which is the only information provided a priori)
at the end of the passage (Fig. 9a) without collisions.
Notice how in some areas, it was very difficult to move
(Fig. 9b) and motion directions towards the obstacles
were required at every moment to solve this navigation.
Furthermore, the trap situations or oscillating motions
due to motion among very near obstacles were avoided
(see the robot trajectory inFig. 9b).

Finally, the module complies with the requirement
of generation of robust motion (Section3). This is
because this method is able to drive vehicles in trou-
blesome environments (dense, complex and cluttered),
and the method works at a high rate (approximately at
0.04 s) for quick reactions in dynamic surroundings.

5.4. The architecture of integration

The architecture integrates the modules by consid-
ering the limitations and restrictions imposed by the
physical (sensors and actuators) and logical parts (com-
puters) of the robot. The architecture has a synchronous
planner–reactor configuration, where both parts use the
m
f ruc-

Fig. 9. This experiment shows how the ND method can drive the vehicl illustrates
the robot and the obstacles. (b) All the laser points and the trajectory
odel constructed in execution time (Fig. 10). The
unctionalities of the modules are the model const

e in difficult environments. (a) A snapshot of the experiment that
executed by the robot.
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Fig. 10. It shows the architecture of integration. The modules work together synchronously and share some data. Furthermore, depending on
some circumstances, the modules fail, and exceptions are launched to manage the situation in order to close the motion control loop.

tion, the computation of the tactical motion direction
(to guide the reactive method), and the motion com-
mand generation.

In some situations, the modules produce failures that
are managed by the architecture:

• Exception in the planning module: sometimes the
planner does not find a solution, either because it
does not exist (for example when the goal falls on
an obstacle) or because a time out is launched when
the module takes too long. A path may not exist in
unknown environments when goals are placed for
exploration and one falls on an obstacle, in dynamic
surroundings when a dynamic obstacle moves or
stops on the goal, in static environments when the
goal is displaced due to robot drift, or when the goal
or the robot are surrounded by obstacles2.

• Exception in the reactive module: the robot is com-
pletely surrounded by obstacles when there are no
areas of motion (internal piece of information in the
ND method), and it cannot progress.

In both cases, we set flags to carry out strategies that
can close the control loop (to avoid dead states). In the
first case, the reactive module uses the goal location
directly instead of the information from the planner.
In the second case, the robot stops and turns on itself
(this behavior updates the model in all the directions
looking for a new path).

2 Although these situations could be avoided by replacing the goal
p nse-
q f the
r

The modules are executed following the
modeller–planner–reactor sequence (Fig. 11), dictated
by the flow of data between modules. This flow is
unidirectional, from the modeling module towards
the planner and reactive module (with a bandwidth
of 160 kbytes/s) and from the planner towards the
reactive module (with a bandwidth of 8 bytes/s).
The modules assure that their time constraints are
in synchrony with the sensor rate 0.20 s. This is
important to avoid inconsistencies in time that would
arise using asynchronous strategies (the model is used
for local planning and obstacle avoidance and must be
consistent in time with both modules). We assigned

Fig. 11. It depicts the time diagram of the execution of the modules,
w ce a
n ecuted
s

osition, this is not the role of the navigation system. The co
uences of this decision could affect the normal development o
obotic task in general.
hich work synchronously within the sensor cycle. That is on
ew laser measurement is available, the three modules are ex
equentially before the new measure event.
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time outs of 0.08, 0.08 and 0.04 s to each module to
keep the motion control loop closed (the maximum
execution time is 0.20 s).

To conclude, the modular structure of the system
allows to replace the different modules easily, since
the computational aspects and interfaces among the
functionalities are clearly specified (requirement of
modular integration specified in Section3). We have
considered how each module complies with the pro-
posed requirements. Next, we show how they also
comply when integrated.

6. Testing the sensor-based system

In this Section, we discuss some representative
experiments carried out with the sensor-based naviga-
tion system on the real vehicle (see the Appendix A
for further details). All environments were completely
unknown, unstructured and dynamic with an a priori
unforeseeable behavior. The experiments demonstrate
the system working in: (i) very dense, complex and
cluttered scenarios; (ii) avoiding trap situations, and
(iii) in a highly dynamic environment. In addition, in

F
(

ig. 12. Experiment 1: the robot must cross a narrow corridor with bo
c–f) Some snapshots of the experiment (g–i) and the corresponding
xes to reach the goal. (a) Trajectory executed and (b) motion commands.
grid and robot, where (d) matches with (g), (e) with (h), and (f) with (i).
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the last subsection, we explain how this sensor-based
system is integrated in a complete motion system (with
high level planning, global location and motion execu-
tion). Many tests ranging from short-term to long-term
missions validate this integration.

6.1. Experiment 1: motion in very dense, complex
and cluttered scenarios

This experiment highlights the framework in a
difficult scenario, where the robot navigated along
a very narrow passage with randomly distributed
boxes (Fig. 12). The difficult part was inside the
corridor where there was little space to maneu-
ver (in some parts, less than 10 cm on either side
of the robot, Fig. 12d. The average speed was
0.204 m/s, and the robot reached the final location in
127 s.

Key aspects of this experiment were the individual
performance and the cooperation between the mod-
eling and reactive modules. The laser scans in the
modeling module were rapidly integrated in the grid.
Thus, the reactive method avoided the new obsta-
cles as soon as they were perceived. This reactiv-
ity is essential to move in dense environments (since
delays in motion computation would lead to colli-
sions). Second, last sensorial measures remained in
the grid and were used by the reactive module for
the avoidance task. This was important since some-
times the sensor did not perceive the closest obsta-
c hey
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6.2. Experiment 2: motion avoiding trap
situations and cyclic behaviors

In this experiment, the navigation system solved
several trap situations that occurred because the struc-
ture of the surroundings was modified.Fig. 13c–g
shows the robot moving along a passage to reach the
goal. When the vehicle was about to leave the passage,
a human cleared a box in the initial part of the pas-
sage (white box in theFig. 13c) opening a passage on
the right-hand side. Next, the human closed the end
of the passage (Fig. 13d) producing a trap situation in
a U-shape obstacle. Rapidly, the next laser scan per-
ceived the change and was integrated in the grid. The
planning module computed the course towards the exit
(Fig. 13h). The reactive method followed this tacti-
cal information, and the robot turned backwards and
moved towards to exit. Nevertheless, while progress-
ing, it perceived the new passage on the right-hand
side and headed in this direction. Then, the passage
was closed again, leading to another trap situation
(Fig. 13e–i). Following the previous process, the robot
left this passage and returned backwards (Fig. 13f),
until leaving the passage and reaching the final posi-
tion. The experiment took 200 s and the average speed
was 0.233 m/s.

Cooperation among the three modules avoids cycli-
cal motion and trap situations. First, we did not
encounter obstacle configurations that produce trap sit-
uations (when a path exists within grid). This is because
t on-
t ese
s the
r on-
m cti-
c tion
z le in
a r to
E
a
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in a
p ere,
t nts
les due to visibility constraints. However, since t
ere perceived some time before, they remaine

he grid and were avoided (Fig. 12d–g, e–h an
–i).

This experiment was particularly difficult fro
he point of view of motion generation due to
arrow space, because many of the existing t
iques have intrinsic limitations that would pen

ze to compute motion under these circumstan
see [33] for a discussion on this topic). Howev
he ND method drove the vehicle free of collisio
ven among very close obstacles. This motion
mooth, free of oscillations (see the path execute
ig. 12a and the velocity profiles inFig. 12b) and

ree of any traps due to the obstacle density. Im
ant requirements complied with here are thegenera-
ion of robust motion and integration of the informa-
ion.
he direction of motion computed by the planner c
ains the tactical information necessary to avoid th
ituations (notice that the motion is computed by
eactive module). Secondly, the symmetric envir
ents do not produce cyclical motions since this ta

al direction discriminates between the possible mo
ones. To conclude, the system moved the vehic
n environment where the conclusions are simila
xperiment 1 regarding thegeneration of robust motion
nd theintegration of information. Cyclical motions
nd the trap situations were also avoided.

.3. Experiment 3: motion in a highly dynamic
cenario

In this experiment, the system drove the vehicle
opulated and continuously changing scenario. H

he inherent difficulty of the previous environme
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Fig. 13. Experiment 2: in this experiment, the robot avoided three successive trap situations dynamically created by a human. (a) Trajectory
executed y (b) motion commands. (c–f) Some snapshots of the motion, and (g–i) the corresponding grid and robot, where (c) matches with (g),
(d) with (h), and (e) with (i).

persists (obstacle density and trap situations), while
adding the difficulty to model and maneuver among
the dynamic obstacles.Fig. 14a shows the initial state,
where the robot had to cross a large room to reach
the destination. During the first part of the experiment,
humans moved in front of the robot (Fig. 14a–c) to hin-
der the motion. Here, the model constructor module
was important to successfully integrate the informa-
tion. As a consequence, the system identified the areas
of motion and performed the avoidance task. Later,
the scenario evolved creating a U-shape obstacle that

produced a trap situation (Fig. 14d and e). Rapidly,
the planner computed the tactical information that was
used by the reactive module to drive the robot out
(Fig. 14f and g). Once outside, the system continued
to react to the humans that disturbed progress towards
the goal. Finally, the robot reached the goal location
(Fig. 14h). The average speed was 0.196 m/s and the
run time was 170 s.

This example illustrates the importance of the model
constructor module in dynamic surroundings, since
it provides a base for the other two modules. If the
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Fig. 14. Experiment 3: the robot moved in a highly dynamic and constantly evolving environment, where trap situations arise repeatedly. Some
snapshots of the motion (a–h).

model did not work correctly (mainly in the first part
of the experiment), a cloud of insurmountable obstacles
would appear in front of the robot, similar toFig. 4d. In
addition, the reactive module reacted rapidly to the evo-
lution of the surroundings and, guided by the planning
module, avoided all the traps. This example illustrates
how the system can drive the robot towards locations
under realistic conditions.

6.4. Integration in an autonomous motion system

In this section, we describe the integration of the sys-
tem proposed in this work in a real autonomous robotic
system. The integration described next, the test in the
real robot (same vehicle used in this paper) and the per-
tinent conclusions are the result of the work of Bennoit
Morisset at LAAS-CNRS (France) and it is described in
detail in[37] (see also[38]). The goal of his study is to
build a autonomous system relying on several comple-
mentary behaviors called modalities. Each modality is
generated as a HTN from a pool of sensory-motor func-
tions dedicated to localization, obstacle avoidance and
path planning. The complete system has been exten-
sively tested to extract conclusions about performance,
and in particular about the motion control subsystem
presented in this paper. We understand that this is an
objective evaluation of this research.

We describe next the sensory-motor functions and
their particular instances:

( et-
ns

taking into account the shape and kinematic con-
straints of the vehicle, given a priori model of the
scenario. The planner used is based on Voronoi
diagrams and is fully described in[39].

(2) Localization: construction of a model of the sce-
nario and computation of the vehicle location
within the model. There are two instances of this
functionality, a SLAM one and another based on
localization using visual landmarks.
(a) SLAM: in an initial step, this module uses

a simultaneous localization and map building
method to incrementally construct a segment-
based model of the scenario[40,41]. During
the execution step, the system uses the laser
information to construct segments, that are
matched with the model in order to obtain the
current vehicle location. This module works
between 15 and 100 ms and has a precision of
1 cm in translation and 1◦ in rotation. When
integrated, it is used at a frequency of 2.5 Hz
(one each two laser measurements).

(b) LPV: in an initial step, this module uses a
monocular vision system to detect rectangu-
lar posters (landmarks) that are learnt in a
supervised way. In execution, the landmarks
are detected with the vision system. Then, the
relative location of the vehicle is computed,
and knowing the location of the landmarks the
vehicle absolute position is deduced[42,43].

(3) Motion control: computation of the collision-free
1) Global motion planning: computation of a geom
rical path free of collisions between two locatio
 motion towards a given target location.
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(a) EB: the Elastic Bands is a method that initially
assumes the existence of a geometric path to
the target location (computed by a planner).
The path is assimilated with a band, subjected
to two types of forces: an inner contraction
force and an external force. The inner force
simulates the tension of a strip and maintains
the stress. The external force is exerted by
the obstacles and moves the band far from
them. During the execution, the new obsta-
cles produce forces that remove the band far
from them, guarantying their avoidance[20].
The implementation used here is described in
[44,45].

(b) mpND: the mapping-planning ND is the
motion system proposed in this paper.

(c) mND: the mapping ND is the motion system
proposed in this paper but without the planning
component.

In short, the system works as follows. Firstly, the
motion planning method computes a path using the a
priori model, which is converted next in a sequence of
subgoals. During the execution, the motion control sys-
tem computes the commands to avoid the unexpected
obstacles gathered by the sensors while moving the
vehicle towards the subgoals. At the same time, the
localization system corrects the vehicle odometry error
using the a priori model.

In order to implement the system, they built the
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Fig. 15. Metric model obtained of the test arena (75 m× 50 m). Tra-
jectory obtained using the localization with segments (SLAM) and
only using odometry.

(since many segments of the model were occluded)
and increased the difficulty of the navigation in the
corridor.

• E4: short-term navigation (around 12 m), but in very
dense and narrow scenarios. Random distributions
of obstacles created many areas with little space to
maneuver and U-shaped obstacles.

The results obtained are depicted in the next table:

E1 E2 E3 E4

M1

N = 20 N = 20 N = 20 N = 5
SR = 100% SR = 100% SR = 5% SR = 0%
d = 2320 m n/a n/a n/a
v = 0.26 m/s n/a n/a n/a

M2

N = 12 N = 12 N = 0 N = 5
SR = 80% SR = 80% – SR = 0%
d = 870 m n/a –
v = 0.28 m/s n/a –

M3

N = 0 N = 20 N = 12 N = 0
– SR = 95% SR = 100% –
– n/a v = 0.15 m/s –
– n/a n/a –

M4

N = 10 N = 12 N = 0 N = 10
SR = 0% SR = 80% – SR = 100%
n/a n/a – v = 0.14 m/s
n/a n/a – n/a
o-called modalitiesMi. A modality is a combinatio
f particular instances of the functions in order
dapt the motion to different navigation contexts:

odalities Functionalities

Planning Localization Motion contr

1 Voronoi SLAM EB

2 Voronoi SLAM mND

3 Voronoi LPV mND

4 SLAM mpND

The experimentation consisted in a test of e
odality in different environments in order to extr

onclusions about the application domain of eac
hem. The environments were:

E1: long-term navigation in a 250 m circuit (Fig. 15).
E2: navigation in a long corridor (30 m).
E3: navigation in a long corridor (30 m), but rando
distributed obstacles. This affected the localiza
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The parameters are:N the number of trials, SR the
success rate,d the distance travelled,v the mean veloc-
ity and n/a is not available. The quantitative results
change a lot among scenarios; however, they give and
idea of modality performance. Notice that the number
of tests is over 140, where 65 correspond to modali-
ties that use the system presented here. We next out-
line some conclusions of the experiments, which are
described in detail in Morisset’s thesis.

The testE1 corresponded to runs in a large scenario.
In this scenario, modalitiesM1 y M2 carried out the task
with a high success rate. The 20% of the failures with
M2 were due to the ND. This method produced oscilla-
tions in some conditions during the navigation in long
passages due to oscillations between situations. The
oscillations produced turns that degraded the segment-
based localization, and in some cases, made it fail.
When this situation arose a failure flag was launched.
Another important remark is that in the experiments
with M1, none of the environments presented difficulty
in the sense of maneuverability. Thus, the EB success-
fully drove the vehicle in all the situations. However,
in the environments used forM2, many closed obsta-
cles and door passages were added (in some of them
distances were about to 0.8 m). No collisions were
found due to the obstacle avoidance difficulty. As it is
described in the thesis, ifM1 were used in this environ-
ments, it would fail. Thus, the avoidance capabilities of
the mND are better than the EB. InM4, the high level
planner is not used. Thus, there is no possibility to this
m ario
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Finally, in E4, the system was tested in an envi-
ronment full of close obstacles (0.8 m clearance) and
where U-shape and dead-ends where dynamically cre-
ated everywhere. This type of experimentation would
be similar to the one presented in the previous subsec-
tions. ModalitiesM1 y M2 did not achieve to solve this
scenario. However,M4 successfully solved all the tests.
This is due to the local capacity of the mpND to address
this trap situations. Property that the other motion sys-
tems do not have (in the mND the planning component
is disabled and thus the method is pure reactive).

As personal conclusion of the authors paper, the pre-
vious results suggest that the modality more adapted to
solve the navigation would be a new modality where
the mpND proposed in this paper would be integrated
with high level planning (Voronoi–SLAM–mpND).
This would allow to obtain good results in large sce-
narios (as suggested by the performance of modality
M2 in E1, where the mpND is integrated but without
local planning, mND). Furthermore, these scenarios
could have greater obstacle density, narrow passages
and dead-ends (as suggested by the performance ofM4
in E4).

The conclusion of Morisset is that each sensory
motor function has its own advantage and its own draw-
back and no modality can cover efficiently any kind
of environment or situation. The only way to cover
these variety of cases is to exploit the complementarity
of these modalities. Thus, Morisset built a supervision
system[38] that works as follows. The robot performs
s nav-
i ted.
T the
a d as
a s a
g

7
m

vel-
o lay-
e tion
a actor
c tical
i em
d hi-
odality to accomplish the task in this large scen
250 m), since although the model used is 20 m w
nd is robot-centered, it is not sufficient to describ

he experimentation area (Fig. 15).
The experimentE2 consisted in a large corrid

30 m). In this case, modalitiesM2 y M4 lose 20%
ue to the oscillations in the motion system that ma

he localization fail. However, when the same exp
ent was carried out withM3 (visual localization), th

esult is 95%. The only failure was due to the vis
ocalization system (it did not detected a landma
owever, inE3, some additional obstacles were ad

n the corridor. This converted the corridor in a v
ense scenario where maneuverability turned trou
ome.M1 failed in the majority of the cases; howev
3 achieved to solve all the cases. This is becaus
ND offers better motion control than the EB in co

ned spaces.
ome autonomous navigations. All along each
gation, the current state of supervision is upda
he relationship between supervision states and
ppropriate modality for pursuing a task is learne
Markov Decision Process (MDP) which provide

eneral policy for the task.

. Discussion and comparison with other
ethods

A sensor-based motion control system was de
ped based on a hybrid architecture with three
rs (modeling, planning and reaction). The interac
mong the modules is a synchronous planner–re
onfiguration where the planner computes tac

nformation to direct the reactivity. Our hybrid syst
iffers from previous ones in the integration arc
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tecture and in the techniques used in each module.
We discuss here alternative designs to the hybrid sys-
tems that do not use the reactor module performing an
“any-time planning”, and the impact of the techniques
used to implement each module regarding other hybrid
schemes.

As mentioned in Section2, hybrid systems attempt
to combine planning abilities with the best reactivity,
robustness, adaptation and flexibility. Basically,
these schemes combine a planner (deliberation) and
a reactor (execution). The common strategy is to
compute a path and use its course to direct the reactive
module. Another architectural alternative to hybrid
systems are those based on two modules, one to model
and the other to plan (to drive the vehicle). They
perform an “any-time” planning instead of using the
reactive module to compute the motion. In some of
them, the modeling and the planning are synchronous
[46,47], whereas in others, the planning step is an
asynchronous process that is only carried out in the
areas that influence the progress to the goal[48–50].
These systems do not have the advantages of reactive
behavior, such as rapidly adapting to changes and flex-
ibility under unforeseeable circumstances. All these
systems use planners that usually compute trajectories
that skirt the obstacles, which appears to contrast with
the avoidance task (along these lines, Murphy et al.
presented a planner that spaces out the trajectory of the
obstacles[49]). However, in our system, this situation
is managed in a natural way by the reactor. Another
d h to
t ce-
n n
s istent
w lled
d
o tice
[

me
p than
a the
o the
e ns
a the
v

the
i lan-
n gard

to the planner Ulrich and Borenstein[54] use a look
ahead verification before executing the reactive algo-
rithm [28]. The local trap situations are avoided by
running the reactive method some steps before the algo-
rithm is executed. The completeness of this strategy
depends on the number of previous steps (maximum
distance inspected). This solution is well suited for
robots with limited computational capabilities because
good navigational results are obtained even by reducing
the maximum distance inspected. Our framework uses
a complete planner which assures the tactical informa-
tion to avoid the trap situations.

Our model is similar to[16,18]. However, their
model represents the configuration space which
increases with the distance traveled. The advantage
is that global knowledge is incorporated as the robot
progresses, and the navigation function of the planner
does not have to be recomputed as long as the scenario
remains the same. However, our model represents a
local portion of the workspace, so it does not depend
on the distance traveled. That is, the memory and com-
putational time are fixed, whereas in the other methods,
they increase as the robot progresses, since the model
is continuously enlarged. In our model, the information
around the robot is always available. In the other meth-
ods, it depends on the availability of time and memory.
Furthermore, our model represents the workspace that
can be rapidly updated in changing scenarios, which is
not the case in methods that represent the configuration
space.
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ifficulty of most systems is the reliance on a pat
he goal, which is not always available in realistic s
arios (Section5.4) leading to a failure in the motio
ystem. Furthermore, these systems are not cons
ith the idea that a vehicle should not be contro
irectly with a planner[51], and it would be difficult to
btain the computation time to put them into prac

52].
Recently, both systems (hybrid and “any-ti

lanning”) have been combined by Rangana
nd Koenig using both paradigms to adapt
peration to the progression of the robot in
nvironment[53]. However, the above conclusio
re derived when only the planner is used to drive
ehicle.

Focusing on hybrid systems, another matter is
nfluence of the techniques used to implement the p
er, the model and the obstacle avoidance. With re
Another key aspect is the reactive module. Br
nd Khatib[16], Arras et al.[18], Hebert et al.[32],
lrich and Borenstein[54], Gat[51] among others, a
ystems that use reactive planners that have prob
riving in dense, complex and troublesome scena
his is not a problem in our system, since the typ

imitations of other methods are avoided, such as a
rap, oscillations in dense scenarios, and the imp
ility to obtain motion direction towards the obstac
r towards areas with large density of obstacles[33].
his results in a safe and robust motion in scenarios
re still troublesome for many existing methods. T
oint is also stressed in the experimental results

ion. There we show a quantitative/qualitative objec
omparison with another obstacle avoidance me
20]. The conclusion is that our system exhibits gre
aneuverability capabilities specially in dense, c
lex and troublesome scenarios.



308 J. Minguez, L. Montano / Robotics and Autonomous Systems 52 (2005) 290–311

8. Conclusions

Many industrial applications of vehicles for evolv-
ing scenarios could benefit from the technology of
motion generation. These techniques would increase
the degree of autonomy of the robots and reduce human
intervention (which is especially important in danger-
ous or hostile environments). We present a sensor-
based motion control system as a subset of a complete
navigation system. The main contributions include the
functional and computational aspects of the modules
in the system and their integration, in addition to the
strong experimental validation. As a consequence, this
hybrid system is able to move vehicles robustly in very
difficult environments, which are still troublesome for
of the most motion systems.

The key result is the real time cooperation between
the modules in the system. The information integrator
module constructs a representation of the environment
which is the base of the rest of modules. Then the
planning module computes tactical information to
direct the vehicle and the reactive module controls
the motion. The three modules are integrated with an
architecture that follows a synchronous configuration
planner–reactor. It concentrates the best of the delibera-
tive and reactive worlds, since the planning information
helps to guide the motion towards zones without traps,
and the reactive component quickly directs the execu-
tion according to the evolution of the environment (also
considering areas that are not visible from the present
p are
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In some cases, the reactive navigation module was
replaced by another ND method adapted to work on
platforms with a non-circular geometry and kinematic
and dynamic constraints[57]. The substitution of
these modules within the architecture was straight-
forward.

Another important point is the interaction of the
system with other subsystems which are needed to con-
struct a complete navigation system, such as planning,
location and map building. For example, our system
was integrated with a topological navigation system
[58]. It constructs a global model of the environment
in execution while relocating the vehicle and placing
goals for exploration (our system drives the vehicle
among the desired locations). The sensor-based system
has also been incorporated in theRobels system[38],
where it is used as one of the four sensory-motor func-
tions that execute motion. We report in this paper this
integration and many experimental results that validate
the system. In addition, our system has been success-
fully integrated as a low level motion generator within
theGenoM architecture[59] on aNomadic XR4000 in
the LAAS-CNRS, France, and is used to move the vehi-
cle on a daily basis[60].
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