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Abstract—The design of observers is a topic of major iman infinite servers semantics, a timed continuous Petri net
portance in systems theory. Under a given firing semantisgstem can be seen as a piecewise linear system [9], [10], i.e.,
for transitions, the formalism of timed continuous Petri nehe evolution of the state of the system is ruled by a set of
systems represents a specific kind of piecewise linear systemitching differential equation systems. The timed continuous
the linear system that drives the evolution of the net systétatri net has the particularity that, at a given instant, the
depends exclusively on the marking. This implies that a switdliferential equation system that rules its evolution depends
occurs only when an internal event happens. This paper dealsiquely on the state of the system (marking). Hence, the
with observability on continuous Petri nets and focuses on tBaitch from one linear differential equation system to another
design of observers. The proposed observers are piecewise is activated by aimternal eventi.e., by a certain change
linear systems that assure the continuity of the estimate ewdrthe marking.
when a switch occurs. The use of the system simulation mayhe main goal of the paper is the design of observers for
allow to estimate even the unobservable space of the wentinuous Petri nets (see [3] for a work on observability
system during a given time period. of discrete Petri nets). One Luenberger's observer will be
considered per each differential equation system that may rule
Mitie evolution of the net system (in a similar way to [1]).
Each observer will yield an estimate that will be classified as
suitable or non-suitablewith respect to the current system’s
l. Introduction output. We propose an algorithm that filters _non-_suitablg
' estimates and simulates the net system from a given instant in
The state of a dynamic system is defined by means afder to compute an estimate for the system’s marking.
state variables. Some of them can be directly measuredrhe paper is structured as follows: In Section Il continuous
(sensed), while, under some conditions, some of the othérstri nets are introduced. In Section Il the observability
can be estimated. This estimate constitutes the observatiprablem for continuous Petri nets is stated in a similar way
The observability problem, i.e., the characterization of whidio the observability problem for linear systems. Section IV
state variables are observable and its observation, has bestablishes the guidelines to detect non-suitable estimates.
studied in detail in the framework of linear systems [6]Section V shows how a set of linear observers can be created
For these systems, the observable space can be charactefimed net system and the different classes of non-suitable
algebraically. A system state estimate based on such algebrdiservers’ estimates that can appear. Section VI is devoted
characterization can btheoretically obtained from the com- to the design of an observer that uses a filter for the estimates
putation of the derivatives of the output signal. The estimatand the simulation of the system. Conclusions are drawn in
loses its reliability when “high” frequency noise appears iection VII.
the output signal. In order to overcome this problem, linear

observers came up [4]. A linear observer is a linear systqn  Continuous Petri Net Systems
whose state converges asymptotically to the state of the system

being observed. A. Untimed Continuous Petri Net Systems
Petri nets represent a powerful formalism for the modelling The reader is assumed to be familiar with Petri nets (PNs)
of discrete concurrent systems. The continumlaxationof (see for example [5], [8], [2]). The Petri net systems that
Petri nets has been introduced in order to tackle the stai#l be considered arecontinuous Continuous systems are
explosion problem inherent to large discrete systems. Undshtained as a relaxation discrete ones. Unlike 'usual’
discrete systems, the amount in which a transition can be
© Supported by a grant from D.G.A. ref B106/2001 fired in a continuous Petri net system is not restricted to be a
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Keywords: Continuous Petri nets, piecewise linear syste
observers.



vector of real numbers. A PN system is a pgif, mg), where Let us consider the system in Figure 1(a) with initial
N specifies the net structur&] = (P, T, Pre, Post) andmo markingmg = (3 0 0) and transition speeds = (0.9 1 1).
is the initial marking. The sets of places and transitions ale m([p;] < m[ps] (21), the flow of transitiont, will
denoted byP andT respectively andC = Post — Pre is the be defined by the marking of; and the PT-set will be
token flow matrix. {(p1,t1), (p1,t2), (p3,t3)}. Similarly, if m[p;] > m[ps] (X2)

In continuous Petri net systems a transitida enabledat a the flow of ¢5 will be restricted byp, and the PT-set will be
markingm iff every input place oft is marked (every € *t, {(p1,t1), (p2,t2), (p3,t3)}. The matricesA; are:

mp] > 0). As in discrete systems, thenabling degreeat 19 0 9 09 —1 9
mgrklngm of a 'tr.ansmon measures the.maX|mum amoun'F N, — [ —01 o0 0 | Ay = 0.9 —1 0
which the transition can be fired in a single occurrence, i.e., 10 0 -1 0.0 1 -1

enab(t, m) = minyc+,{m(p]/Pre[p,t]}. The firing oft in an ) i _ _

amounta < enab(¢, m) produces a new markingy’, and it At the time instant in whichm[p,| = m(p,], ¥; and %,

is denoted asn_"m’. It holdsm’ = m + - C[P, #], hence behave in the same way and any of them can be taken.
as in discrete systems the state equation= mg + C - o Figure 1(b) shows the evolution of the system along time.

summarizes the way the marking evolves, wheris the firing At the beginning the system evolves accordingo Then a
count vector. switch occurs and the dynamics of the system is described by

31. A second switch turns the system backdig, the system
stabilizes and no more switches take place.
B. Timed Continuous Petri Net Systems

For the timing interpretation, a first order (or deterministic) p1 u P2
approximation of the discrete case will be used [7], assuming
that the delays associated to the firing of the transitions can
be approximated by their mean values. Each transitibas
associated an internal firing spe&ft] > 0. The state equation
has an explicit dependence on timg(7) = mg + C - o (7). O 0
Deriving with respect to timegn(7) = C - o(7) is obtained.
Let us denotd = &, since it represents thigow through the l ; N
transitions. In this paper it will be assumed that every transition L
has at least one input place. Infinite servers semantics will be BET A
considered. Under this semantics, the flow of a transition is
given by the product oA and its enabling degree, i.d[f] = (@) (b)
Alt]-enab(t, m) = A[t]- minpee,{m[p|/Pre[p, t|}, what lead
us to a non-linear system. More precisely, a piecewise lindag. 1. Marking evolution of a system with two PT-sets.
system is obtained. The evolution of the system at a given
instant is expressed yp = A; - m, where A, is a constant .
matrix. To computed,; it is necessary to know the set of placedll. Observability: Problem Statement
that is actually enabling the transitions, i.e., the set of placesObservability has been thoroughly studied in the framework
that are giving the minimum in the expression for the enabling linear time invariant systems [4], [6]. A linear time invariant
degree. Once this set is computed, it is easy to establish a line@stem without inputs is usually expressed by equatiors
relationship between the marking of the places in this set apd. x, y = S - x wherex is the state of the system and
the flow of the transitionsf(t] = A[t]-m([p]/Pre[p,t]if p € *t s the output. The state space is denotedXaknowing the
and p is giving the minimum). From the flow of transitionsmatricesA and S and being able to watch the evolution of
the derivative of the marking is obtaineth(r) = C - f). y, a linear system is said to be observable iff it is possible to

For each markingn, its PT-set PT-set(m)) can be defined compute its initial statex(r).
as the set of all the pairgp, t), such that the marking aof is An observability criterion exists that allows to decide

System evolution

restricting the flow of transitiort at markingm. whether a linear system is observable or not. Given a linear
Definition 1: Given a net system, theT-setat markingm system of dimension expressed in discrete time(k +1) =

is F-x(k), y(k) = S-x(k) the output of the system in the first
PT-set(m) = {(p, ) | £[t] = Alt] - m[p]/Pre[p, ]} (1) n— 1 periodsis given by:
In this way, for every markingn, there exists a PT-sét y(1) S

that has associated a square matkix and a linear system y(1) S-F

Y, :m = A - m that rules the evolution of the system. An y(2) = S F? xo=1-% (2

interesting issue is that the switch between the linear systems - -

is activated by internal events, i.e., the change from one PT-set y(n—1) S-Frt

to another occurs when the place giving the minimum enablifidne matrixy is called observability matrix. The linear system
degree of a transition changes. is observable iffy has full rank. For a non observable system it



is possible to decompose the state spidato two subspaces: has two possible PT-sets, eithBf, = {(p1,t1)} or Wy =
the observable subspaég,, and the non observable subspacd,(ps,t1)}. If the time period is one time unit, the evolution
Xno (X, is the kernel ofy, i.e., ¥ - X,,, = 0). of the system according to PT-sBf; is ruled by the matrix
In a timed continuous Petri net system every linear systefy = (e=! 0;e~! — 1 1). The system matrix for PT-set
¥; : m = A; - m associated to a PT-set can be discretizéd, is Fo = (1 e~! —1;0 e~!). Considering that the initial
in time. The equivalent discrete time system can be writtenarking ismg = (4;2), the initial PT-set for the system is
asX? : m(k + 1) = F; - m(k), with F, = eAi"¥ where§ W, and after one time unit the marking will ha(r = 1) =
is the time period. The output of the net system is given 2 -e=! +2;2-¢e71).
y = S-m. Let us introduce the concept of observability for Assume that the output of the system is the marking-of
a continuous Petri net system and for a given PT-set. (S = (1 0)) then after two steps we hage= (4;2-e~! +2).
Definition 2: A continuous Petri net system will be said tasince the marking op, is not in the output, an external agent
be observable iff given the structure of the n#f, the internal of the system cannot know the PT-set in which the system is
speeds of the transitiond, and the evolution of the outpwt, initially. Let us assume that the initial PT-set of the system is
it is possible to compute the initial marking of the net(7). 1,. An estimate for the PT-sdf/; can be computed using
Definition 3: Given a Petri net system, a PT-set systenkquation 2 withy = (1 0;e~1 0). It turns out that such a
m = A, - m, will be said to be observable iff its associate@quation has no solution. This means that the estimat&/or
observability matrixy; has full rank. is infeasible and therefore the PT-sé¥; is not the initial
Notice that everyF; is an exponential matrix and thereforePT-set of the system.
it can be inverted. Hence continuous Petri net systems can bget ys now consider the same system, Figure 2(a), with the
simulated backwards. This implies that if the marking of thgarking ofp, as the only output of the system. After two steps
system at a given instant is known then the marking of thge output of the system ig = (2;2-¢~!). Again, we cannot

system at any previous instant can be computed. know in advance what the real initial PT-set of the system
is. Let us assume the initial PT-setli8;. The observability
V. Computation of suitable estimates matrix for PT-setV; is¥ = (0 1;e~1—1 1). The estimate that

Equation 2 yields for this PT-setit, = (2 2) that is different

An estimate per each possible PT-set of the net can pfm real initial marking of the system. An initial marking
obtained by means of Equation 2 defined for the first 1 — (2 2) would mean that at the beginning the system

periods. Theoretically, time discretization)(can be done as iq in both PT-sets)¥; and W,. The same estimate, —

small as .desired. It will be assumed that, fo_r a sma_lll enoug@ 2), would have been obtained for any initial markinggof
7, N0 switch between PT-sets takes place in the first 1  greqter than or equal to 2. Hence, this estimate is considered

periods. The computed estimates may be used to filter thQ§fpiciousand should be filtered if a suitable estimate exists
PT-sets that for sure are not ruling the evolution of the systery, yiher PT-set.

P;C}?Iy one PT-set remains, then the system evolves accordlngA basic feature that must be verified by an estimate is that
i . . - . it must becoherentwith the PT-set for which it is computed.
The set of non-suitable estimates can be divided into thrFe ) . .
. . . . . . n other words, it does not make sense to consider an estimate
subsetsinfeasibleestimates, i.e., no solution of Equation 2 ; : )
g}at assigns a greater marking @ than top,, if the PT-

non-coherenestimates, i.e., the PT-set of the estimate is n S
o " . set for which it is computed happens whatp;] < m[ps].
the one for which it was computed, asdspiciousestimates, L - ;
The net system in Figure 2(b) has two PT-sets: we will say

i.e., the estimate belongs simultaneously to several PT'S%Sa't the system is in PT-sa; if mlpi] < mlp,] and the
- 1 1] = 2

Let us show through an example how infeasible and suspicious e .
- > .
estimates can be used 1o filter PT-sets. system is in PT-seW if m[p;] > m[ps]. In the case that

m(p;] = m[ps], the system is considered to be in both PT-
sets simultaneously. Two estimates will be computed for this
system, one per PT-set. The estimate corresponding to PT-set
. a Wy, mlY, (Wa, 1) has to be solution of Equation 2 with
P ©2 1 computed for the linear system associated to the PT-set and
m'Y @) has to fulfill m{"[p)] < m{[ps] @ [p1] >
ﬁl?2) [p2])- The use of strict inequalities allow us to filter also

— 1 0

p2 suspicious estimates like the one just shown in this Section.

For a general Petri net system with PT-sets, a set of
equation systemdy; . .. Ey, can be defined. Each; contains
@ (b) . : e . .
Equation 2 with; and the set of strict inequalities that defines
Fig. 2. (a) A synchronization with two input places. (b) A simple gener%h_e. PT-set. The fOIIOW'ng proposition _eStab“Shes when .the
Petri net system with two PT-sets. initial PT-set can be uniquely determined before a switch
happens.
Consider a system composed of a single synchronizationProposition 4: Assuming that a continuous Petri net is not
with two input placesp; and p., see Figure 2(a). The netinitially in several PT-sets, the PT-setwf, can be determined

p1 p2



before a switch to another PT-set happens iff only one systenil) Residuals: Let us consider the observer designed for
E;, 1 <1 <k has solution. PT-set ;. Such observer assumes that[p;] < m|ps]
and so the system matrix in continuous time & =

. (-101;-101;10 —1). Let us assume that the output
V. Observers and estimates of the system is the marking of places and ps, i.e., S =

. . . 0 0;0 0 1). Under this conditions the observable subspace,
Previous section shows how an estimate can be computed,py

using Equaton 2 The mandrawback ofrat metnod s racl, e 1 e ik of pece on
is very sensitive to the noise that may appear in the OLZ”tpmthe minimum in the expression for the enabling degree, and

In order to overcome the problem of noise, observers are In- S - N
) ) : cannot be observed (in this case it is also implicit and could

troduced. Basically, an observer is a dynamical system whqse )
. . ave been removed). Therefore, the observer sees the evolution
input is the output of the system to be observed. The state of gn . o
. . gf, @ dynamical system ruled by matrix’ = (-1 1;1 — 1)
observer is the estimate for the system to be observed. It V¥I|r lacesy: and
be shown that a great parallelism exists between algebralcaﬁ)i P P1 p3-

. o . J the real PT-set of the system i#/; the system will
computed estimates and observers’ estimates. A well designe . :
volve to a steady state markingp, at which m[p;] =

observer should converge asymptotically to the real sta%e 2] < mip]. An observer with appropriate eigenvalues

of the observed system. For linear systems, Luenbergerr]Cl : . o

. will asymptotically converge to an estimate markingp;| =
observers [4], [6] are widely used. A Luenberger observer : . . )
for a Petri net with a single PT-set can be expressed él’sll[pg] and the residual will go to 0 as time increases. If the

1 — A-+K-(y—S-1h) wherern is the marking estimatey. real PT-set of the system is, ps, then in the steady state

and$ (see Section Ill) are the matrices defining the evolutiopP2] = m(ps] < mp]. It can be checked, that the observer

of the system marking and its output in continuous tirpe, will not reach a steady.state e_stlmate in whiblfp,] = m.[pg]
. : . . and therefore the residual will not tend to 0. In this case,
is the output of the system anK is a design matrix of

: the information given by the residual allows to decide that
parameters. The eigenvalues of the observer can be choagln is not the PT-set of the net system. In general, every

arbitrarily, by means oK, iff the system to be observed is . . . 4 .
. . oli)servers estimate whose residual is not converging to 0O has
observable. If the eigenvalues of the observer are appropriate Yoe filtered

chosgn then the estimate will converge asymptotically t_o the2) Coherent Estimatesit will be said that an estimate
marking of the system. In the case that the system is not

. IS_coherent with the PT-set for which it was computed if it
observable, an observer to estimate the observable subspgc? . .
: €longs to that PT-set. Let us consider again the observer
X,, can be designed.

o . designed for PT-selll; of the system in Figure 2(b) and let
The reliability of an estimate can be measured by means Of “ih o output matrix b& — (1 0 0;0 1 0). In this case
a residual [1]. Let us define a nornj| - || as||x|| = |x1| + y '

. . . ! ; the observable subspace is complete, .= X, and the
...+|x,|. The residual at a given instant,r), is the distance

bet h out of th i 4 th Ut that tEnarking of every place can be estimated. For the observer,
€ Ween, e ou pu~ ot the system an ~e output tha pge has no influence on the dynamics of the system since it is
observer’s estimaten(r), yields, i.e.;r = ||S-m(7) —y(7)||-

not in Wi. In the steady state it verifia®i[ps] = m[ps]. The
observerthinks (assuming that PT-sét/; is the real PT-set)
that in the steady statew[p;] has to equain[ps] so that the
flow of ¢; is equal to the flow ofty. Therefore, the system
One (Luenberger) linear observers will be designed per Pdstimate converges tt[p;] = m(ps] = m[p;]. In this way,
set of the Petri net system. The designed observers will & residualy = |m[p;] —m[p]| + |[m[ps] — m[ps]|, is always
launched simultaneously, and each one of them will yield &gual to 0 in the steady state, independently of the real PT-set
estimate. Some estimates may not be suitable for the Ryf-the system.
sets for which they are computed. Such estimates cannofThe same phenomenon appears in the observer for PT-set
represent the marking of the system and must be filtered. Thigg. The estimate converges ta[p;] = m[p;] andmp;] =
conditions will be presented that the estimates of the observei$p;] = m[p,], independently of the real PT-set of the system.
have to fulfill in order to be suitable: 1) the residual must tengo, the residual always converges to 0.
to zero; 2) the estimates of places in synchronization have taTherefore, residuals are not helping to decide which PT-set
be coherent with the PT-set for which they are computed; 8) the system is the correct one. In principle, both observers
the estimate must not beuspiciousi.e., it must not belong are equally good since both residuals tend to 0. However, in
to several PT-sets at the same time. order to choose the correct one it is enough to consider the
Let us consider the system in Figure 2(b) wikh= (1 1) marking of the places in the synchronization. Since, in this
to show the behavior of the observers and their estimatesse both places are output of the system, it can be directly
under different conditions. The net has two PT-sét5: = decided in which of the PT-sets the system is. In a general
{(p1,t1), (p3, t2)} andWs = {(p2,t1), (p3,t2)}. The system case, the estimate of an observer that is not coherent with its
has a single T-semiflow, (1 1). Hence, in the steady state thg-set has to be filtered.
flow of both transitions is the same. Since the net has two3) SuspiciouEstimates:Let us consider the system in Fig-
PT-sets, two linear observers can be designed. ure 2(b) with output matri¥s = (1 0 0;0 0 1). The observable

A. Filtering estimates



subspace of the observer for PT-38t = {(p2,t1), (ps,t2)} that have solution. When this happens, a way to choose an
is complete. For this observer, the marking of plagedoes estimate consists of choosing the one with minimum residual.
not play any role in the evolution of the system. The estimate
of placep;, will always converge to the real marking of, ; ; ;
m(p;] = m(p;]. In the steady state, the observer will equal ityl' _DeSI_gn_Of a SWItChlng observer _ _
estimates op», andps in order to fire transitions; andt, in This Section illustrates the concepts presented in the previ-
the same amount. Sinaa[ps] is taken as output, the estimate?Us Sections and shows the design of an observer based on
will converge torm[p,] = m[ps] = m[ps). the filter of non-suitable estimates and the simulation of the
Let us assume that the real PT-set of the system is F¥SteM.
set W,. Then, in the steady stat[p;] > mps] = m[ps]
and according to the above reasonings the observer's estimateFilter based observer
will correctly converge to the real marking of the system. | ot ;5 consider the continuous Petri net system in Fig-
If the real PT-set is PT-sa’;, the marking reached in the ;o 1(4) Let the output of the system be the marking of
steady state fulfillsm[p,] > m(p,] = ml[ps], and therefore 1,00, that is;S = (1 0 0). The net has two PT-sets: let
the observer will converge to an estimate marking, such one of the PT-sets b&; = {(p1, 1), (p1,t2), (ps,t3)} and

that r_n_[pl] = m[ps] = m_[pg]. This estimate is conad_eredthe other beZs = {(p1, 1), (p2, t), (p3, t3)}. The observable
susplcmusbgcause it assigns exactly fch_e_ same marklngs §8bspace of the PT-sef, is the marking of placep, and
two places in synchronization for any initial markimgg of ps, while the observable subspace of PT-Eefis the marking
the system such thatio[pz] > mo|p:]. of all the places. Let the internal speeds of the transitions be
A= (0.9 1 1) and the initial marking bang = (3 0 0). The
, marking evolution of this system is depicted in Figure 1(b).
B. Observers’ steady state One observer per PT-set will be designed: observer 1 for
Some conditions to detect non-suitable observers’ estimafeksetZ:1 and observer 2 for PT-sef,. Let the initial state of
have just been presented. A very tight relationship can BEServer 1 beo: = (1 2) and its eigenvalues be-12+2-v/3-
established between these conditions and those describeé im12—2-V/3-4). Since observer 1 can only estimateand
Section IV for the estimates computed using Equation 2: f@s. the first component of its state vector corresponds to the
example, Equation 2 has no solution for a given PT-set iff tfRStimate form[p,], and its second component to the estimate
observer’s estimate for that PT-set has a non null residualfff m[ps]. For observer 2, let the initial state bg, = (1 0 2)
the steady state. In the same way, suspicious or non-cohe@M its eigenvalues be-15, —12+2-v/3-i, —12—2-v/3-9).
estimates appear according to Equation 2 when there existsT&§ evolutions of the estimates of the observers are depicted
observer whose estimate in the steady state is suspicioudnofFigures 3 and 4.
non-coherent. Unlike the estimates computed in Section IV,
the estimate yielded by an observer becomes more reliable as .
time increases. \
When the system enters the steady state, its marking can \
be considered to remain constant and observers stabilize. At 1
this point, those estimates that generate a non null residual or |
are not coherent must be filtered. Suspicious estimates must
also be filtered if there exist at least another estimate that is  °¢|/
not suspicious. If there is only one observer’s estimate that ol
has not been filtered, it is associated to the real PT-set of the /N
system in the steady state. Assuming that in the steady state  *°[%
the system is not in more than one PT-set, the necessary and | /
sufficient condition that has to be verified in order to filter /)
every but one estimate, is equivalent to that of Proposition 4.  “‘es i 15z 25 s 35 ¢ a5 s
Proposition 5: Let us assume that the steady state marki 3
of a system belongs only to one PT-set. In the steady state or%}g&pl]'7 m]|
one observer’s estimate is not filtered, i.e., it generates a null
residual, it is coherent with its PT-set and it is not suspicious The estimate of observer 1 gets quite close to the real
iff only one equation systenk;, 1 < i < n as defined in marking of the system when it is in PT-séf. At time
Section IV associated to PT-sehas solution. 7 = 3.7 the system switches to PT-sBt and the estimate for
During the transient state, the estimates given by the dhbe marking of placeys moves away from the real marking.
servers may not be very reliable since there has not besimilarly, the estimate of observer 2 gets very close to the
enough time to get stabilized. At a given instant in thearking of the system before it switches to PT-8etat time
transient, the number of observer’s estimates that are coherent 1.1. As soon as the system switches, the observer loses
with their PT-set may differ from the number @&; systems the goodness of the estimate. When the system switches back

Observer 1

— mip1]

Evolution of observer 1(ell, el3) is the estimate for
ps))-



Observer 2 Coherent observer with minimum residual
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Fig. 4. Evolution of observer 2(e21, €22, €23) is the estimate for Fig. 6. Minimum residual and coherent obsererncrl, omecr2, omcr3)
(m[p1], m[pa], m[ps]). is the estimate fo{m[p:1], m[pz], m[ps]).

to PT-setZ,, the estimate approaches back quickly to thg' Improving the observer's estimate

marking of the system. The filter described in the previous Subsection allows to

After launching the observers for the PT-sets, a criteridfliminate non-suitable estimates, i.e., infeasible, non-coherent
must be adopted to decide which the best observer's estim@fél suspicious estimates. However, the resulting estimate can
is. First, let us just filter the observer's estimate that has tRéll be improved by taking into account some considerations.
greatest residual, see Figure 5. Before the first switch, obsery8f Us have a look at Figure 6. When the first system switch
2 is chosen. After the switch, some time elapses till the residfPPens, the estimate of observer 2 is very close to the
of observer 2 becomes greater than the residual of obser&'king of the system. By switching from observer 2 to
1. When this happens, the estimate of observer 2 is filteréPServer 1, the estimate became discontinuous and, what it is
A similar phenomenon can be seen when the system switchare undesirable, the estimate for the marking.pbecomes
from PT-setZ; to PT-setZ,: after a little time period the Worse. A similar effect happens when the second system

estimate of observer 2 becomes smaller than the estimateSWftch occurs. Another undesirable phenomenon is that the
observer 1. estimate of the marking g, just disappears (sinam[ps] in

unobservable for observer 1) when the estimate of observer 2
is filtered.

_ Observer with minimum residual —— One way to avoid discontinuities in the resulting estimate,

. Somea || is to use the estimate of the observer that is going to be filtered
ominrt to update the estimate of the observer that is not going to be

1t ~— omints | filtered. This estimate update must be done when a system

| switch is detected. In order not to lose the estimate of the
~s marking of a place when it was almost perfectly estimated

os;.' \\/; e— ] (recall the case ofpy, when the first switch happened) a
ol \‘/<_ simulation of the system can be launched. The initial marking
< f of this simulation is the estimate of the system just before the
o0 / e | observability of the place is lost (in the case of the example,
o5k / i the estimate of observer 2 when the first switch took place).
J Such simulation can be seen as an estimate for those places
“os 1 15z 25 3 s 4 a5 s that are not observable by the observer being considered. The
simulation can only be carried out when an estimate for all the

Fig. 5. Minimum residual observetpminrl, ominr2, ominr3) is the . . . . .
estimate for(m[pi], mlpz], m[ps)). places exists and the residual is quite small. Figure 7 shows

the evolution of the estimate of the system taking into account
the following: when the first switch is detected (observer 2
Notice that from the first system switch till the switch obbecomes non-coherent) the estimate of observer 1 is initialized
observers, observer 2 has the minimum residual. Howeverwith the estimate of observer 2. At that point a simulation
is not coherent with the PT-set for which it was designeds launched to estimate the marking @f. When the second
sincem[p;] < m[ps]. Let us improve the estimate given byswitch is detected (the estimatemaf{p;] becomes smaller than
the observers by filtering those estimates that are not coherirg estimate ofn[p]) the estimate of observer 2 is initialized
with their PT-sets, see Figure 6. In this way, the first switclith the estimate of observer 1. Notice that once the estimate
is immediately detected. is close to the system marking, it does not move away from it,



even if a switch happens. Based on these ideas, Algorithnidésigned: either the estimate generatemma null residualor
sketches how an estimaisst, can be computed as the systenit is non-coherenbr suspiciousBased on the idea of choosing

evolves.
Algorithm 6

Launch simultaneously one observer per PT-set

Repeat

esto .= suitable observer's estimate with minimum residual

If estyo # () then % There exists a suitable estimate
If esto does not estimate every place and there exists aunobservable space of the PT-set driving the evolution of the

simulation that is coherent witbsto then

the suitable estimate with the smallest residual, a switching
observer has been proposed. An interesting feature is that
the observer launches a simulation of the system when the
marking estimate is good enough. The use of such simulation
allows to improve the estimate in two ways: the estimate does
not change drastically when a system switch is detected; the

system may be estimated.

est := esto plus the values of the simulation that
are not inesto
Else
est = esty
End_If (1]
If a system switch is detectéden
Update the estimates of the observers with
If est estimates every place with small residdaén
Create/substitute a simulation takingt as
the initial marking

End_If (2]
End_If
Else % No estimate is suitable [3]
Take any observer's estimate
End._If
End_Repeat [4]

(5]
Combine observer and Simulation

‘ ‘ ‘ ‘ C = (6]
-+ m[p2]

[7]
(8]
[l

obssl
11r

oo /
0.8

0.7

e [10]

L L L L L L L L L
0.5 1 15 2 25 3 35 4 45 5

Fig. 7. Resulting observer’s estimate that makes use of a simulation,
(obssl, obss2, obss3) is the estimate fofm[pi], m[pz2], m[ps]).

The resulting observer can be seen as a set of switching
linear observers. One of the main advantages is that the
residual does not increase sharply when the PT-set of the
system changes. Another interesting feature is that the use
of a simulation allows to estimate the marking of places that
in some PT-sets are in principle not observable: in Figure 7
it can be seen that the marking pf can be estimated, even
when it is unobservable due to PT-sét being active.

VIl. Conclusions

In order to design an observer for a timed continuous Petri
net one linear (Luenberger) observer per PT-set has been
considered. As it happens when dealing with estimates com-
puted algebraically, the estimate yielded by a given observer
may not be suitable for the linear system for which it was
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