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Continuous Petri nets: controllability and
control

Jorge Júlvez, C. Renato Vázquez, Cristian Mahulea and Manuel Silva

Abstract Controllability is a property related to the capability of driving a system
to any desirable (steady) state or state trajectory. As in discrete nets, continuous
nets can be controlled by means of control actions applied onthe transitions. For
the sake of generality, the set of transitions is partitioned into controllableandun-
controllable; control actions can be applied only on controllable transitions. These
actions may only reduce the flow of the uncontrolled model, because transitions
(machines for example) cannot work faster than their nominal speed. Under this
framework, the chapter overviews conditions forcontrollability, different control
approaches for systems working under infinite server semantics and introduces a
basic control method based onconsensusfor distributed systems.

1.1 Introduction and Motivation

The previous chapter has dealt with the concepts of observability and observers
in the framework of continuous Petri nets. In contrast to these concepts that aim
at estimating state variables that are not directly measurable, controllability and
control can be seen as dual concepts pursuing to drive the system state in a desired
way. In order to manipulate, i.e., control, the system behavior, control actions can
be applied on transitions in order to modify their flow. Similarly to observability,
a system requirement for a successful design of a control method is the system
controllability, i.e., the possibility to drive the systemto “any” desired state.

Example 1.As a simple introductory example, consider the net system in??(a) of
Chapter?? and assume that the system works underinfinite server semantics with
λ1 = λ2 = 1. Thus, the flow of transitions isf1 = m1/2 and f2 = m2. If the system
is left to evolve freely from the initial markingm0 = [2 0]T , it will tend to the
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steady state markingm = [4/3 2/3]T at which the flow of both transitions is the
same,f1 = f2 = 2/3. Assume now that control actions can be applied on transitions
in order to modify their flow. Let us just apply a constant control actionu1 = 0.5
on transitiont1; this means that the original flow oft1 will be decreased by 0.5, i.e.,
f1 =(m1/2)−0.5 andf2 = m2 (notice that the flow of transitions cannot be negative,
i.e., f1 ≥ 0 and f2 ≥ 0 must hold). In this particular case, if such a control action is
kept indefinitely, the system marking will evolve to the steady statem= [5/3 1/3]T

at which the flows of transitions aref1 = f2 = 1/3. It is important to remark that
the control actions that will be introduced can only slow down the original flow
of transitions, and they are dynamically upper bounded by the enabling degree of
the transition, e.g., in this simple example the initial control action for transitiont1
cannot be higher than 1 given that the initial enabling degree oft1 is 1. Notice that the
constraint that the flow of transitions can only be decreasedwhen control actions are
applied, does not necessarily imply a decrease in the overall system throughput. In
fact, due to the non-monotonic behavior that continuous nets can exhibit, its overall
throughput can increase. This effect has already been shownin Chapter?? (Fig.
??), where a decrease in the firing speed of a transition can involve a higher global
system throughput.

Notice that continuous Petri nets are relaxations of discrete Petri nets, but at the
same time, they are continuous-state systems (in fact, theyare technically hybrid
systems in which the discrete state is implicit in the continuous one). That is why it
is reasonable to consider at least two different approachesfor the controllability and
control concepts:

1) the extension of control techniques used in discrete Petri nets, such as the
supervisory-controltheory (for instance, [11–13]);

2) the application of control techniques developed for continuous-state systems.
Usually, the control objective in the first approach is to meet some safety speci-

fications, like avoidingforbiddenstates, by means of disabling transitions at partic-
ular states. The objective of the second approach consists in driving the system, by
means of a usually continuous control action, towards a desired steady state, or state
trajectory (see, for instance, [8]). Regarding continuousPetri nets, most of the spe-
cific works that can be found in the literature deals with the second control approach
applied to theinfiniteserver semantics model.

Several works in the literature have addressed the study of controllability in the
context of continuous Petri nets. For instance, the work in [1] studies controllability
for linear nets, i.e., Join-Free nets, pointing out that theclassical rank condition
is not sufficient (detailed in subsection 1.3.2). In [14] controllability was studied
for Join-Free continuous nets from a different perspective, by characterizing the
set of markings that can be reached and maintained. Unfortunately, those results
are difficult to extend to general subclasses of nets, where the existence of several
regions makes the general reachability problem intractable.

It is important to remark that enforcing a desired target marking in a continu-
ous Petri net is analogous to reaching an average marking in the original discrete
model (assuming that the continuous model approximates correctly the discrete
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one), which may be interesting in several kinds of systems. This idea has been il-
lustrated by different authors. For example, the work in [2]proposes a methodology
for the control of open and closed manufacturing lines. The control actions consist
in modifying the maximal firing speeds of the controlled transitions. It was also il-
lustrated how the control law can be applied to the original discrete Petri net model
(a T-timed model with constant firing delays). This approachhas been used in [18]
and [17] as well, in the same context of manufacturing lines.A related approach was
presented in [25] for a stock-level control problem of an automotive assembly line
system originally modeled as a stochastically timed discrete Petri net [10]. The re-
sulting scheme allows to control the average value of the marking at the places that
represent the stock-level, by means of applying additionaldelays to the controllable
transitions.

The rest of the chapter is organized as follows: Section 1.2 introduces control
actions and the way they modify the flow of transitions in systems working under
infinite server semantics. In section 1.3, the controllability property is discussed
and some results are extracted for the case in which all transitions are controllable,
and the case in which there are some non-controllable transitions. Section 1.4 de-
scribes some control methods for systems in which all transitions are controllable
and sketches a couple of methods that can be applied when sometransitions are not
controllable. Finally, section 1.5 discusses how a distributed control approach can
be designed on a net system composed of several subsystems connected by buffers.

1.2 Control actions under infinite server semantics

Like in discrete Petri nets, control actions are applied on the transitions. These ac-
tions can only consist in the reduction of the flow, because transitions (machines for
example) should not work faster than their nominal speed. The set of transitionsT
is partitioned into two setsTc andTnc, whereTc is the set of controllable transitions
andTnc is the set of uncontrollable transitions. The control vector u∈R|T| is defined
s.t.ui represents the control action onti . In the following infinite server semantics
will be assumed. Sinceui represents a reduction of the flow, then the following in-
equality must hold 0≤ ui ≤ λi ·enab(ti,m). The behavior of aforced(or controlled)
continuous Petri net can be described by the state equation:

ṁ= CΛΠ(m)m−Cu
s.t. 0≤ u≤ ΛΠ(m)m and∀ti ∈ Tnc, ui = 0.

(1.1)

where matrixΠ is the configuration matrix defined in Chapter??:

Π k[t, p] =

{ 1
Pre[p,t] , if (p,t) ∈ Ck

0, otherwise
(1.2)

whereCk denotes a configuration as defined in Chapter??. Notice that the slack
variables introduced in section 5 of Chapter?? play a similar role to the one of
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the control actions. There are, however, important differences, in that case slack
variables are associated to places and only the steady statewas optimized.

1.3 Controllability

Among the many possible control objectives, we will focus ondriving the system,
by applying a control law, towards a desired steady state, i.e., aset-pointcontrol
problem, frequently addressed in continuous-state systems. This control objective
is related to the classical controllability concept, according to which a system is
controllable if for any two statesx1,x2 of the state space it is possible to transfer the
system fromx1 to x2 in finite time (see, for instance, [8]).

Marking conservation laws frequently exist in most Petri nets with practical sig-
nificance. Such conservation laws imply that timed continuous Petri net (TCPN)
systems are frequently not controllable according to the classical controllability
concept [21, 22]. More precisely, ify is a P-flow then any reachable markingm
must fulfill yTm= yTm0, defining thus astate invariant. Nevertheless, the study of
controllability “over” this invariant is particularly interesting. This set is formally
defined asClass(m0) = {m∈ R|P|

≥0|B
T
y m= BT

y m0}, whereBy is a basis of P-flows,
i.e., BT

y C = 0. For a general TCPN system, every reachable marking belongs to
Class(m0).

Another important issue that must be taken into account in TCPN systems is the
nonnegativeness and boundedness of the input, i.e., 0≤ u ≤ ΛΠ (m)m. An appro-
priate local controllability concept, once these issues are considered, is [24]:

Definition 1 The TCPN system〈N,λ ,m0〉 is controllable with bounded input(BIC)
overS⊆Class(m0) if for any two markings m1,m2 ∈ S there exists an input u trans-
fering the system from m1 to m2 in finite or infinite time, and it is suitably bounded,
i.e.,0≤ u≤ ΛΠ(m)m, and∀ti ∈ Tnc ui = 0 along the marking trajectory.

1.3.1 Controllability when all the transitions are controllable

An interesting fact is that when all the transitions are controllable, the controllability
of TCPNs, depends exclusively on the structure of the net. Let us give some intuition
about this by rewriting the state equation as:

ṁ= C ·w (1.3)

where the innovation vectorw = ΛΠ(m)m− u can be seen as an auxiliary input.
The constraints foru are transformed into 0≤ w≤ ΛΠ(m)m. In this way, given a
markingm1 ∈Class(m0), if ∃σ ≥ 0 such thatCσ = (m1−m0) thenm1 is reachable
from m0. This can be achieved by settingw = ασ (with a small enoughα > 0),
so the field vector results ˙m = Cασ = α(m1−m0) which implies that the system
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will evolve towardsm1 describing a straight trajectory (assuming that the required
transitions can be fired from this marking, what always happens if m is a relative
interior point ofClass(m0)).

Example 2.Consider, for instance, the TCPN of Fig. 1(a) and the markings m0 =
[2 3 1 1]T , m1 = [1 3 2 1]T and m2 = [2 1 1 3]T . Given that this system has 2 P-
semiflows (involving{p1, p3} and{p2, p4} respectively), the marking of two places
is sufficient to represent the whole state. For this system∃σ ≥ 0 such thatCσ =
(m1−m0), but∄σ ≥ 0 such thatCσ = (m2−m0), so,m1 is reachable butm2 is not.
The shadowed area in Fig. 1(a) corresponds to the set of reachable markings, note
that it is the convex cone defined by vectorsc′1 andc′2, which represent the columns
of C (here restricted top1 andp2).
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Fig. 1.1 Two TCPN systems with identical P-flows. The shadowed areas correspond to the sets of
reachable markings. Only the system (b) is consistent and controllable overClass(m0).

A full characterization of controllability [24] can be obtained from this structural
reachability reasoning:

Proposition 2 Let 〈N,λ ,m0〉 be a TCPN system in which all the transitions are
controllable. The system〈N,λ ,m0〉 is BIC over the interior of Class(m0) iff the net
is consistent. Furthermore, the controllability is extended to the wholeClass(m0)
iff (additionally to consistency) there exist noempty siphonat any marking in
Class(m0).

It is important to remark that controllability does not depend on the timingλ .
In fact, the key condition here is consistency, i.e.,∃x > 0 such thatC · x = 0. Re-
member that a reachable markingm≥ 0 fulfills m= m0 +C ·σ with σ ≥ 0, which
impliesBT

y m= BT
y m0 (equivalently,m∈Class(m0)). In the opposite sense, if the net



6 Jorge Júlvez, C. Renato Vázquez, Cristian Mahulea and Manuel Silva

is consistent then∀m≥ 0 s.t.BT
y m= BT

y m0 (i.e.,m∈Class(m0)) it existsσ ≥ 0 s.t.
m= m0 +C ·σ , thusm is reachable (assumingσ is fireable). A very informal and
intuitive explanation is that consistency permits movements of marking in any di-
rection inside the reachability space (see Fig. 1.1(b)), i.e., if there existsσ such that
m1 = m0 +C ·σ , under consistency anyσ ′ = σ +k ·x≥ 0, permits the reachability
of m1.

Let us consider again the TCPN system of Fig. 1.1(a). Given that the net is
not consistent, it can be deduced by Proposition 2 that it is not controllable over
Class(m0). Let us now consider the system of Fig. 1.1(b). In this case, due to the
consistency of the net, it holds that the vector(m−m0) is in the convex cone de-
fined by the vectorsc′1, c′2 andc′3 for any markingm∈ Class(m0). Thereforem is
reachable fromm0. Furthermore, since at the border markings ofClass(m0) there
are not unmarked siphons then, according to Proposition 2, the system isBIC over
Class(m0).

1.3.2 Controllability when sometransitions are uncontrollable

If a TCPN contains uncontrollable transitions it becomes not controllable over
Class(m0), even if the net is consistent. Thus, the concept of controllability must
be constrained to a smaller set of markings. The work in [14] studies this idea
by defining a set named Controllability Space (CS) for Join-Free nets, over which
the system is controllable. Unfortunately, this set depends on the marking, and
therefore, its characterization for general subclasses ofnets is difficult. The exis-
tence of several regions makes the general reachability problem intractable. For
practical reasons, the controllability was studied in [24]over sets ofequilibrium
markings: mq ∈ Class(m0) is an equilibrium marking if∃uq suitable such that
C(ΛΠ(mq)mq − uq) = 0, i.e., there exists a control action that keeps the system
marking constant atmq. They represent thepossible stationary operating points
of the original discrete system. These markings are particularly interesting, since
controllers are frequently designed in order to drive the system towards a desired
stationary operating point.

Given that inside each regionRi the state equation is linear (Π(m) is constant),
it becomes convenient to study, in a first step, the controllability over equilibrium
markings in each region and later over the union of them. Thisapproach is supported
by the following proposition:

Proposition 3 Let 〈N,λ ,m0〉 be a TCPN system. Consider some equilibrium sets
S1, S2,..., Sj related to different regionsR1, R2,...,R j . If the system is BIC (in finite

time) over each one and their union
⋃ j

i=1Si is connected, the system is BIC over the
union.

The connectivity of the set of all the equilibrium markings in Class(m0) has not
been demonstrated for the general case. Nevertheless, in every studied system such
property holds.
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Fig. 1.2 TCPN system with itsE. Transitiont4 is the only controllable one. There are four possi-
ble configurations:C1 = {(p2, t2), (p4, t3)}, C2 = {(p3, t2), (p4, t3)}, C3 = {(p2, t2), (p5, t3)} and
C4 = {(p3, t2), (p5, t3)}, however,C2 cannot occur from the givenm0 becausep3 and p4 cannot
concurrently constraint2 andt3, respectively. Equilibrium sets depend on the timing, but regions
do not.

Example 3.Let us consider as an example the timed continuous marked graph of
Fig. 1.2 with Tc = {t4} and λ = [1112]T . According to the net structure, there
are four possible configurations, but given the initial marking, one of them cannot
occur. The polytope in Fig. 1.2 represents theClass{m0}. Since the system has 3 P-
semiflows, the marking at{p1, p3, p5} is enough to represent the whole state. This is
divided into the regionsR1, R3 andR4, related to the feasible configurations. The
segmentsE1 = [m1,m2], E3 = [m2,m3] andE4 = [m3,m4] are the sets of equilibrium
markings in regionsR1, R3 andR4, respectively. Since the union ofE1, E3 and
E4 is connected, if the system wasBIC over eachEi (this will be explored in a
forthcoming example) then, according to Proposition 3, thesystem would beBIC
overE1∪E3∪E4. For instance, the system could be driven fromm3 to m1 and in the
opposite sense.

Notice that the behavior of the TCPN system is linear and time-invariant in a
given regionRi , then some of the classical results in control theory can be used for
its analysis. Null-controllability (controllability around the origin) of this kind of
systems with input constraints was studied in [7]. Recalling from there, if a linear
system ˙x = Ax+ Bu, with input constraintu ∈ Ω (called the set of admissible in-
puts), is controllable then the controllability matrixContr(A,B) = [BAB...An−1B]
has full rank (equivalently,∀x1,x2: ∃z s.t. (x2 − x1) = Contr(A,B) · z). Moreover,
if 0 is in the interior ofΩ then the previous rank condition is also sufficient for
null-controllability. Otherwise, if there are inputs thatcan be only settled as pos-
itive (or negative) then the controllability depends also on the eigenstructure of
the state matrix. These results can be adapted to TCPNs. For this, the state equa-
tion of a TCPN is firstly transformed in order to represent thebehavior around an
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equilibrium markingmq, i.e., the evolution of∆m = m−mq. As a consequence,
some transformed inputs∆u = (u− uq) can be settled only as nonnegative while
others can be settled as either positive or negative. The setof transitions related
to this last kind of inputs is denoted asT i

c f ⊆ Tc. Let us denote asE∗
i the set of

all equilibrium markings in a regionRi s.t. ∆u[T i
c f ] can be settled as either pos-

itive or negative (equivalently,[ΛΠ imq] j > uq
j > 0 for all t j ∈ T i

c f ). In this way,
it can be proved that if a TCPN is controllable over a setE∗

i then∀m2,m1 ∈ E∗
i :

∃z s.t. (m2 − m1) = Contr((CΛΠ i),C[Tc]) · z. This condition is only necessary,
as already pointed out in [1], because the existence of inputconstraints. Further-
more, a system is controllable (in finite time) overE∗

i if ∀m2,m1 ∈ E∗
i : ∃z s.t.

(m2−m1) = Contr((CΛΠ i),C[T i
c f ]) · z. This sufficient condition is also necessary

if T i
c f = Tc (but not if T i

c f ⊂ Tc). Note that now the controllability depends not only
on the structure of the net, but also on the timing [24].

As an example, let us consider the regionR3 in the system of Fig. 1.2, where
T3

c f = {t4}. Given thatT3
c f = Tc then the span condition introduced above is sufficient

and necessary for controllability. In this case, it can be verified that the system is
BIC overE∗

3 = E3. Consider now the same system but withλ4 = 1 instead ofλ4 =
2. In this case,T3

c f = /0 (this set depends on the timing), then we cannot use the
same sufficient condition. Nevertheless, it is still fulfilled that∀m2,m1 ∈ E∗

3 : ∃zs.t.
(m2−m1) =Contr((CΛΠ3),C[Tc]) ·z. Therefore, the controllability matrices do not
provide enough information for deciding whether the systemis BIC or not overE∗

3.
By using other results from [24], it can be proved that the system is notBIC with
λ4 = 1. This implies that controllability is a timing-dependentproperty.

1.4 Control techniques under infinite server semantics

This section describes some few techniques proposed in the literature for the con-
trol of TCPNs when all transitions are controllable. Similarly to theset-pointcontrol
problem in state-continuous systems, the control objective here consists in driving
the system towards a desired target marking here denoted asmd. This desired mark-
ing can be selected, in a preliminarily planning stage, according to some optimality
criterion [23], e.g., maximizing the flow. Most of the work done on this issue is
devoted to centralized dynamic control assuming thatall the transitions are control-
lable. We will first present those control techniques that require all the transitions to
be controllable, then a basic comparison of such techniqueswill be performed, and
finally a couple of approaches where uncontrollable transitions are allowed will be
presented.
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1.4.1 Control for a piecewise-straight marking trajectory

This subsection introduces a control approach that aims at reaching a given target
marking by following a piecewise-straight trajectory. A similar approach was stud-
ied in [15] for Join-Free nets where the tracking control problem of a mixed ramp-
step reference signal was explored, and later extended to general Petri nets in [16].
In such a work, a high & low gain proportional controller is synthesized, while a
ramp-step reference trajectory, as a sort ofpath-planningproblem at a higher level,
is computed. We will discuss the more simple synthesis procedure introduced in [3].

Let us consider the linel connectingm0 andmd, and the markings in the inter-
section ofl with the region’s borders, denoted asm1

c, m2
c, ....,mn

c. Definem0
c = m0

andmn+1
c = md. Then,∀k ∈ {0,n} computeτk by solving the linear programming

problem (LPP):

minτk

s.t. : mi+1
c = mi

c +C ·x
0≤ x j ≤ λ jΠ z

ji min{mi
c,i ,m

i+1
c,i }τk

∀ j ∈ {1, ..., |T|} where i satisfiesΠ z
ji 6= 0

(1.4)

where the first constraint is the fundamental state equationand the second constraint
ensures the applicability of the input actions. This way, the control law to be applied
is w = x/τk (the model is represented as in (1.3)), when the system is between the
markingsmk

c andmk+1
c . The time required for reaching the desired marking is given

by τ f = ∑n
k=0 τk. Feasibilityandconvergenceto md were proved in [3].

If one aims at obtaining faster trajectories, intermediatestates, not necessarily on
the line connecting the initial and the target marking, can be introduced [16]. Ac-
cording to [3], they can be computed by means of abilinear programming problem
(BPP). The idea is to currently compute the intermediate markingsmk

c, on the bor-
ders of the regions that minimizes the total timeτ f = ∑n

k=0 τk with some additional
monotonicity constraints. Finally, the same algorithm canbe adapted in order to
recursively compute intermediate markings in the interiorof the regions, obtaining
thus faster trajectories.

1.4.2 Model Predictive Control

Within the Model Predictive Control (MPC) framework, two main solutions can be
considered based on theimplicit andexplicit methods (see, for instance, [6]). The
evolution of the timed continuous Petri net model (1.3), indiscrete-time, can be
represented by the difference equation:m(k+ 1) = m(k) +Θ ·C ·w(k), subject to
the constraints 0≤ w(k) ≤ f (k) with f (k) being the flow without control, which
is equivalent toG · [wT(k),mT(k)]T ≤ 0, for a particular matrixG. The sampling
Θ must be chosen small enough in order to avoid spurious markings, in particular,
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for ensuring the positiveness of the markings. For that, thefollowing condition is
required to be fulfilled∀ p∈ P : ∑t j∈p• λ jΘ < 1.

A MPC control scheme can be derived [20] by using this representation of the
continuous Petri net. The considered goal is to drive the system towards a desired
markingmd, while minimizing the quadratic performance index

J(m(k),N) = (m(k+N)−md)
′Z(m(k+N)−md)

+∑N−1
j=0 [(m(k+ j)−md)

′Q(m(k+ j)−md)

+(w(k+ j)−wd)
′R(w(k+ j)−wd)]

whereZ, Q andR are positive definite matrices andN is a given time horizon. This
leads to the following optimization problem that needs to besolved in each time
step:

min J(m(k),N)
s.t. :∀ j ∈ {0, ...,N−1}, m(k+ j +1) = m(k+ j)+Θ ·C ·w(k+ j)

G ·

[

w(k+ j)
m(k+ j)

]

≤ 0

w(k+ j) ≥ 0

(1.5)

Let us show that, in general, the standard MPC approach does not guarantee
convergence [20].

Example 4.Consider the net system in Fig. 1.3 withλ = [1 5]T . LetΘ = 0.1, md =
[0 1]T andwd = [0 0]T . Moreover, letQ = Z = R= I andN = 1.

Fig. 1.4 shows the marking evolution of the system controlled with the MPC
policy. It can be seen that the desired marking is not reached. Observe that to obtain
md, only t1 should fire. Given that the timing horizon is too short andλ2 = 5 >>
λ1 = 1, the optimality of (1.5) implies that it is better to fire at the beginning “a
little” t2 so thatm1 approaches the desired final valuemf ,1 = 0. However, oncet2
has fired,md cannot be reached because there is not enough marking inp1 to be
transferred top2. �

p
2
p
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2
t

2
2

Fig. 1.3 Example of an unstable TCPN system with basic MPC scheme.

The work in [20] shows that the standard techniques used for ensuring converge
in linear/hybrid systems (i.e., terminal constraints or terminal cost) cannot be ap-
plied in continuous nets if the desired marking has zero components. However, sev-
eral approaches can be considered to improve convergence. Let us discuss one of
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Fig. 1.4 Marking evolution of the TCPN system in Fig. 1.3.

them that consists in constraining the system state at timek+ N to belong to the
straight linem(k) — md. Roughly, this is equivalent to add a terminal constraint of
the form:

{

m(k+N) = mk + α · (md −m(k))
0≤ α ≤ 1

(1.6)

to the optimization problem (1.5), whereα is a new decision variable. As stated in
the following proposition, the inclusion of this constraint guarantees asymptotically
stability.

Proposition 4 Consider a TCPN system with m0 and md the initial and target mark-
ings, respectively, being m0 > 0 and md reachable from m0. Assume that the system
is controlled using MPC with a terminal constraint of the form (1.6)and prediction
horizon N= 1. Then, the closed-loop system is asymptotically stable.

Example 5.Let us exemplify this result through the TCPN in Fig. 1.5. Assumem0 =
[1 0.1]T > 0, md = [0 0]T , wd = [0 0 0]T , λ = [1 1 1]T , Z = R= I , Q = [1 0;0 100]
andΘ = 0.1.

Fig. 1.6 shows the marking evolution after applying MPC withthe terminal con-
straintm(k+N) = α ·md +(1−α) ·m(k), for N = 1 andN = 2 respectively. It can
be observed that ifN = 1,md is reached, but ifN = 2,md is not reached. Notice that
md = [0 0]T is on the boundary of the feasible states since in a Petri net,m(k) ≥ 0
for all reachability markings.

p

t1

t2
p
2

t3
1

Fig. 1.5 A TCPN showing that the terminal equality constraint may notensure stability ifN > 1.
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An alternative MPC approach for this problem is the so-called explicit solu-
tion [6], where the set of all states that are controllable issplit into polytopes. In
each polytope the control command is defined as a piecewise affine function of the
state. The closed-loopstability is guaranteed with this approach. On the contrary,
when either the order of the system or the length of the prediction horizon are not
small, thecomplexityof the explicit controller becomes computationally prohibitive.
Furthermore, the computation of the polytopes sometimes isunfeasible.

1.4.3 ON-OFF Control

If the control problem is constrained to particular net subclasses, stronger results
may be obtained. For instance, forstructurally persistent continuous Petri nets, i.e.,
net systems where the enabling of any transitiont j cannot decrease by the firing of
any other transitionti 6= t j (in continuous nets this corresponds to choice-free nets),
the minimum-time control problem has been solved [28].

The solution to this problem can be obtained as follows. First, a minimal firing
count vectorσ s.t.md = m0 +Cσ is computed (σ is minimal if for any T-semiflow
x, ||x|| * ||σ ||, where|| · || stands for the support of a vector). Later, the control law
is defined, for each transitiont j , as:

u[t j ] =

{

0 if
∫ τ−

0 w[t j ]dτ < σ [t j ]

f [t j ] if
∫ τ−

0 w[t j ]dτ = σ [t j ]

This means that ift j has not been fired an amount ofσ [t j ], thent j is completely ON.
Otherwise,t j is completely OFF (it is blocked).

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1
Marking evolution

m
1

m
2

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Marking evolution

m
1

m
2

Fig. 1.6 Marking evolution of the net in Fig. 1.5 withN = 1 (left) andN = 2 (right).
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Fig. 1.7 Structurally persistent Petri net system
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Fig. 1.8 Marking trajectories of the net system in Fig. 1.7 under ON-OFF control

Example 6.Let us consider the structurally persistent net in Fig. 1.7 to show the
ON-OFF control. Let us assume that the initial marking ism0 = [1 0 0 0 0]T , the
target marking ismd = [0.3 0.4 0.3 0.4 0.4]T and thatλ = [1 1 1 1]T . Fig. 1.8 shows
the marking trajectory after the application of the control. It can be appreciated that
the trajectory exhibitssuddenchanges (the first derivative is not continuous) due to
the change from ON to OFF in the transitions. The markingmd is reached in 1.65
time units.

According to the ON-OFF approach, once the final marking is reached, all tran-
sitions are stopped. This trivially produces a steady statewith no flow in which the
final marking is kept. As it has been seen in previous sections, steady states with
positive flows can be easily maintained as long as the flow vector is a T-semiflow.
The system in Fig. 1.7 has no T-semiflows, and therefore, the final marking cannot
be kept with a non-null flow vector.

In [28], it is proved that this ON-OFF control policy drives structurally persistent
continuous Petri net systems towardsmd in minimum time. An intuitive reason for
this is that, for persistent nets, the firing order is irrelevant for reaching a marking.
Hence, what only matters is the amount of firings required, which is provided byσ .
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1.4.4 Comparison of control methods

The availability of several control methods for TCPNs raises concerns about the se-
lection of the most appropriate technique for a given particular system and purpose.
In order to make an appropriate choice, several properties may be taken into ac-
count, e.g., feasibility, closed-loop stability, robustness, computational complexity
(for the synthesis and during the application), etc.

Table 1.1 Qualitative characteristics of control laws (assumingmd > 0). The following abbrevia-
tions are used: config. (configuration), min. (minimize), func. (function), compl. (complexity) and
poly. (polynomial).

Technique Computational Optimality Subclass Stability
issues criterion

PW-straight a LPP for heuristic for all yes
trajectory each config. min. time

MPC poly. compl. min. quadratic or all under suf.
on |T|,N linear func. ofm,u conditions

ON-OFF linear compl. minimum structurally yes
on |T| time persistent

Table 1.1 summarizes a few qualitative properties of some ofthe control methods
described above. According to the presented properties, ifthe TCPN under consid-
eration is structurally persistent, then the natural choice will be an ON-OFF control
law, since it does not exhibit computational problems, ensures convergence and pro-
vides the minimum-time transient behavior. For non-persistent nets, MPC ensures
convergence and minimizes a quadratic criterion. Nevertheless, when the number
of transitions grows, the complexity may become intractable. In such a case, con-
trol synthesis based on other approaches as piecewise-straight trajectories would be
more appropriate.

Given a TCPN system with just few configurations and transitions most of the
described control laws could be synthesized and applied to it, ensuring convergence.
In such a case, the criterion for selecting one of them may be aquantitative one, like
minimizing either a quadratic optimization criterion or the time spent for reaching
the desired marking.

1.4.5 Control with uncontrollable transitions

This subsection briefly discusses two control methods that can be used when the
system contains uncontrollable transitions.

Gradient-based control with uncontrollable transitions [19]. This method pro-
duces control actions that reduce the rates of the controllable transitions from their
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nominal maximum values. This is equivalent to reducing the transitions flow, as
considered along this chapter. However, the goal of the control problem is slightly
different, since it is no longer required to drive the whole marking of the system to a
desired value, but only the marking of a subset of places (theoutputof the system).
The analysis is achieved in discrete time. Let us provide thebasic idea for the case
of a single-output system. Firstly, a cost function is defined asv(k) = 1/2ε(k)2,
whereε(k) denotes the output error. The control proposed has a structure like:
u(k) = u(k− 1)− (s(k)s(k)T + αI)−1s(k)ε(k), where the inputu(k) is the rate of
the controllable transitions ands(k) is the output sensitivity function vector with re-
spect to the input (the gradient vector∇uy). The factorα > 0 is a small term added
to avoid ill conditioned matrix computations. The gradientis computed by using
a first order approximation method. One of the advantages of this approach is that
the change of regions (or configurations) is not explicitly taken into account during
the computation of the gradient. Furthermore, a sufficientcondition for stabilityis
provided.

Pole assignment control with uncontrollable transitions [26]. This technique as-
sumes initially that the initial and desired markings are equilibrium ones and belong
to the same region. The control approach considered has the following structure:
u = u′d + K(m−m′

d), where (m′
d, u′d) is a suitable intermediate equilibrium mark-

ing. The gain matrixK is computed, by using any pole-assignment technique, in
such a way that the controllable poles are settled as distinct, real and negative. In-
termediate markingsm′

d, with their corresponding inputu′d, are computed during
the application of the control law (either at each sampling period or just at an ar-
bitrary number of them) by using a given LPP with linear complexity that guar-
antees that the required input constraints are fulfilled. Later, those results are ex-
tended in order to consider several regions. For this, it is required that the initial
and desired markings belong to a connected union of equilibrium sets (as defined
in subsection 1.3.2), i.e.,m0 ∈ E∗

1, md ∈ E∗
n and∪n

i=1E∗
i is connected. Thus, there

exist equilibrium markingsmq
1, ...,m

q
n−1 on the borders of consecutive regions, i.e.,

mq
j ∈ E j ∩E j+1, ∀ j ∈ {1, .., j −1}. A gain matrixK j , satisfying the previously men-

tioned conditions, is computed for each region. Then, inside eachjth region, the
control actionu = u′d + K j(m−m′

d) is applied, wherem′
d is computed, belonging

to the segment[mq
j ,m

q
j+1], by using a similar LPP. It was proved that this control

law can always be computed and applied (feasibility). Furthermore,convergenceto
the desiredmd was also demonstrated, whenever the conditions for controllability
are fulfilled and∪n

i=1E∗
i is connected (see section 1.3.2). The main drawback of this

technique is that a gain matrix and a LPP have to be derived foreach region in the
marking path.

Similarly to the previous subsection, Table 1.2 summarizesthe main features of
the two presented methods.

Given that a pole assignment is required for each configuration, if the TCPN has
many configurations, the implementation of the pole assignment method becomes
tedious although automatizable. This problem does not appear for the gradient based
controller. On the contrary, the gradient based controllerdoes not guarantee conver-
gence for the general case, while the pole assignment does it.
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Table 1.2 Qualitative characteristics of control laws (assumingmd > 0) with uncontrollable tran-
sitions. The following abbreviations are used: min. (minimize), compl. (complexity) and poly.
(polynomial).

Technique Computational Optimality Subclass Stability
issues criterion

Gradient-based poly. compl. min. quadratic all under a suf.
on # outputs error condition

Pole-assignmenta pole-assignment none all yes
for each config.

1.5 Towards distributed control

A natural approach to deal with systems having large net structures is to consider de-
centralized and distributed control strategies. In a completely distributed approach,
the model can be considered as composed of several subsystems that share informa-
tion throughcommunication channels, modeled by places. This problem has been
addressed in few works. For instance, [27] proposes the existence of an upper-level
controller, namedcoordinator. This coordinator may receive and send information
to the local controllers, but it cannot apply control actions directly to the TCPN
system. The existence of such coordinator increases the capability of the local con-
trollers, allowing to consider wider classes for the net subsystems (they are assumed
to be separately live and consistent, but they are not restricted to particular net sub-
classes). Affine control laws are proposed for local controllers. Feasibility and con-
current convergence to the required markings are proved.

We will describe in more detail an alternative approach [5] that considers a sys-
tem composed ofmono-T-semiflow(MTS) subsystems working under infinite server
semantics connected through places (recall that a net is said to be MTS if it is con-
servative and has a unique minimal T-semiflow whose support contains all the tran-
sitions). For each subsystem, a local controller will be designed, being its goal to
drive its subsystem from its initial marking to a required one. In order to achieve this
goal, it must take into account the interaction with the other subsystems. For this,
it is required that neighboring local controllers share information in order to meet
a consensusthat determines the amounts in which transitions must fire inorder to
reach the target marking. We propose to reach such a consensus by means of an
iterative algorithm executed locally at each subsystem.

In order to illustrate the kind of systems that will be handled, consider a simple
net modeling a car manufacturing factory composed by two plants A and D in two
different cities. The Petri net model is given in Fig. 1.9. The plant A produces the
car body (placep1) and then sends it to the plant D (placep2). The plant A can
produce concurrently a limited number of car bodies (the initial marking ofp3). In
plant D, the engine is constructed (p4) and then it is put in an intermediate buffer
p5. The same plant paints the body received from plant A inp6 and puts it inp7 to
be assembled together with the engine. The firing oft8 means the production of a
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new car. We assume that D can produce concurrently a limited number of engines
(initial marking of p8) and can paint a limited number of car bodies in parallel
(initial marking of p9). Placepb is the buffer containing the car bodies produced
by plant A whilepa is the buffer containing the finished products. Since we do not
want to produce more than we sell, the plant A starts to produce a new body (firing
of t1) only when a car is sold.

PLANT A − Subsystem 1
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Fig. 1.9 A distributedmarked graph modeling a car manufacturing plant wherepa and pb are
buffer places.

1.5.1 Distributed Continuous Petri nets

We will focus on distributed continuous Petri nets (DcontPN) which consists of a set
of MTS net systems (called subsystems) interconnected through buffers modeled as
places. LetK denote the set of subsystems of a given DcontPN. The set of places,
transitions and token flow matrix of subsystemk∈ K is denoted byPk, Tk andCk ∈

R|Pk|×|Tk|, respectively. We assume,Pk∩Pl = /0 andTk ∩Tl = /0 , ∀k, l ∈ K, k 6= l .
The directional connection between subsystems is providedby a set of places called
channelor buffer places. In particular, the directional connection from subsystemk
to l is provided by a set of places denotedB(k,l), whose input transitions are con-
tained only in subsystemk and output transitions are contained only in subsysteml ,
i.e.,B(k,l) = {p∈ P|•p∈ Tk, p• ∈ Tl , p 6∈ Pq ∀q∈ K} for everyk, l ∈ K, k 6= l , and
B(l ,l) = /0 for everyl ∈ K.

Note that a placep∈ B(k,l) is aninput bufferof subsysteml and anoutput buffer
of subsystemk. The set of all output buffers of subsystemk is denoted byB(k,∗),
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i.e.,B(k,∗) =
⋃

l∈K
B(k,l), and the set of all input channels of subsystemk is denoted by

B(∗,k), i.e.,B(∗,k) =
⋃

l∈K
B(l ,k).

The marking vector of a subsystemk is denoted bym(Pk) ∈R|Pk|
≥0 . When design-

ing a controller, it must be taken into account that the controller of a given subsystem
only knows its marking and the marking of its input buffers, i.e., the marking of the
other subsystems and their input buffers are not observable.

Among the different existing control problems, we will dealwith a control prob-
lem of DcontPN which aims at reaching a particular target marking md at each
subsystem. That is, after a finite period of time each subsystem is at its target mark-
ing. In contrast to a centralized control, each subsystem isequipped with its own
controller that computes the control actions that drive thesubsystem to the target
marking. Given that the subsystems are interconnected, they may require resources
to be available in the communication buffers to reach the target marking. The fol-
lowing example shows this situation.

Example 7.Consider the DcontPN in Fig. 1.9 withm0(P1) = [0 0 3]T , m0(P2) =
[0 0 0 0 2 2]T , m0(pa) = 1, m0(pb) = 0 and letmd(P1) = [0 0 3]T , md(P2) =
[0 0 1 0 2 1]T be the target markings of each subsystem. Let the flow integrals
of subsystem 1 and 2 be denoted ass1 ands2 respectively.

Let us assume that the controller of the second subsystem computess2(t6) =
1, s2(t4) = s2(t5) = s2(t7) = s2(t8) = 0 so that the subsystem reaches the target
marking. Given that the initial marking and target marking of subsystem 1 are the
same, a controller for that subsystem could yield:s1(t1) = s1(t2) = s1(t3) = 0. Since
m0(pb) = 0, transitiont6 cannot fire unlesst3 fires. Unfortunately, according to the
computed controls,t3 will not fire (s1(t3) = 0). Hence, these controls are not valid
to reach the desired target marking of subsystem 2. In order to solve this situation,
subsystem 2 may ask subsystem 1 to put enough tokens inpb. This can be achieved
easily by firingt3. However, this will imply that subsystem 1 moves away from its
desired target marking.

Apart from the problem of tokens (resources) required in thebuffer places at the
initial time, it could happen that the target markings cannot be reached due to the
system structure and initial marking (the following example deals with this case).
When stating the problem we are implicitly assuming that alltarget markings of
subsystems are reachable, meaning that the final marking of the overall net system,
i.e., the net containing all subsystems and buffers, is reachable.

Example 8.Consider again the DcontPN in Fig. 1.9. For subsystem 1, let the target
marking bemd(P1) = [0 0 3]T which is reachable fromm0(P1) = [0 0 3]T locally.
For subsystem 2, let the target marking bemd(P2) = [0 0 1 0 2 1]T which is reachable
from m0(P2) = [0 0 0 0 2 2]T locally by firingt6, i.e., if it is considered isolated from
the rest of the system. But when both subsystems are connected through the buffers
pa andpb with m0(pa) = m0(pb) = 0, the target markings are not reachable.
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1.5.2 A control strategy for DcontPNs

In this subsection, a distributed controller for DcontPN with tree structureis pro-
posed (this extends the results in [4] where the problem has been studied for
DcontPN with two subsystems). In a system with tree structure cycles are not al-
lowed. The following assumptions will be taken on the considered DcontPNs: (A1)
The target markingmd is strictly positive and reachable at the overall system; (A2)
The DcontPN is composed of MTS subsystems. The minimal T-semiflows of the
subsystemi is denoted byxi ; (A3) The overall system is a MTS net system.

The first assumption is simply a necessary condition for reachability of the target
markings. The second assumption reduces the class of DcontPN to those systems
composed by MTS subsystems while the third one states that the overall system is
MTS. In order to drive the subsystems from their initial states to the target states,
Algorithm 5 is developed. It represents logic of the rules tobe executed in each
subsystem to meet a consensus.

In step 1, each subsystem computes the flow integral ¯s required to reach its target
marking without taking into account the marking of the buffers. Step 2 computes the
amounts of tokensqreq

p to be produced in each input bufferp in order to be able to fire
s̄. The connected subsystems are informed about the amounts ofrequired tokensqreq

p

in step 4. In step 5, each subsystem receives the amount of tokens it has to produce (if
any) in its output buffers. In step 6, it is computed how many tokens would remain
in each output buffer if the present control was applied. If this value is negative,
more tokens must be produced in the output buffers, and therefore the control law
must be recomputed. This re-computation is achieved in step7 using LPP (1.10).
Observe that comparing with LPP (1.7) of step 2 only one extraconstraint is added
in order to ensure that enough tokens are produced in the output buffers. Steps 4-7
are repeated|K| −1 times in order to allow the communication along the longest
path connecting a pair of subsystems.

The following Theorem shows that Algorithm 5 computes a control law for all
subsystems that ensures the reachability of their target markings (see [5] for the
proof).

Proposition 6 Let N be a DcontPN with tree structure satisfying assumptions (A1),
(A2) and (A3), and let sk be the flow integral vectors computed by Algorithm 1 for
each subsystem for a given initial and target marking. The application of sk drives
the subsystems to their target markings.

Example 9.Consider the net system in Fig. 1.9 used also in Ex. 8. Assume for the
first subsystem the same initial and desired markings:m0(P1) = md(P1) = [0 0 3]T

while for the second one:m0(P2) = [0 0 0 0 2 2]T andmd(P2) = [0 0 1 0 2 1]T . For
the buffers, let us assumem0(pa) = 1,m0(pb) = 0. Let us compute local control laws
in each subsystem. For the first one, sincem0(P1) = mf (P1), the minimum firing
vector is unique equal tos1 = [0 0 0]T , i.e., not firing any transition. For the second
subsystem, it is easy to observe that the minimum firing vector is s2 = [0 0 1 0 0]T ,
i.e., firing t6 in an amount equal to 1. Notice thatt6 cannot fire from the initial
marking becausem0(pb) = 0. In order to avoid this, it is possible to fire once the
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Algorithm 5 [Distributed controller of subsystem k]
Input: Ck,m0(Pk),md(Pk), B(k,∗), B(∗,k), m0(B(k,∗))
Output: flow integral vector s
1) Solve

min 1T · s̄
s.t. md(Pk)−m0(Pk) = Ck · s̄,

s̄≥ 0
(1.7)

2) Repeat |K|−1 times
3) For every p∈ B(∗,k) calculate

qreq
p =

(

∑
t∈p•

Pre(p, t) · s̄(t)
)

−m0(p) (1.8)

4) For all p∈ B(∗,k) send qreq
p to the connected subsystem

5) For all p∈ B(k,∗) receive rreq
p from the connected subsystem

6) For all p∈ B(k,∗) calculate

hp =
(

∑
t∈•p

Post(p, t) · s̄(t)
)

− r req
p (1.9)

7) If min
p∈B(k,∗)

{hp} < 0 then solve

min 1T ·s
s.t. md(Pk)−m0(Pk) = Ck ·s,

∑
t∈•p

Post(p, t) ·s(t) ≥ r req
p ,∀p∈ B(k,∗)

s≥ 0

(1.10)

Else
s= s̄

End If
8) s̄= s
9) End Repeat
10) return s

T-semiflow of subsystem 1 (equal to the vector of ones). This is the control action
that Algorithm 5 computes for subsystem 1 after the first iteration. The algorithm
performs just one iteration because, in this example,|K| = 2.

Once the flow integral vectorss of the evolution from the initial marking to the
target marking have been computed by Algorithm 5, the value of the control actions
u can be derived in several ways (for example applying the procedure in [3]) as long
ass=

∫ τb
τa

( f −u)dτ is satisfied whereτa andτb are the initial and final time instants
respectively. Remark thatscan be seen as a firing count vector in the untimed system
and the problem of finding a control lawu is equivalent to a reachability problem:
if the desired marking is reachable in the untimed net systemit is reachable in the
timed one with an appropriate control law if all transitionsare controllable. This re-
sult is proved in [21] (Prop. 14. 3) where a procedure that executes a firing sequence
of the untimed system in the timed one is also presented.
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1.5.3 Further reading

For further reading on the presented topics, the reader is referred to the survey pa-
per [22]. An introduction to fluidization of net models can befound in [23], and
a comprehensive definition and application examples of discrete, continuous and
hybrid Petri nets can be found in the book by R. David and H. Alla [9].
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14. E. Jiménez, J. Júlvez, L. Recalde, and M. Silva. On controllability of timed continuous Petri
net systems: the join free case. InProc. of the 44th IEEE Conf. on Decision and Control (Joint
CDC-ECC), Seville, Spain, 2005.

15. X. Jing, L. Recalde, and M. Silva. Tracking control of join-free timed continuous Petri net sys-
tems under infinite servers semantics.Journal of Discrete Event Dynamic Systems, 18(2):263–
283, 2008.

16. X. Jing, L. Recalde, and M. Silva. Tracking control of timed continuous Petri net systems
under infinite servers semantics. InIFAC World Congress, 2008.

17. R. Kara, S. Djennoune, and J.J. Loiseau. State feedback control for the manufacturing systems
modeled by continuous Petri nets. InProc. of Information Control Problems in Manufacturing
(INCOM), 2006.
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