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Abstract. Geographic routing is a well established solution for scal-
ing in large wireless ad-hoc networks. A fundamental issue is forward-
ing packets around voids to reach destinations in networks with sparse
topologies. All general known solutions need first to get into a dead
end, at link level, to be able afterwards to apply a recovery algorithm.
These techniques can lead to very inefficient forwarding paths. We pro-
pose a novel general approach, based on light weight connectivity maps,
C-Maps, distributed among all the nodes in the network to obtain more
efficient and robust paths. The main contribution of our method is the
distributed Mercator protocol that builds these maps. Each node in this
protocol builds and maintains its own C-Map that summarizes connec-
tivity information of all the network around itself using hierarchical re-
gions. This information is more precise from regions closer to the node.
Nodes apply greedy forwarding and face routing to the different hierar-
chical levels of connectivity information. Better paths are obtained with
this behavior. Robustness is guaranteed by every node containing its C-
Map. Our analytical and simulation work shows that the map state and
the communication overhead grows logarithmically with the size of the
network.
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1 Introduction

Network scalability is a fundamental issue in routing protocols for wireless ad-
hoc networks. An attractive approach to this problem is geographic routing
[2, 7] because no other routing information than the set of neighbours has to
be maintained. Also, in dense networks, the forwarding method used, greedy
forwarding, is very simple. Besides, cross layer methods allow efficient data-
centric applications [11] using geographic routing algorithms.

If the network is not dense enough, packets can find voids that might block
greedy forwarding with dead ends and, thus, packets can not reach destinations
in a network where connectivity exists. The traditional solution to get out of
the dead end and forward around the void is face routing [6], which applies the



”right hand rule” in a planar subgraph of the network. But, all general geographic
routing algorithms needs to get first in these dead ends at the link level so that,
afterwards, they can apply a recovery algorithm to forward around the void [9].
And, in this way, very inefficient paths can be obtained, mainly when dealing
with big voids and, worse, with big and/or frequent concavities at the borders
of those voids.

We propose a novel general approach to avoid arriving at dead ends at link
level and getting more efficient paths to the destination node. Each node builds
and maintains a contextual map, a C-Map, containing synthesized information
of connectivity of hierarchical regions surrounding the node. These regions are
square tiles obtained from simple geographical operations.

We assume that radio ranges could be non uniform, links are bi-directional
and nodes are assigned absolute coordinates in the network.

Network connectivity information is folded in region connectivity informa-
tion at the different levels of the map hierarchy. Finally greedy forwarding and
face routing is applied on the resulting region connectivity graph. Using geo-
graphic routing at region level we achieve more efficient paths, mainly in sparse
configuration with big voids and concavities.

Also, node mobility can easily be included integrating the proposal in [10]
with our techniques. Energy considerations are not covered in this paper.

The rest of the paper is organized as follows. Section 2 shows a review of
existing and related work. In section 3, the connectivity maps are described.
Section 4 presents Mercator, the maps construction protocol. Section 5 presents
the hierarchical routing protocol. Section 6 offers theoretical information about
costs induced by this method. In section 7, simulation results are shown. And,
finally, section 8 offers the conclusions of this work.

2 Related Work

GPSR [4] was the first geographic routing algorithm that tackled the problem of
voids and concavities. Messages are forwarded using greedy mode whenever pos-
sible towards destination until they encounter a dead end. Then GPSR switches
to perimeter mode, the recovery algorithm, forwarding the message with a right-
hand rule algorithm over a planarized graph outside the problematic area, then,
GPSR switches back to greedy mode. GOAFR family of algorithms [7] also im-
plements face routing over a planarized graph as recovery algorithm, improving
GPSR’s efficiency. It was proved in [5] that geographic routing protocols (like
GPSR or GOAFR) which took the unit disk graph assumption do not behave
correctly. CLDP [5] provides a planarized graph without relying on the previous
assumption by continuously probing all available links, which results in a high
cost.

GDSTR [9] was proposed as an alternative: instead of using expensive graph
planarization algorithms, it maintains a spanning tree, the Hull Tree. Nodes in
the Hull Tree keep notion of the area covered by nodes in the branches down to



the leafs. GDSTR’s recovery algorithm consists in forwarding messages towards
the tree’s root until they are outside the problematic area.

All these methods need to get into a dead end to be able to apply a re-
covery algorithm. Depending on the shape of each void, mainly on its size and
concavities existence, very long and inefficient paths may result.

In [3] it is argued that to avoid getting into dead ends is better solution
that trying to apply recovery algorithms afterwards. The Distance Upgrading
algorithm is developed to obtain better paths. But, this method is proposed
only in the context of communications from sensors to a base station. Thus,
only one destination is present and all other nodes calculate the distance to this
unique destination.

Terminode routing [1] is a hierarchical routing protocol that uses geographic
routing for distant destinations and more traditional link state routing in near
neighbourhood. Terminode routing has a method called Geographical Map-
Based Path Discovery for remote routing. It only operates to get anchored paths
at the same level and it is assumed that a density map is already available
somewhere outside the network. No distribution technique is presented for the
maps. This trend is developed with the use of geographic maps [8] from vehicular
navigation systems that are introduced in the geographic routing.

No method has been proposed where the network itself builds an explicit
geographic connectivity map to improve substantially routing paths as we do.

3 Connectivity Maps

Connectivity information between different areas in the network is stored into a
map, the C-Map. The network is modeled as a hierarchy of square areas defined
on a 2D euclidean space. Nodes obtain its localization coordinates by means of
an external positioning system like GPS or other localization techniques.

A C-Map stores information about a hierarchy of nested square regions sur-
rounding the owner node’s location. The highest level of the map, with the
biggest squares, determines the area covered by the whole map. Lower levels
keep information about connectivity of small areas near the node, while higher
levels keep summarized connectivity information about large and faraway areas.

Hierarchy of network regions. Information in a C-Map is organized into
M Map Levels, starting from 0, the lowest one, to M − 1. Each map level is
composed of Q non-overlapping squares known as tiles, properly sized to fit four
tiles of level m into one of level m + 1. The map is centered in order to balance
the amount of information in all directions around the node and to facilitate the
composition of information explained later, as shown in Fig. 1. Tiles have to be
carefully placed according to the following rules:

– Map level m must be completely nested into map level m + 1, and thus
Q = 4n, n ∈ IN.

– In each Map level, the tile containing the owner node is known as central
tile and must be completely surrounded by other tiles.



Fig. 1. Hierarchy of nested levels centered around the node owner of the C-Map

Connectivity between regions. Connectivity is defined as the possibility for
a message coming from a tile to reach a contiguous one across their common
border. Each tile stores the connectivity information of its corresponding square
region of the network with its surrounding squares.

Having the connectivity information about all the tiles of each map level,
the owner of the map is able to quickly find out if a region of the network is
reachable across a path of connected tiles.

Connectivity inside tiles. At first, a tile marked as reachable through all of
its borders, would seem like an ideal tile, allowing communications traverse the
tile completely, but it is not always true: nodes inside a tile might be divided into
different unconnected groups known as fragments. This important issue implies
that a fragmented tile is not always traversable from one border to other.

A fragment is defined as a connected group of nodes inside a tile and is always
traversable.

4 The Mercator Protocol: C-Map Construction

The Mercator protocol builds, distributes and maintains the C-Maps for every
node in the network in a fully decentralized way. All the information the protocol
produces is based on basic connectivity status between nodes. First, connectivity
between the smallest tiles is discovered with an interchange of HELLO messages.
Then, that information is distributed to the immediate neighbour areas, giving
nodes some knowledge about its vicinity and the ability to summarize the infor-
mation they know. In subsequent iterations of this process, basic and summa-
rized connectivity information will be shared using MAP messages, extending
the ability of nodes to build information at higher levels.



After some time, all nodes will be provided with a map of its neighbourhood
composed of levels at different scales. Later updates of the map will be required
to address the topology changes produced by joining or exiting nodes or even
entire network areas.

4.1 Previous Considerations

A square of level m, Sm, is identified by a tuple <m, (i, j)> where (i, j) are Sm’s
grid coordinates using columns and rows. Sm’s side length, Lm, is calculated as
Lm = L0 ∗ 2m, being L0 a parameter of the network. Given a point P placed
inside Sm, (i, j) can be calculated as the integer division of P ’s coordinates by
Lm.

4.2 Mercator Protocol’s Information: The C-Map

Information produced by Mercator protocol is stored into a C-Map at each
node. A C-Map is composed of M Map levels. M is chosen according to the
maximum diameter of the network. Each map level is composed of exactly Q =
16 tiles arranged in a 4x4 matrix layout (See Fig. 1). The map is ’centered’ at
the owner node’s location, following the rules described in Sec. 3. When a node
moves from one tile to another, its map has to be re-centered repositioning the
tiles at all levels as needed to meet the previous rules.

As explained before, nodes inside a tile can be divided into fragments. Infor-
mation stored in the C-Map about each tile comprehends the different fragments
the tile is divided into, including for each one a representative identifier unique
inside the tile and its connectivity status with neighbour fragments.

4.3 Discovery of Level 0 Information

Once the C-Map is centered, HELLO messages are broadcasted periodically by
Mercator protocol to gather information about the fragment the node belongs
to and its surroundings at the lowest level (level 0). HELLO messages are used
also to maintain a fresh list of neighbour nodes.

Each HELLO message contains the following information: sender’s node iden-
tifier and coordinates, sender’s fragment identifier, fragments at neighbour tiles
accessible from sender’s fragment and the minimum number of hops needed to
reach those neighbour fragments from the sender node.

Upon a reception of a HELLO message each node will update its state adding
the new information: if HELLO messages are received from a node in a neighbour
tile, then the shared border’s status among both tiles is considered active. The
sender’s node fragment will be considered accessible from the receiver’s fragment
and hop count towards sender’s fragment will be set to 0. By contrast, if a
HELLO message is received from a node which is located in the same tile, then
sender and receiver belong to the same fragment. Receiver node will check the
HELLO message looking for information updates, i.e. a new active border or a



new link with a fragment, and will keep this information that will be broadcasted
in the next HELLO message.

After some stabilization time, each node will be able to compute its frag-
ment’s identifier based on which tile’s borders seem active.

4.4 C-Map Addition Operation

Connectivity information is shared between nodes exchanging their C-Maps.
The previous construction rules of C-Maps imply neighbours’ C-Maps must be
partially or totally overlapped. A node acquires information from its neigbours’
C-Maps applying the addition operation.

Binary addition operator is defined for C-Maps: let C1, C2, Cr be C-Maps,

C1 + C2 → Cr

where Cr is the combination of C1 and C2. C-Map addition operator works as
follows: first, Cr is centered at the same point as C1, then addition operator will
select tiles from C1 not present in C2 and will copy its information (fragments)
into Cr. Then it will select those tiles present in both maps and will add to
Cr all fragments from C1 as well as those from C2. Finally, if central tiles of
corresponding levels in C1 and C2 are neighbours and thus share a border, C2

owner’s fragment is marked as connected with C1 owner’s fragment into Cr.

4.5 C-Map Information Exchange

After some stabilization time, each node is able to provide information about its
fragment of level 0 and its connections to other neighbour fragments. The node
will then start broadcasting MAP messages to its immediate neighbours in order
to share information about local and surrounding tiles. Initially, all 16 tiles of
each level will be empty except the central tile of level 0, which will include the
owner’s node fragment.

Each MAP message carries the C-Map stored by the node at the sending
time and its owner node’s coordinates.

Upon a reception of a MAP message, receiver node will add the received
C-Map to its own, acquiring the new information (as explained in 4.4). In the
subsequent sendings, the new information will also be spread producing a prop-
agation effect.

4.6 Higher Level Fragment Information Composition

Each node is in charge of the fragments it belongs to at each level and will build
and keep them stored into its map. Each node computes from information about
fragments of level m − 1 which fragment of level m it belongs to. Then MAP
messages exchange will propagate fragment’s information over the surrounding
areas.



Fig. 2. Composition of a higher level fragment. In the picture, fragments are identified
with the cardinal directions of the tile’s active borders for the fragment.

Levels in a C-Map are centered at the owner node’s location (see 4.2), en-
suring that all 16 tiles of level m − 1 fit perfectly into 4 tiles of level m. The
composition algorithm computes node’s fragment into its tile of level m, by ex-
amining the fragments in tiles of level m− 1 which fit into its tile of level m (see
Fig. 2).

The composition algorithm works as follows: first, it looks for all fragments
in the 4 tiles of level m − 1 which are connected (directly or by intermediate
fragments) to the node’s fragment at that level. Then, all those connected frag-
ments will conform the node’s fragment at level m, calculating also its identifier.
Finally, the composed fragment is stored into the level m of the C-Map.

4.7 Information Expiring Mechanisms

Since ad-hoc networks are not static, nodes appear and disappear creating and
removing routes, modifying the network’s topology and connecting and discon-
necting entire regions. For this reason an invalidation mechanism for obsolete
information is proposed.

Every item of a C-Map, like a fragment inside a tile, is associated to an
expiration timer that monotonically increases up to a maximum value. Timers
information is also stored in the map. An item is removed from the C-Map when
its associated timer reaches a predefined maximum value. Nodes in charge of
an item produce the information about it, and periodically reset its timer value
to 0 like a heartbeat. If an item of a map disappears from the network, i.e. a
fragment gains some connectivity and it is renamed, nodes in charge of it will
stop resetting the timer for the old identifier and after a period of time it will
be removed from all C-Maps where it was contained.

4.8 A Global View of Built C-Maps

The behavior of the Mercator protocol on a network of about 500 nodes is
shown in Fig. 3(a). It can be seen in Figs. 3(b),3(c) and 3(d) how connectivity



information reflects the shape of the network including void areas and concavi-
ties and how a summarized network topology is constructed for each level.

(a) The Ad-hoc Network (b) Map Level 0

(c) Map Level 1 (d) Map Level 2

Fig. 3. C-Map Levels 0, 1 and 2 of the highlighted node in 3(a). Nodes of the same color
inside a tile belong to the same fragment, which is represented by a colored square.
Connectivity between fragments is represented with straight lines.

5 Hierarchical Geographic Routing with C-Maps

Having the C-Map, traditional geographic routing algorithms can be enhanced
to take advantage of the available connectivity information at different scales.
Big concavities and voids are very difficult to discover at link level, the lowest
level in the map, but its easier to find them on the appropriate higher level.

An improved geographic routing algorithm that takes advantage of C-Maps
would be pretty similar to the current ones, performing greedy forwarding through



safe locations in the map, and thus, avoiding problematic areas in order of im-
portance, instead of simply forwarding towards the destination point as in tra-
ditional geographic routing.

Enhanced Geographic Routing with C-Maps would work as follows: when
a message is forwarded, a node would look in the map for the highest level
where destination and current locations are placed inside different tiles of the
Map Level. A greedy algorithm applied to the connectivity graph represented
at that level will select the next fragment the message should be forwarded to.
A waypoint is established at that fragment and the routing protocol will apply
greedy forwarding towards that waypoint in the immediate lower level of the
map. This process is repeated until Level 0, resulting in a direction suitable for
greedy routing at link level. Known recovery algorithms would work in a similar
way but applied to the graph at the level which encounters trouble.

With this approach problematic areas are avoided at all levels reducing to
the minimum the usage of recovery algorithms.

6 Costs Estimation

The Mercator protocol has been designed in order to achieve high scalability
properties with target networks from a few to hundred thousand nodes. The
design has been focused on keeping conservative storage requirements per node
and shared channel bandwidth usage.

C-Map storage cost. A look to the data structure managed by Mercator
Protocol, the C-Map, shows the powerful scalability properties it offers. Each
node in the network stores only its own C-Map which is composed of M Map
Levels. Each Map Level stores Q = 16 tiles which might be divided into different
fragments. Storage cost of a C-Map, SCmap can be calculated as follows:

SCmap = M ∗Q ∗ F ∗ f (1)

Where F is the average number of fragments per tile and f is the storage
cost of a fragment. SCmap increases linearly with M .

The central tile of each level is surrounded by at least one tile on each di-
rection (See Sec. 3). This property guarantees for a Map Level K, a complete
coverage of a network of LK meters of diameter in a worst case scenario, where
the owner node is in the farthest possible location from the middle point of the
Map Level. The maximum coverage area of a C-Map, ACmap, is determined by
its highest Map Level, in fact, M is chosen to guarantee coverage for a maximum
network diameter. ACmap can be calculated as follows:

ACmap = (L0 ∗
√

Q ∗ 2M−1)2 (2)

Table 1 shows the coverage areas of C-Maps with different number of lev-
els in a default setup, being Q = 16 and L0 = 500 meters. ACmap increases
exponentially with M .



M : 1 2 3 4 5 6 7 8
ACmap(Km2) : 4 16 64 256 1024 4096 16384 65536

Table 1. Coverage area of a C-Map with M map levels

Mercator bandwidth usage. All Mercator information exchange is per-
formed by means of local broadcast operations. Once the sender node transmits
a message, it is not forwarded again by any of the receiver nodes.

Connectivity information discovery and distribution is done by means of peri-
odic HELLO and MAP messages sendings. HELLO and MAP messages sending
rate is calculated in order to use a low percent of the available channel band-
width. Shared medium bandwidth used by Mercator in nodes surrounding point
P , MBw(P ), can be approximated as follows:

MBw(P ) = D(P ) ∗ARR(P ) ∗ (RHELLO ∗ SHELLO + RMAP ∗ SMAP ) (3)

Where, D(P ) is the average network population at point P , ARR(P ) is the
radio range area of a node in P , RHELLO and RMAP are the broadcast rates for
HELLO and MAP messages, SHELLO and SMAP are the average size of HELLO
and MAP messages and CBw is the channel bandwidth.

Wireless communications use a shared medium, thus, node density will affect
the bandwidth employed by Mercator at any point in the network. We propose
two strategies for dealing with node density:

1. Sending rates depend on D. For instance, taking RMAP (D) = K/D, where
K is a predefined constant, then, RMAP (D) will decrease as node density
grows. This approach would help to reduce the channel bandwidth used
by Mercator, turning MBw not dependent on D. Each node approximates
D as the number of neighbours +1 divided by its area of radio coverage.
This approach will produce an approximately constant bandwidth usage per
square meter not dependent on D.

2. Use a notification mechanism instead of expiration timers. This mechanism,
upon an inconsistency between information at a level with its immediate
upper level would recalculate connectivity information for the upper level
and spread it.

7 Experimental Results

We have implemented an ad-hoc network simulator to test the Mercator proto-
col under different scenarios. The following settings have been used in our tests:
radio range is 200 meters. All nodes receive broadcasted messages within their
radio range. RHELLO is set to 1 message per second. RMAP is set to 1/3 mes-
sages per second. Expiration ages are set to 4 ticks for each item. Tick duration
is 1/RMAP ∗ 2n seconds where n is the level number of the item monitored by
the timer.



The side’s length of a tile at level 0, L0, is closely related to expiration ages
and radio range. L0 value has been set to 500 meters, which allows information
to traverse an entire tile of level 0 in less than 4 hops without expiring.

Storage and bandwidth requirements: with the above parameters, a C-Map
with 9 levels (262,000 square kilometers of coverage area and average network
population of 2,600,000 nodes) requires 5.3KBytes of storage (according to (1)).
In this scenario, an average neighbour count of 4 produces an approximated
channel bandwidth usage of 71kbps (according to (3)).

Stabilization time. In a first test we have measured the map’s stabilization
time, which provides an idea of the response speed that the protocol offers against
network topology changes. Stabilization time is measured by the number of MAP
messages each node sends until the entire network map is completely built. We
have simulated a cold startup in a network with 7000 nodes under different
population density conditions (from 4 to 9 average neighbour count). As shown
in Fig. 4, stabilization time increases linearly with the extension of the mapped
area, and thus, exponentially with the number of levels of the C-Map. High
density conditions help to increase information propagation speed and to reduce
stabilization time.

We have also simulated dynamic scenarios with nodes joining and going away
from the network. If a new node does not produce a substantial change into the
network topology, stabilization time is about 1 message, by contrast, if a new
link is created between two fragments, the stabilization time is similar to the
case of a cold startup at the level of those fragments.

Fig. 4. Stabilization time after a cold startup



8 Conclusions

In this paper we propose a new approach in geographic routing that improves
considerably routing paths in sparse networks with big voids and/or significant
concavities. More efficient paths than classical routing and recovery algorithm
can be obtained. Connectivity robustness is guaranteed with map distribution
among all nodes. It can marry nicely with existing mobility solutions. Ongoing
work explores the use of the C-Maps with other routing methods than traditional
geographic routing, with same lightness considerations, to achieve even better
routes.
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