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Abstract. Fluidification is a common relaxation technique used to deal
in a more friendly way with large discrete event dynamic systems. In
Petri nets, fluidification leads to continuous Petri nets systems in which
the firing amounts are not restricted to be integers. For these systems
reachability can be interpreted in several ways. The concepts of reach-
ability and lim-reachability were considered in [7]. They stand for those
markings that can be reached with a finite and an infinite firing sequence
respectively. This paper introduces a third concept, the δ-reachability. A
marking is δ-reachable if the system can get arbitrarily close to it with a
finite firing sequence. A full characterization, mainly based on the state
equation, is provided for all three concepts for general nets. Under the
condition that every transition is fireable at least once, it holds that the
state equation does not have spurious solutions if δ-reachability is con-
sidered. Furthermore, the differences among the three concepts are in
the border points of the spaces they define. For mutual lim-reachability
and δ-reachability among markings, i.e., reversibility, a necessary and
sufficient condition is provided in terms of liveness.

1 Introduction

Discrete systems with large populations or heavy traffic appear frequently in
many fields: manufacturing processes, logistics, telecommunication systems, traf-
fic systems,... It becomes, therefore, interesting to develop adequate formalisms
and tools for the analysis and verification of such systems. The “natural” ap-
proach to study the above mentioned kind of systems consists in using discrete
models. The main drawback is that often an exploration of the state space is
needed for the verification of properties. Unfortunately, the size of the state space
can grow exponentially with respect to the size of the population of the system,
and so many properties are computationally too heavy to be verified.

An interesting approach to study discrete systems with large populations is
based on the fluidification of the model. Thus, it is not discrete any more but
continuous. This is a classical relaxation technique that can also be applied in
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the context of Petri nets. Usually, but not always [9], the greater the population
of the discrete system the better the continuous approximation.

In PNs, fluidification has been introduced independently from three different
perspectives:

– At the net level fluidification was introduced and developed by R. David and
coauthors since 1987 [3, 1]. In this case, the fluidification of timed discrete
systems generates deterministic continuous models, and also hybrid models
if there is a partial fluidification.

– Analogously, fluidifying the firing count vector (thus also the marking) in the
state equation allows the use of convex geometry and linear programming
instead of integer programming, making possible the verification of some
properties in polynomial time. The systematic use of linear programming on
autonomous and timed system was proposed also in 1987 [8, 10].

– K. Trivedi and his group introduced [11, 2] a partial fluidification on some
stochastic models. The fluidification only affects one or a limited number of
places originating stochastic hybrid systems.

Like in [7], in this paper autonomous Petri net models will be considered. In
particular, this means that no time interpretation will be applied on the firing
of the transitions. A total nondeterminism on the evolution of the system exists.
Notice, however, that if the transitions are timed, the evolution/behaviour of the
system will always be constrained to some of the possible evolutions/behaviours
of the autonomous system.

The paper is organized as follows: in Section 2 reachability in continuous
systems is introduced formally and by means of examples. Three different ways
of understanding (interpreting) reachability will be considered: reachability in a
finite number of steps or simply reachability, reachability in an infinite number
of steps or lim-reachability, and δ-reachability that has to do with the capacity
of the system to get arbitrarily close to a given “continuous” marking. In order
to make the paper more readable, a preview of the main results will be given
in that section. Sections 3, 4 and 5 are devoted to the characterization of the
sets of reachable markings according to the different concepts: reachability, lim-
reachability and δ-reachability respectively. Moreover, it will be seen that it is
decidable whether a given “continuous” marking belongs to any of those three
concepts. Finally, Section 6 studies reversibility in continuous systems.

2 Definitions and Preview

In the following it is assumed that the reader is familiar with Petri nets (PNs)
(see [6, 4] for example). The usual PN system will be denoted as 〈N ,m0〉, where
N = 〈P, T,Pre,Post〉. If not explicitly said, all the Petri nets systems considered
here are continuous. A continuous system is understood as a relaxation of a
discrete system. The main difference between continuous and discrete PNs is
in the firing count vector and consequently in the marking, which in discrete
PNs are restricted to be in the naturals, while in continuous PNs are relaxed



into the non-negative real numbers. The marking of a place can be seen as an
amount of fluid being stored, and the firing of a transition can be considered as
a flow of this fluid going from a set of places (input places) to another set of
places (output places). Thus, instead of tokens and discrete firings, it is more
convenient to talk of levels in the places (deposits/reservoirs) and flows through
transitions (valves).

The firing of a transition is also modified and brought to the non-negative
real domain. A transition t is enabled at m iff for every p ∈ •t, m[p] > 0. In other
words, the enabling condition of continuous systems and that of discrete ordinary
systems can be expressed in an “analogous” way: every input place should be
marked. Notice that to decide whether a transition in a continuous system is
enabled or not it is not necessary to consider weights of the arcs going from
the input places to the transition. However, the arc weights are important to
compute the enabling degree of a transition and to obtain the new marking after
a firing. As in discrete systems, the enabling degree at m of a transition measures
the maximal amount in which the transition can be fired in a single occurrence,
i.e., enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in a certain amount
α ≤ enab(t,m) leads to a new marking m′, and it is denoted as m αt−→m′. It holds
m′ = m+α ·C[P, t], where C = Post−Pre is the token flow matrix (incidence
matrix if N is self-loop free). Hence, as in discrete systems, m = m0 +C ·σ, the
state (or fundamental) equation summarizes the way the marking evolves. Right
and left natural annullers of the token flow matrix are called T- and P-semiflows,
respectively. As in discrete systems, when y · C = 0, y > 0 the net is said to
be conservative, and when C · x = 0, x > 0 the net is said to be consistent. A
set of places Θ is a trap iff Θ• ⊆ •Θ. Similarly, a set of places Σ is a siphon iff
•Σ ⊆ Σ•. The support of a vector x ≥ 0 will be denoted as ‖x‖ and represents
the set of positive elements of x.

In order to illustrate the firing rule in a continuous system, let us consider the
system in Figure 1(a). The only enabled transition at the initial marking is t1
whose enabling degree is 1. Hence, it can be fired in any real quantity going from
0 to 1. For example, firing by 0.5 would yield marking m1 = (0.5, 0.5, 1, 0).
At m1 transition t2 has enabling degree equal to 0.5; if it is fired in this amount
the resulting marking is m2 = (0.5, 0.5, 0, 0.5). Both m1 and m2 are reachable
markings with finite firing sequences, or simply reachable markings.

The set of all reachable markings for a given system 〈N ,m0〉 is denoted as
RS(N ,m0):

Definition 1 RS(N ,m0) = { m| a finite fireable sequence σ = α1ta1 . . . αktak

exists such that m0
α1ta1−→m1

α2ta2−→m2 . . .
αktak−→mk = m where tai ∈ T and αi ∈

IR+}.
An interesting property of RS(N ,m0) is that it is a convex set (see [7]).

That is, if two markings m1 and m2 are reachable, then for any α ∈ [0, 1]
αm1 + (1− α)m2 is also a reachable marking.

Let us consider again the system in Figure 1(a) with initial marking m0 =
(0.5, 0.5, 0, 0.5). At this marking either transition t1 or transition t3 can be
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Fig. 1. (a) Autonomous continuous system (b) Lim-Reachability space
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Fig. 2. (a) Autonomous continuous system (b) Reachability space and Lim-
Reachability space coincide

fired. The firing of t3 in an amount of 0.5 makes the system evolve to marking
(0.5, 0.5, 0.5, 0) from which t2 can be fired in an amount of 0.25 leading to
marking (0.5, 0.5, 0, 0.25). Now, the markings of places p1, p2 and p3 are the
same that those of the system at m0, but the marking of p4 is half of its marking
at m0. The continuous firing of transitions t2 and t3 by its maximum enabling
degree causes the elimination of half of the marking of p4. Assume that we go on
firing transitions t2 and t3. Then, as the number of firings increases the marking
of p4 approaches 0, value that will only be reached in the limit. Notice that the
marking reached in the limit (0.5, 0.5, 0, 0) corresponds to the emptying of
an initially marked trap (Θ = {p3, p4}, Θ• = •Θ = {t2, t3}), fact that does not



occur in discrete systems. From the point of view of the analysis of the behaviour
of the system, it is interesting to consider this marking as limit-reachable, since
it is the one to which the state of the system may converge. We will define the
set of such markings that are reachable with a finite/infinite firing sequence:

Definition 2 [7] Let 〈N ,m0〉 be a continuous system. A marking m ∈ (IR+ ∪
{0})|P | is lim-reachable, iff a sequence of reachable markings {mi}i≥1 exists such
that

m0
σ1−→m1

σ2−→m2 · · ·mi−1
σi−→mi · · ·

and lim
i→∞

mi = m. The lim-reachable space is the set of lim-reachable markings,

and will be denoted lim-RS(N ,m0).

Figure 1(b) depicts the lim-reachability space of system in Figure 1(a). It is
not necessary to represent the marking of place p1 since m1 = 1−m2. The set
of lim-reachable markings is composed of the points inside the prism, the points
in the non shadowed sides, the points in the thick edges and the points in the
non circled vertices.

For some systems, the sets RS(N ,m0) and lim-RS(N ,m0) are identical.
This means that in this case, with regard to the set of reachable markings, there
is no difference between considering sequences of finite or infinite length. See
Figure 2 for an example. Only m2 and m4 are represented since m1 = 1 −m2

and m3 = 1−m4. The innner points of the square defined by the vertices (0, 0),
(0, 1), (1, 1) and (1, 0), and the thick lines in Figure 2(b) are part of the
reachability and the lim-reachability space, while the points going from m0 to
(0, 1) (including (0, 1)) do not belong to these sets.

However, in general, the set of reachable markings, RS(N ,m0) is a subset of
the set of lim-reachable markings, lim-RS(N ,m0). For the system in Figure 3(b),
neither p1 nor p2 can be emptied with a finite firing sequence because every time
a transition is fired some marks are put in both places. For that system the
set of reachable markings is (α, 2 − α), 0 < α < 2. Nevertheless, considering
the sequence 1

2 t1,
1
4 t1,

1
8 t1, . . ., in the k-th step, the system reaches the marking

(2−k, 2−2−k). When k tends to infinity the marking of the system tends to (0, 2).
Therefore the infinite firing of t1 (t2) will converge to a marking in which p1 (p2)
is empty. Thus the set of markings reachable in the limit is (α, 2−α), 0 ≤ α ≤ 2.
Notice that the only difference between both sets lim-RS(N ,m0) and RS(N ,m0)
is in the markings (0, 2) and (2, 0). Observe that even under consistency and
conservativeness RS(N ,m0) 6= lim-RS(N ,m0).

For the system in Figure 3(a), p1 (p2) can be emptied with the firing of t1
(t2) in an amount of 1. Hence, although the systems in Figure 3 have the same
incidence matrix, their sets of finitely reachable markings are not the same.

Both RS(N ,m0) and lim-RS(N ,m0) are not in general closed sets. For exam-
ple in Figure 2(b) the points on the segment going from (0, 0) (initial marking)
to (0, 1) do neither belong to RS(N ,m0) nor to lim-RS(N ,m0). Nevertheless,
any point on the right of this segment does belong to both sets RS(N ,m0) and
lim-RS(N ,m0). For a given set A, the closure of A is equal to the points in A
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Fig. 3. Continuous systems that have the same incidence matrix and whose reachability
spaces do not coincide.

plus those points which are infinitely close to points in A, but are not contained
in A. In the case of the set depicted in Figure 2(b) its closure is equal to the
inner and edge points of the square defined by the vertices (0, 0), (0, 1), (1, 1)
and (1, 0), that is, it is obtained by adding the segment [(0, 0), (0, 1)].

Focusing on the spaces defined by RS(N ,m0) and lim-RS(N ,m0) and closing
them, it will be noticed that the points limiting both spaces are exactly the same.
This is because if the system can get as close as desired to a given point with an
infinite sequence, it can also get as close as desired with a finite sequence and
vice versa. Hence, the following property can be stated:

Property 3 The closure of RS(N ,m0) is equal to the closure of lim-RS(N ,m0).

Assume that, given a system, RS(N ,m0) and lim-RS(N ,m0) are not iden-
tical sets, i.e., RS(N ,m0)⊆/ lim-RS(N ,m0). This means that for every m in
lim-RS(N ,m0) \ RS(N ,m0), m is a border point of lim-RS(N ,m0); that is,
there are markings in RS(N ,m0) infinitely close to m that do not belong to
lim-RS(N ,m0). Let us make a final consideration on the system of Figure 1(a).
It has been seen that the initial firing of t1 enables t2 and that an infinite se-
quence consisting on firing t2 and t3 will empty p3 and p4, reaching marking
(0.5, 0.5, 0, 0). In that example t1 was fired in an amount of 0.5. Nevertheless,
p3 and p4 can be emptied also if t1 is fired in an amount α such that 0 < α ≤ 1.
For example, if we take α = 0.1, we fire t1 in an amount of 0.1 and then fire t2
five times in an amount of 0.1. Now we can fire completely, in an amount of 0.5,
transition t3. Repeating this procedure, in the limit p3 and p4 become empty.
Thus, it can be said that the marking (1− α, α, 0, 0) is lim-reachable for any
α such that 0 < α ≤ 1. Hence, marking (1, 0, 0, 0) is not lim-reachable but
the system can get as close as desired to it by taking a small enough α. This
marking can then be interpreted as the fact that a little leak of fluid from p1 to
p2 can cause the emptying of p3 and p4. In some situations, it may be useful to



consider those markings like (1, 0, 0, 0), that are not reachable, but for which
the system can get as close as desired.

Let us consider a norm in order to determine the proximity of two markings.
Let |x| denote the norm of vector x = (x1, . . . , xn) defined as: |x| = |x1|+ . . . +
|xn|. A new reachability concept for continuous systems will be introduced: the
δ-reachability. The set of δ-reachable markings will be written as δ-RS(N ,m0)
and accounts for those markings to which the system can get as close as desired
firing a finite sequence. Formally:

Definition 4 δ-RS(N ,m0) is the closure of RS(N ,m0) : δ-RS(N ,m0) = { m |
for every ε > 0 a marking m′ ∈ RS(N ,m0) exists such |m′ −m| < ε}.

Since the closure of RS(N ,m0) is equal to the closure of lim-RS(N ,m0),
δ-RS(N ,m0) is also equal to the set of markings to which the system can get as
close as desired firing an infinite sequence. RS(N ,m0) and lim-RS(N ,m0) are,
therefore, subsets of δ-RS(N ,m0).

Therefore, till now three different kinds of reachability concepts have been
defined:

– Markings that are reachable with a finite firing sequence, RS(N ,m0).
– Markings to which the system converges, eventually, with an infinitely long

sequence, lim-RS(N ,m0).
– Markings to which the system can get as close as desired with a finite se-

quence, δ-RS(N ,m0).

Let us finish this section by defining the linearized reachability set with re-
spect to the state equation:

Definition 5 LRS(N ,m0) = {m|m = m0+C·σ ≥ 0 with σ ∈ (IR+∪{0})|T |}.

Notice that given a consistent system (i.e., ∃ x > 0|C · x = 0) it holds:
LRS(N ,m0) = {m|m = m0 + C · σ ≥ 0 with σ ∈ IR|T |}. In [7] it was
shown that for consistent systems in which every transition is fireable at least
once, the sets LRS(N ,m0) and lim-RS(N ,m0) are the same. This result will be
generalized by describing the set of lim-reachable markings of a general system.

By definition LRS(N ,m0) is a closed set. m is a border point of LRS(N ,m0)
iff for every ε > 0 there exists m′, |m′ −m| < ε such that m′ 6∈ LRS(N ,m0).

The open set of LRS(N ,m0) is the result of removing every border point
from LRS(N ,m0) and will be denoted as ]LRS(N ,m0)[.

Notice that given a system 〈N ,m0〉 if there exists y 6= 0 such that y ·C = 0
then every m ∈ LRS(N ,m0) is a border point of LRS(N ,m0), and so in this case
]LRS(N ,m0)[ = ∅. If such y exists all the points in LRS(N ,m0) are contained
in a hyperplane of smaller dimension than the number of places. In particular,
if a system has a p-semiflow, every marking in LRS(N ,m0) is a border point.
Those markings having null components are also border points of LRS(N ,m0).

Since all reachable, lim-reachable and δ-reachable markings are solution of
the state equation, the following relation is satisfied:



RS(N ,m0) ⊆ lim-RS(N ,m0) ⊆ δ-RS(N ,m0) ⊆ LRS(N ,m0).
Along the paper this relationship among the different sets will be completed

showing that the open linearized set, ]LRS(N ,m0)[, is contained in RS(N ,m0)
and that δ-RS(N ,m0) = LRS(N ,m0) if every transition is fireable at least once.

3 RS(N , m0)

The goal of this section is first to provide a full characterization of the set of
reachable markings (Subsection 3.1) and then to show a computation algorithm
that decides the reachability of a given target marking (Subsection 3.2).

3.1 Reachability characterization

Before showing the main result (Theorem 12), some intermediate lemmas will
be presented in order to ease the final characterization. First, let us introduce
an algorithm to compute the sets of transitions fireable from the initial marking,
and some interesting results dealing with continuous systems.

Let FS(N ,m0) be the set of sets of transitions for which there exists a
sequence fireable from m0 that contains those and only those transitions in the
set. Formally,

Definition 6 FS(N ,m0) = { θ| there exists a sequence fireable from m0, σ,
such that θ = ‖σ‖}.

Algorithm 7 (Computation of the set FS(N ,m0))

1. Let V be the set of transitions enabled at m0

2. FS := {v|v ⊆ V } % all the subsets of V including the empty set
3. Repeat

3.1. take f ∈ FS such that it has not been taken before
3.2. fire sequentially from m0 every transition in f without disabling

any enabled transition. Let m be the reached marking.
3.3. V := {t| t is enabled at m and t 6∈ f}
3.4. FS := FS ∪ {f ∪ v|v ⊆ V }

4. until FS does not increase

Notice that step 3.2. can always be achieved since for any element f ∈
FS(N ,m0) there exists a fireable sequence that contains every transition in
f . Algorithm 7 accounts for all possible subsets of transitions that can become
enabled, and so its complexity is exponential on the number of transitions and
so is the size of the set FS(N ,m0). As an example, considering the net in
Figure 4 with initial marking m0 = (1, 0, 1, 1, 0) the result of Algorithm 7
is FS(N ,m0) = { {}, {t2}, {t3}, {t4}, {t2, t3}, {t2, t4}, {t3, t4}, {t2, t3, t4},
{t1, t2}, {t4, t5}, {t1, t2, t3}, {t1, t2, t4}, {t2, t4, t5},{t1, t2, t4, t5},{t3, t4, t5},
{t1, t2, t3, t4}, {t2, t3, t4, t5}, {t1, t2, t3, t4, t5}}.
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Now let us introduce four lemmas that will help to characterize the set of
reachable markings. The first one simply states that continuous systems are
homothetic w.r.t. the scaling of m0.

Lemma 8 [7] Let 〈N ,m0〉 be a continuous system. If σ is a fireable sequence
yielding marking m, then for any α ≥ 0, ασ is fireable at αm0 yielding marking
αm, where ασ represents a sequence that is equal to σ except in the amount of
each firing, that is multiplied by α.

Although this section deals with those markings that are reachable with
a finite firing sequence, a lemma that has to do with the markings that can
be reached in the limit will be presented. Lemma 9 establishes that if all the
transitions in the support of a given firing vector σ are enabled, then m =
m0+C ·σ ≥ 0 is reachable in the limit, whatever the value of σ is. Furthermore,
there exists a sequence of reachable markings that are “in the direction” of m.

Lemma 9 Let 〈N ,m0〉 be a continuous system. Let m = m0 + C · σ ≥ 0,
σ ≥ 0 and m0 such that for every t ∈ ‖σ‖ enab(t,m0) > 0. Then, there exists
a succession of reachable markings m1,m2, . . . fulfilling m1 = m0 + β1C · σ,
m2 = m0 + β2C · σ, . . . with 0 < β1 < β2 < . . . that converges to m.

Proof. Since at m0 every transition of ‖σ‖ is enabled, α and σ′ exist such that
σ′ is fireable from m0 and σ′ = ασ, i.e., a sequence proportional to the vector
leading from m0 to m can be fired. If α ≥ 1, it is clear that m can be reached from
m0. Otherwise, the firing of σ′ leads to m0+C·ασ = (1−α)m0+αm0+C·ασ =
(1 − α)m0 + αm. By Lemma 8, if σ′ was fireable from m0, then (1 − α)σ′ is
fireable from (1− α)m0. In this way, we have

αm + (1− α)m0
(1−α)�′−→ αm + α(1− α)m + (1− α)2m0



Repeating this procedure, in the iteration n we reach the marking

αm(1 + (1− α) + (1− α)2 + . . . + (1− α)n) + (1− α)nm0

Thus, the marking of the system as n goes to infinity converges to m. ut
Based on this result a part of the set of reachable markings can be described.

Lemma 10 Let 〈N ,m0〉 be a continuous system. Let m = m0 + C · σ ≥ 0,
σ ≥ 0 and for every t ∈ ‖σ‖ enab(t,m0) > 0 and enab(t,m) > 0. Then
m ∈ RS(N ,m0).

Proof. Every t ∈ ‖σ‖ is enabled at m. This means that for every t ∈ ‖σ‖ all
its input places are positively marked at m. Then, we can define an m′ such
that m′ = m0 + C · (1 + α)σ ≥ 0 with α > 0. According to Lemma 9 there is
a succession of markings that converges to m′. Since m is in the line that goes
from m0 to m′ we can stop that sequence at a given step and reach exactly m
in a finite number of firings. ut

The following last lemma imposes a necessary and sufficient condition for the
fireability of a transition in terms of siphons.

Lemma 11 Let m ∈ RS(N ,m0). Transition t is not fireable for any successor
of m iff there exists an empty siphon at m containing a place p such that p ∈ •t.

Proof.
(⇐)
If there exists such an empty siphon Θ, no transition in Θ• is fireable.
(⇒)
Assume t is not fireable for any successor of m. Then there exists a place p such
that p ∈ •t and m(p) = 0. Furthermore, no input transition of p, t′, can ever
be fired. Hence, for every t′ there exists an empty input place p′. Repeating this
reasoning we obtain a set of empty places Q. This set Q has the property that
all its input transitions (•Q) are output transitions (Q•). Hence Q is an empty
siphon. ut

Before going on with the characterization of the set of reachable markings
let us make some considerations on the conditions a given marking m should
fulfill in order to be reachable. First of all, it is clear that a necessary condition
for m to be reachable is that it has to be solution of the state equation, that
is, there must exist σ such that m = m0 + C · σ. Furthermore, ‖σ‖ must be
in FS(N ,m0) in order to have a fireable sequence. In Section 2 it has been
seen that some marked traps can be emptied in a continuous system with the
firing of an infinite sequence. If only finite firing sequences are considered, no
marked trap can be emptied. Since now the interest lies in finite firing sequences
those σ’s that correspond to a firing count vector that empties (or fills and then
empties) a trap have to be explicitly forbidden. As it will be seen, these necessary
conditions are also sufficient for a marking to be reachable.



Given a net N and a firing sequence σ, let us denote as N� the net obtained
removing from N the transitions not in the support of σ and the resulting
isolated places. In other words, N� is the net composed of the transitions of
N in the support of σ and their input and output places. Using the previous
lemmas a full characterization of the set of reachable markings is obtained.

Theorem 12 A marking m ∈ RS(N ,m0) iff

1. m = m0 + C · σ ≥ 0, σ ≥ 0
2. ‖σ‖ ∈ FS(N ,m0)
3. there is no empty trap in N� at m

Proof.
⊆
Let m ∈ RS(N ,m0). Then, there exists σ ≥ 0 such that m = m0 + C ·σ and
‖σ‖ ∈ FS(N ,m0). Furthermore, there cannot be an empty trap in N� at m
since it would mean that the trap was emptied with a finite firing sequence.
⊇
Let m be such that m = m0 +C ·σ ≥ 0, σ ≥ 0, ‖σ‖ ∈ FS(N ,m0) and there is
no empty trap in N� at m. It will be shown that m can be reached from m0 by
a finite firing sequence. This will be done in three steps: from m0 we will reach
a marking m′ at which every transition t ∈ ‖σ‖ is enabled. From m′ we will
make the system evolve to a marking m′′ at which also every transition t ∈ ‖σ‖
is enabled and is as closed as desired to m. Finally, due to the way m′′ is defined
it is shown that m is reachable from m′′. Although the order of the sequence
of reachable markings is m0, m′, m′′ and m, we will start by defining m′′ and
showing how it can be reached.

If every t ∈ ‖σ‖ is enabled at m then m′′ = m. Otherwise, we will consider
the system with marking m and we will fire backwards and sequentially tran-
sitions in ‖σ‖ until we reach a marking (m′′) at which every transition in ‖σ‖
is enabled. Notice that this backward firing is equivalent to a forward firing in
the reverse net (changing directions of arcs). We will reason that such a firing
from m to m′′ is always feasible. Notice that in the reverse net traps have be-
come siphons (structural deadlocks) and the forward firing in the reverse net of
transitions in ‖σ‖ never involves the filling of empty siphons of N� at m. This
is because according to the initial condition 3, “there is no empty trap in N�
at m”. Therefore, by Lemma 11 we can assure that every transition t ∈ ‖σ‖
can be fired in the reverse net. Let us denote σ̂ the firing count vector such that
m = m′′ + C · σ̂ with ‖σ̂‖ = ‖σ‖.

Now we will define m′ as a marking reached from m0 at which every tran-
sition t ∈ ‖σ‖ is enabled, m′ = m0 + C · σ′ and σ′ ≤ σ. This is always
possible since ‖σ‖ belongs to FS(N ,m0) and so we can fire small amounts of
the transitions in ‖σ‖ until every transition in ‖σ‖ is enabled. We will define
σ′′ as σ′′ = σ−σ′− σ̂, then m′′ = m′+C ·σ′′. Notice that since σ′ and σ̂ can
be taken as small as wanted and their supports are contained in the support of
σ, it can always be verified that σ′′ ≥ 0 and ‖σ‖ = ‖σ′′‖. Moreover, Lemma 10



can be directly applied on m′ and σ′′ obtaining that m′′ is reachable from m′.
And finally, we can conclude that m is reachable from m0. ut

Figure 5 sketches the trajectory built by the proof of Theorem 12 to reach
m.

m

m’

σ m

m’’

σ

σ ’’

σ’

0

Fig. 5. Trajectory to reach m with a finite firing sequence

As an example, let us take the system in Figure 6. The marking m =
(0, 0, 0, 0, 1) is solution of the state equation and can be obtained with vectors:
σ1 = (1, 0, 1, 1, 0, 0) and σ2 = (0, 1, 0, 0, 1, 0). Obviously, σ2 fulfills the
conditions of Theorem 12, and so it can be concluded that m can be reached.
However, if we consider the system that results of removing transitions t2, t5
and the place p4, then the only possibility to reach m is with σ1 or with σ1 +x
where x is a T-semiflow. Notice that the nets N�1 and N�1+x have an empty
trap at m composed of {p2, p3}. Hence, the third condition of Theorem 12 is
violated and m cannot be reached with a finite sequence.

3.2 Deciding reachability

Based on Theorem 12, an algorithm that decides whether a given marking m
is reachable or not is introduced. A necessary condition for m to be reached is
that there must exist a σ ≥ 0 such that m = m0 + C · σ ≥ 0. Given a marking
m the number of σ ≥ 0 fulfilling the state equation can be infinite. However,
as stated in Theorem 12, it is only interesting to consider those σ’s such that
‖σ‖ ∈ FS(N ,m0). Furthermore, it is not necessary to consider two different σ’s
that are solution of the state equation and have the same support, since clearly
one of those σ’s fulfills the condition on the traps of Theorem 12 iff the other
one also fulfills it, and the support of one belongs to FS(N ,m0) iff the other
one also belongs to it. This reasoning reduces the number of σ’s to be considered
to a finite number.

Now let us take into account a set Σ of σ’s that are solution of the state
equation, have different supports and the support of all of them is in FS(N ,m0).
To decide reachability it is only necessary to consider those σ’s with minimal
support. This is because if there is a non minimal σ ∈ Σ fulfilling the condition
on the traps of Theorem 12, then its support contains the support of a σ′ ∈ Σ
that also fulfills this condition.
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Fig. 6. Marking (0, 0, 0, 0, 1) can be reached with a finite and with an infinite firing
sequence

Summing up, to decide reachability it is only necessary to consider the σ’s
in a set Σ = {σ1, . . . , σk} that fulfills the following conditions:

1. m = m0 + C · σi ≥ 0 and ‖σi‖ ∈ FS(N ,m0)
2. ‖σi‖ is minimal, i.e., for every j 6= i ‖σj‖ 6⊆ ‖σi‖
3. for every γ such that m = m0 + C · γ ≥ 0 and ‖γ‖ ∈ FS(N ,m0) there

exists i ∈ {1, . . . , k} such that ‖σi‖ ⊆ ‖γ‖

The third condition guarantees that every σ that verifies the first two con-
ditions is included in Σ.

The following algorithm takes as inputs a continuous system, a target mark-
ing m, and a set Σ verifying the above conditions for the target marking. The
output of the algorithm is the boolean variable answer that takes the value YES
iff m is reachable. The general idea of the algorithm is first checking whether all
traps are marked at m, step 2, and whether there is an empty trap at m that
was marked at m0, step 3. In these both cases a quick answer to reachability
can be given. Otherwise, it is required to iterate on the elements of Σ.

Algorithm 13
INPUT: 〈N ,m0〉, m, Σ = {σ1, . . . , σk}
OUTPUT: answer
1. If Σ = ∅ then answer:=NO; exit; end if
2. If there is no empty trap in N at m then answer:=YES; exit; end if



3. If there is an empty trap in N at m that was not empty at m0 then
answer:=NO; exit; end if

4. i:=0
5. loop

5.1. i:=i+1
5.2. If there is no empty trap in N�i at m then answer:=YES;

exit; end if
6. until i=k
7. answer:=NO

In [5] a method to compute traps based on the solution of a system of linear
equations was proposed. According to this method the support of a solution of
that system represents the places of a trap. In steps 2 and 5.2 of Algorithm 13,
we are interested only in empty traps at m, therefore only the subnet composed
of empty places at m has to be considered. In step 3, the focus is on the empty
traps at m that were marked at m0. The only thing that has to be included in
the system of inequalities proposed in [5] is forcing that a solution of the system
must have at least one non null component corresponding to a non empty place
at m0.

4 lim-RS(N , m0)

As it has been shown, some traps (for example the one composed of p3 and p4 in
the system of Figure 1(a)) can be emptied with an infinite firing sequence. Hence
when facing the problem of describing the set of lim-reachable markings, it is not
necessary to exclude those markings that are result of the state equation and that
have empty traps that were previously filled. In this way, the characterization of
the lim-RS(N ,m0) is easier and it is only necessary to care about the fireability
of the firing count vector σ (conditions 1. and 2. of Theorem 12).

Theorem 14 A marking m ∈ lim-RS(N ,m0) iff

1. m = m0 + C · σ ≥ 0, σ ≥ 0
2. ‖σ‖ ∈ FS(N ,m0)

Proof.
⊆
Let m ∈ lim-RS(N ,m0). Since m is reached by a finite or infinite firing
sequence there must exist a firing count vector, σ ≥ 0, corresponding to this
sequence such that m = m0 + C · σ. If the sequence was fireable then ‖σ‖ ∈
FS(N ,m0).
⊇
Let m be such that m = m0 + C · σ ≥ 0, σ ≥ 0 and ‖σ‖ ∈ FS(N ,m0).
From m0 it is possible to fire sequentially a subset of transitions in ‖σ‖, since
it belongs to FS(N ,m0), reaching marking m′ = m0 + C · σ′ at which every
transition in ‖σ‖ is enabled. Since σ′ can be taken arbitrarily small, it can always



fulfill σ−σ′ ≥ 0. Lemma 9 can be applied on the system (N ,m′) and therefore
marking m can be reached in the limit. ut

According to Theorem 14 checking whether a given marking is reachable in
the limit is a decidable problem. For the system in Figure 6 without transitions
t2, t5 and place p4 it can can be assured that the marking m = (0, 0, 0, 0, 1) is
lim-reachable (but not reachable) since it is solution of the state equation with
σ = (1, 0, 1, 1, 0, 0) and ‖σ‖ ∈ FS(N ,m0).

If the system fulfills some initial conditions, then the set lim-RS(N ,m0) can
be described without the use of FS(N ,m0). Furthermore, those conditions can
be checked in polynomial time. For example, for a system, 〈N ,m0〉, in which
every transition is enabled at m0, it holds FS(N ,m0) = {q|q ⊆ T} and therefore
every σ ≥ 0 belongs to FS(N ,m0).

Corollary 15 If for every transition t enab(t,m0) > 0 then lim-RS(N ,m0) =
LRS(N ,m0).

Let 〈N ,m0〉 be a consistent system in which every transition is fireable at
least once, i.e., for every transition t there exists m′ ∈ RS(N ,m0) such that
enab(t,m′) > 0. Clearly T ∈ FS(N ,m0). Since the system is consistent it has
a T-semiflow x > 0 that can be added to a given σ, m = m0 + C · σ ≥ 0,
fulfilling σ +x > 0. It is obvious that C ·σ = C · (σ +x) and that ‖σ + x‖ = T .
Therefore, m is lim-reachable.

Corollary 16 ([7]) If (N ,m0) is consistent and every transition is fireable at
least once, then lim-RS(N ,m0) = LRS(N ,m0).

5 δ-RS(N , m0)

Let us now assume that given a system, 〈N ,m0〉, every transition is fireable at
least once. That is for every transition t there exists m ∈ RS(N ,m0) such that
enab(t,m) > 0. The existence of transitions that do not fulfill this condition can
be easily detected (see [7]): it is sufficient to iterate on the enabled transitions
firing them in half its enabling degree until no more transitions become enabled.
Those transitions that are not enabled after the iteration can never be fired.
Notice that this assumption does not imply a loss of generality in the following
results, since if a transition can never be enabled it can be removed without
affecting any possible evolution of the system or changing the set of reachable
markings.

In this section the set of markings to which the system can get as close
as desired is described. For example, in Figure 4 with m0 = (1, 0, 0, 0, 1),
m = (0, 1, 0, 0, 1) does not belong neither to RS(N ,m0) nor to lim-RS(N ,m0),
however m = (0, 1, 0, α, 1 − 2 · α) belongs to RS(N ,m0) (hence also to
lim-RS(N ,m0)) for every α fulfilling 0 < α ≤ 0.5.

For this set of markings, that will be called δ-reachable, there are no spurious
solutions of the state equation.



Theorem 17 If every transition is fireable at least once from the initial marking,
then a marking m ∈ δ-RS(N ,m0) iff

1. m = m0 + C · σ ≥ 0, σ ≥ 0

i.e., δ-RS(N ,m0) = LRS(N ,m0).

Proof.
⊆
δ-RS(N ,m0) ⊆ LRS(N ,m0) since LRS(N ,m0) is a closed set that includes the
RS(N ,m0).
⊇
Let m be a solution of the state equation, i.e., m = m0 +C ·σ ≥ 0. Since every
transition is fireable at least once, let us consider a sequence, σ′, that reaches
a marking, m′, at which every transition in the support of σ is enabled. Let us
consider the real quantity α determined by α = min{1, max{β|m′+C·β·σ ≥ 0}}.
Then, according to Theorem 14, the marking m′′ = m′ + C · α · σ is reachable
in the limit from m′. And clearly, it is also reachable in the limit from m0

(m′′ ∈ lim-RS(N ,m0)). Notice that if |σ′| tends to zero, then the value of α
goes to one and m′′ approaches m. Thus, firing a finite sequence we can get as
close to m as desired. ut

Establishing a bridge to discrete systems, it can be said that if the system
is highly populated and it is not necessary to exactly determine the marking at
places, then the system can evolve to any marking that is solution of the state
equation.

Summarizing on reachability, the following relationship among the different
sets of reachable markings can be stated. It asserts that the only differences
among the described sets of reachable markings are in the border points of the
space defined by the state equation.

Corollary 18 If every transition is fireable then:

1. ]LRS(N ,m0)[⊆ RS(N ,m0)⊆ lim-RS(N ,m0)⊆ δ-RS(N ,m0)=LRS(N ,m0).
2. Under consistency of N : lim-RS(N ,m0) = δ-RS(N ,m0) = LRS(N ,m0).

Proof. 1. is a direct consequence of the fact that δ-RS(N ,m0) is the closure of
RS(N ,m0) and lim-RS(N ,m0), and δ-RS(N ,m0) = LRS(N ,m0).

2. is immediate from Corollary 16 and Theorem 17. ut

6 Reversibility and Liveness

Reversibility is a basic property that has to do with mutual reachability among
all markings of the system, or equivalently with the ability to reach the initial
marking from any reachable one. Liveness is the capacity of the system of po-
tentially firing any transition from any reachable marking. In discrete systems
if every transition is fireable at least once, then reversibility implies liveness and



consistency : if a system is reversible, it can always get back to the initial marking,
therefore it is live because from the initial marking every transition is fireable at
least once. Moreover, if a system can always return to the initial marking after
every transition has fired, it means that a T-semiflow covering every transition
has been fired, that is, the system is consistent.

However, liveness and consistency are not sufficient conditions for reversibil-
ity in discrete systems. For example, the system in Figure 7 is consistent and live
as discrete, however once t1 has fired it is impossible to get back to the initial
marking. Thus the system is not reversible as discrete.

p1 p2

t1 t2

t3

t4

p3 p5

p4

Fig. 7. Non reversible system as discrete or continuous with finite number of firings,
but lim-reversible and δ-reversible

In continuous systems, assuming that every transition is fireable at least
once, it can be observed that reversibility also implies consistency and liveness.
As in discrete systems, if reachability with finite sequences is considered, live-
ness and consistency are not sufficient conditions for reversibility. The system in
Figure 6 is consistent and live as continuous considering finite firing sequences.
If transition t1 is fired in any amount, the trap {p2, p3, p4} becomes marked, and
cannot be emptied with a finite firing sequence. Hence, once t1 has fired it is not
possible to go back to the initial marking, and therefore it can be said that the
system is not reversible. Nevertheless, as it will be seen, the system is reversible
if lim-reachability and δ-reachability are considered.

In [7] lim-liveness was defined in order to extend the liveness concept to
continuous systems regarding lim-reachability. Let us now define also δ-liveness
and lim-(δ-)reversibility as the natural extensions of the classical definitions for
the concepts of lim-reachability and δ-reachability respectively:

Definition 19 〈N ,m0〉 is lim-(δ-)live iff for every m ∈ lim-(δ-)RS(N ,m0)
and for every t ∈ T there exist m′ ∈ RS(N ,m) such that enab(t,m′) > 0.



Definition 20〈N ,m0〉is lim-(δ-)reversible iff for every m∈ lim-(δ-)RS(N ,m0),
m0 ∈ lim-(δ-)RS(N ,m).

The following theorem states that under lim-reachability and δ-reachability,
if every transition can be fired at least once, consistency and lim-(δ-)liveness are
not only necessary conditions for lim-(δ-)reversibility but also sufficient.

Theorem 21 Let 〈N ,m0〉 be such that every transition is fireable at least once.
〈N ,m0〉 is consistent and lim-(δ-)live iff 〈N ,m0〉 is lim-(δ-)reversible.

Proof.
(⇒)
Since the system is consistent and every transition is fireable at least once, it
holds by Corollary 18 that lim-RS(N ,m0) = δ-RS(N ,m0) = LRS(N ,m0). Let
us consider the lim-(δ-)reachable marking m, m = m0 + C · σ. It will be seen
that m0 is lim-(δ-)reachable from m. Since the system is lim-(δ-)live, every
transition is fireable from m, and therefore a strictly positive marking, m′ > 0,
can be reached, m′ = m0+C·(σ+σ′). The net is consistent, hence a T-semiflow,
x > 0, exists such that x−σ−σ′ ≥ 0. By Corollary 15, m0 = m′+C·(x−σ−σ′)
is lim-(δ)reachable from m′.
(⇐)
If the system is reversible and every transition can be fired at least once, then it
clearly cannot lim-(δ-)reach a marking in which one transition is not fireable any
more. It would mean that it cannot get back to the initial marking. Moreover,
if after the firing of every transition the system always can return to the initial
marking, it means that it is consistent. ut

For example, the system in Figure 7 is consistent and lim-(δ-)live, therefore
according to Theorem 21 it is lim-(δ-)reversible. If from the initial marking t1
is fired in an amount of 1, the marking (0, 0, 1, 0, 1) is reached. Applying
the infinite firing sequence 1

2 , t4
1
2 t2,

1
2 t3,

1
4 , t4

1
4 t2,

1
4 t3, . . . from (0, 0, 1, 0, 1) the

system converge to the initial marking.
From Theorem 21, the following Corollary is immediate:

Corollary 22 Let 〈N ,m0〉 be lim-(δ-)live. 〈N ,m0〉 is lim-(δ-)reversible iff N
is consistent.

Notice that the lim-(δ-)liveness condition in Theorem 21 and Corollary 22
cannot be relaxed to lim-(δ-)deadlock-freeness, where lim-(δ-)deadlock-freeness
means that the system cannot lim-(δ-)reach a marking in which no transition
is fireable. In other words, as in discrete systems, lim-(δ-)deadlock-freeness does
not imply lim-(δ-)liveness, even under consistency and conservativeness. For ex-
ample, the consistent and conservative system in Figure 8 is lim-(δ-)deadlock-free
but not lim-(δ-)live: transitions t3 and t4 are potentially fireable from any lim-
(δ-)reachable marking, but once t1 is fired in an amount of 1, neither t1 nor t2
will ever be fireable.
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Fig. 8. A lim-(δ-)deadlock-free and not lim-(δ-)live system

7 Conclusions

In continuous nets the concept of “reachable marking” can be interpreted in
three different ways:

a) reachability, a marking can be reached with a finite firing sequence.
b) lim-reachability, a marking can be reached with a finite or with an

infinite firing sequence.
c) δ-reachability, the system can get as close as desired to a marking with

a finite firing sequence.

Each of the three concepts has its own reachability space. These reachability
spaces can be fully characterized using, among other elements, the state equa-
tion. Moreover, it is decidable whether a marking is reachable according to each
concept. Furthermore, there is an inclusion relationship among the sets of mark-
ings associated to each concept: a ⊆ b ⊆ c. The only differences among these
sets are in the border points of the spaces (i.e., the convex hull).

Moreover, as the level of “exigency” regarding reachability decreases (a is
the “strongest” and c the “weakest”) the characterization of the reachability
space becomes progressively easier. In particular, if every transition is fireable
at least once, a very weak condition because otherwise unfireable transitions can
be simply removed, the set of the markings in c is equal to the solutions of the
state equation. In other words, for this last case there exists no spurious solution
of the state equation.

Finally, a necessary and sufficient condition for reversibility with respect to
lim-reachability and δ-reachability has been provided.
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