Chapter 1

Continuous Petri nets: controllability and
control

Jorge Jllvez, C. Renato Vazquez, Cristian Mahulea andusla8ilva

Abstract Controllability is a property related to the capability afuing a system
to any desirable (steady) state or state trajectory. Assordie nets, continuous
nets can be controlled by means of control actions applietherransitions. For
the sake of generality, the set of transitions is partitébimto controllableandun-
controllable control actions can be applied only on controllable tréoiss. These
actions may only reduce the flow of the uncontrolled modetalbise transitions
(machines for example) cannot work faster than their nohdpaed. Under this
framework, the chapter overviews conditions tmmtrollability, different control
approaches for systems working under infinite server séosaand introduces a
basic control method based oansensufor distributed systems.

1.1 Introduction and Motivation

The previous chapter has dealt with the concepts of obsiityadnd observers
in the framework of continuous Petri nets. In contrast tes¢heoncepts that aim
at estimating state variables that are not directly meégeyreontrollability and
control can be seen as dual concepts pursuing to drive the systerirstatiesired
way. In order to manipulate, i.e., control, the system baragontrol actions can
be applied on transitions in order to modify their flow. Sianiy to observability,
a system requirement for a successful design of a contrdhadeis the system
controllability, i.e., the possibility to drive the systam“any” desired state.

Example 1As a simple introductory example, consider the net systef#{a) of
Chapter?? and assume that the system works urid&nite server semantics with
A1 = Az = 1. Thus, the flow of transitions i = my /2 andf, = mp. If the system
is left to evolve freely from the initial markingy = [2 0T, it will tend to the
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steady state marking = [4/3 2/3]T at which the flow of both transitions is the
same,f; = f, =2/3. Assume now that control actions can be applied on tramsiti
in order to modify their flow. Let us just apply a constant cohaictionu; = 0.5
on transitiorts; this means that the original flow tf will be decreased by.B, i.e.,
f1 = (m/2)—0.5 andf, = mp (notice that the flow of transitions cannot be negative,
i.e., f1 > 0 andf, > 0 must hold). In this particular case, if such a control attfo
kept indefinitely, the system marking will evolve to the shgataten= [5/3 1/3]"

at which the flows of transitions arlg = f, = 1/3. It is important to remark that
the control actions that will be introduced can only slow dotlie original flow
of transitions, and they are dynamically upper bounded byetmabling degree of
the transition, e.g., in this simple example the initial wohaction for transitiort;
cannot be higher than 1 given that the initial enabling degfg is 1. Notice that the
constraint that the flow of transitions can only be decreagezh control actions are
applied, does not necessarily imply a decrease in the dwsstem throughput. In
fact, due to the non-monotonic behavior that continuous o&t exhibit, its overall
throughput can increase. This effect has already been shro@hapter?? (Fig.
?7?), where a decrease in the firing speed of a transition carivieahigher global
system throughput.

Notice that continuous Petri nets are relaxations of disdPetri nets, but at the
same time, they are continuous-state systems (in fact,atreeyechnically hybrid
systems in which the discrete state is implicit in the camndits one). That is why it
is reasonable to consider at least two different approddnéise controllability and
control concepts:

1) the extension of control techniques used in discrete Rets, such as the
supervisory-contratheory (for instance, [11-13]);

2) the application of control techniques developed for trrdus-state systems.

Usually, the control objective in the first approach is to tremene safety speci-
fications, like avoidindorbiddenstates, by means of disabling transitions at partic-
ular states. The objective of the second approach consislisving the system, by
means of a usually continuous control action, towards aeksteady state, or state
trajectory (see, for instance, [8]). Regarding continuBasi nets, most of the spe-
cific works that can be found in the literature deals with theosid control approach
applied to thenfinite server semantics model.

Several works in the literature have addressed the studgrdfalability in the
context of continuous Petri nets. For instance, the work jisfudies controllability
for linear nets, i.e., Join-Free nets, pointing out that dleessical rank condition
is not sufficient (detailed in subsection 1.3.2). In [14] wohHability was studied
for Join-Free continuous nets from a different perspectiyecharacterizing the
set of markings that can be reached and maintained. Unfatetlyn those results
are difficult to extend to general subclasses of nets, wherexistence of several
regions makes the general reachability problem intraetabl

It is important to remark that enforcing a desired targetkimay in a continu-
ous Petri net is analogous to reaching an average markirtgeinriginal discrete
model (assuming that the continuous model approximategaty the discrete
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one), which may be interesting in several kinds of systerhss iea has been il-
lustrated by different authors. For example, the work indi@jposes a methodology
for the control of open and closed manufacturing lines. Ton&rol actions consist
in modifying the maximal firing speeds of the controlled siions. It was also il-
lustrated how the control law can be applied to the originsdréte Petri net model
(a T-timed model with constant firing delays). This approhak been used in [18]
and [17] as well, in the same context of manufacturing lide®lated approach was
presented in [25] for a stock-level control problem of anoaubtive assembly line
system originally modeled as a stochastically timed diecRetri net [10]. The re-
sulting scheme allows to control the average value of thekimguat the places that
represent the stock-level, by means of applying additidekdlys to the controllable
transitions.

The rest of the chapter is organized as follows: Sectionritrdduces control
actions and the way they modify the flow of transitions in eys working under
infinite server semantics. In section 1.3, the controligbproperty is discussed
and some results are extracted for the case in which allitiams are controllable,
and the case in which there are some non-controllable transi Section 1.4 de-
scribes some control methods for systems in which all ttimsi are controllable
and sketches a couple of methods that can be applied whentsaomsiions are not
controllable. Finally, section 1.5 discusses how a digted control approach can
be designed on a net system composed of several subsystenected by buffers.

1.2 Control actions under infinite server semantics

Like in discrete Petri nets, control actions are appliedrenttansitions. These ac-
tions can only consist in the reduction of the flow, becauesitions (machines for
example) should not work faster than their nominal speeé.set of transition¥

is partitioned into two set$; andTyc, whereT. is the set of controllable transitions
andT; is the set of uncontrollable transitions. The control veate R/l is defined
s.t.u; represents the control action gnin the followinginfinite server semantics
will be assumed. Since represents a reduction of the flow, then the following in-
equality must hold & u; < A; -enaldt;, m). The behavior of forced(or controlled)
continuous Petri net can be described by the state equation:

m=CAN(mm-Cu

s.t. 0< U< AN (m)m andvt; € Tpe, Ui = 0. (1.1)
where matrix1 is the configuration matrix defined in Chap®
=L if (p,t) € %k
Mt pl =< Prelpt” ’ 1.2
K[t p) { 0, otherwise (1.2

where %, denotes a configuration as defined in Chap®rNotice that the slack
variables introduced in section 5 of Chap®tplay a similar role to the one of
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the control actions. There are, however, important diffees, in that case slack
variables are associated to places and only the steady&tateptimized.

1.3 Controllability

Among the many possible control objectives, we will focusdoing the system,
by applying a control law, towards a desired steady state, aset-pointcontrol
problem, frequently addressed in continuous-state systé&inis control objective
is related to the classical controllability concept, adiog to which a system is
controllable if for any two states;, X, of the state space it is possible to transfer the
system fronk; to X, in finite time (see, for instance, [8]).

Marking conservation laws frequently exist in most Pettsneith practical sig-
nificance. Such conservation laws imply that timed contirmuBetri net (TCPN)
systems are frequently not controllable according to tlassital controllability
concept [21, 22]. More precisely, if is a P-flow then any reachable marking
must fulfill y"m = y"my, defining thus astate invariant Nevertheless, the study of
controllability “over” this invariant is particularly imtresting. This set is formally
defined aClasgmg) = {m¢ RLPMB;m: By Mo}, whereBy is a basis of P-flows,
ie., B}C = 0. For a general TCPN system, every reachable marking bgltmg
Clasgmy).

Another important issue that must be taken into account IRNGystems is the
nonnegativeness and boundedness of the input, i€.u8 ATT(m)m. An appro-
priate local controllability concept, once these issuescansidered, is [24]:

Definition 1 The TCPN systeffiN, A, mp) is controllable with bounded inp¢BIC)
overSC Clasgmy) if for any two markings mm, € S there exists an input u trans-
fering the system from o my in finite or infinite time, and it is suitably bounded,
i.e.,0<u<AM(m)m, andvt € Toc Ui = 0 along the marking trajectory.

1.3.1 Controllability when all the transitions are controllable

An interesting fact is that when all the transitions are oalteble, the controllability
of TCPNSs, depends exclusively on the structure of the netis give some intuition
about this by rewriting the state equation as:

m=C-w (1.3)

where the innovation vectav = AT(m)m— u can be seen as an auxiliary input.
The constraints fou are transformed into & w < AT(m)m. In this way, given a
markingmy € Clasgny), if 30 > 0 such tha€o = (m; — mp) thenny, is reachable
from my. This can be achieved by settimg= oo (with a small enouglx > 0),
so the field vector resultsi= Cao = a(m; — mpy) which implies that the system
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will evolve towardsmy describing a straight trajectory (assuming that the requir
transitions can be fired from this marking, what always hagpgém is a relative
interior point ofClasgmy)).

Example 2 Consider, for instance, the TCPN of Fig. 1(a) and the makmg=
23117, m=[1321" andm, =[2113". Given that this system has 2 P-
semiflows (involving{ p1, ps} and{ pz, ps} respectively), the marking of two places
is sufficient to represent the whole state. For this sysfien> 0 such thaCo =
(my — ), butpo > 0 such thaCo = (m, — my), so,my is reachable buty, is not.
The shadowed area in Fig. 1(a) corresponds to the set ofabkcimarkings, note
that it is the convex cone defined by vectdrsindc,, which represent the columns
of C (here restricted t@; andpy).

- . p3‘/1 \;‘ P, ‘/ 3“\‘
Ps( 1) P2(3) N \_/
t t, t,

t1 t2
P P
Pil 2 1)
Pil2] Pl 1) NV Pal 1)

A
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m(po)| M )/jmo m(p,) ™ ol C3
cf 1
‘my ‘my
0 m(p 1) 3‘ m(p4) 3‘

(@) (b)

Fig. 1.1 Two TCPN systems with identical P-flows. The shadowed areasspond to the sets of
reachable markings. Only the system (b) is consistent antiaitable oveiClasgmy).

A full characterization of controllability [24] can be olad from this structural
reachability reasoning:

Proposition 2 Let (N,A,mp) be a TCPN system in which all the transitions are
controllable. The systerfN, A, my) is BIC over the interior of Clagsn) iff the net

is consistentFurthermore, the controllability is extended to the whGlkassmg)

iff (additionally to consistency) there exist manpty siphonat any marking in
Clasgmy).

It is important to remark that controllability does not degeon the timingA.
In fact, the key condition here is consistency, i#¢,> 0 such thaC-x = 0. Re-
member that a reachable markimg> 0 fulfills m= my+C- o with ¢ > 0, which
impIiesB)Tm = B)T,mo (equivalentlym € Clasgmy)). In the opposite sense, if the net
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is consistent thelm > 0 s.t.Bym=BJ m (i.e., mc Clasgmy)) it existso > 0 s.t.
m=my+C- g, thusmis reachable (assumirg s fireable). A very informal and
intuitive explanation is that consistency permits moveta@f marking in any di-
rection inside the reachability space (see Fig. 1.1(l®),if. there exist&r such that
m; = mp+C- g, under consistency any = o + k- x > 0, permits the reachability
of my.

Let us consider again the TCPN system of Fig. 1.1(a). Givex the net is
not consistent, it can be deduced by Proposition 2 that ibtscontrollable over
Clasgmp). Let us now consider the system of Fig. 1.1(b). In this case,td the
consistency of the net, it holds that the vecfor— my) is in the convex cone de-
fined by the vectors], ¢, andc; for any markingm € Clasgmg). Thereforemis
reachable fronmy. Furthermore, since at the border marking<tdisgmp) there
are not unmarked siphons then, according to Propositiome2system i8IC over
Clasgmy).

1.3.2 Controllability when sometransitions are uncontrollable

If a TCPN contains uncontrollable transitions it becomes euntrollable over
Clasgmp), even if the net is consistent. Thus, the concept of comtodity must
be constrained to a smaller set of markings. The work in [1ddliss this idea
by defining a set named Controllability Spa&y for Join-Free nets, over which
the system is controllable. Unfortunately, this set degeond the marking, and
therefore, its characterization for general subclasse®ets is difficult. The exis-
tence of several regions makes the general reachabilifylgmointractable. For
practical reasons, the controllability was studied in [2¥gr sets ofequilibrium
markings: m? € Clasgmg) is an equilibrium marking ifu? suitable such that
CAM(mT)m?—u®) =0, i.e., there exists a control action that keeps the system
marking constant at. They represent thpossible stationary operating points
of the original discrete system. These markings are péatiguinteresting, since
controllers are frequently designed in order to drive theteay towards a desired
stationary operating point

Given that inside each regio#; the state equation is lineafl(m) is constant),
it becomes convenient to study, in a first step, the contiiy over equilibrium
markings in each region and later over the union of them. @oach is supported
by the following proposition:

Proposition 3 Let (N,A,mp) be a TCPN system. Consider some equilibrium sets
S, ..., § related to different region@l, H>,...,Zj. If the system is BIC (in finite
time) over each one and their uni@Jj_, S is connected, the system is BIC over the
union.

The connectivity of the set of all the equilibrium markinggdlasgmp) has not
been demonstrated for the general case. Neverthelessnn gudied system such
property holds.
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Fig. 1.2 TCPN system with ité&. Transitiont, is the only controllable one. There are four possi-

ble configurations#1 = {(p2,t2), (Pa,t3)}, 2 = {(ps,t2), (Pa,t3)}, €3 = {(p2,t2), (ps,t3)} and
62 = {(ps,t2), (ps,t3)}, however, %, cannot occur from the givemy becauseps and ps cannot
concurrently constraity andts, respectively. Equilibrium sets depend on the timing, legions
do not.

Example 3Let us consider as an example the timed continuous markeuh grfa
Fig. 1.2 with To = {t4} andA = [11127. According to the net structure, there
are four possible configurations, but given the initial niagk one of them cannot
occur. The polytope in Fig. 1.2 represents@asgmy}. Since the system has 3 P-
semiflows, the marking dtp1, p3, ps} is enough to represent the whole state. This is
divided into the regiong?1, #3 and %, related to the feasible configurations. The
segment&; = [my, mp], Ez = [mp, mg] andE,4 = [mg, my] are the sets of equilibrium
markings in regions?1, %3 and %a, respectively. Since the union &, Ez and

E4 is connected, if the system w&C over eachE; (this will be explored in a
forthcoming example) then, according to Proposition 3,4f&tem would bé3IC
overE; UE3UE,4. For instance, the system could be driven fnmgto m; and in the
opposite sense.

Notice that the behavior of the TCPN system is linear and-iimariant in a
given regionZ;, then some of the classical results in control theory cansee @or
its analysis. Null-controllability (controllability arand the origin) of this kind of
systems with input constraints was studied in [7]. Recglfiom there, if a linear
systemx'= Ax+ Bu, with input constrainu € Q (called the set of admissible in-
puts), is controllable then the controllability mat@ontr(A B) = [BAB... A" 1B]
has full rank (equivalentlyyxy,xp: 3z s.t. (xo — X3) = Contr(A,B) - 2). Moreover,
if 0 is in the interior of Q then the previous rank condition is also sufficient for
null-controllability. Otherwise, if there are inputs thedn be only settled as pos-
itive (or negative) then the controllability depends alsotbe eigenstructure of
the state matrix. These results can be adapted to TCPNshiBpthe state equa-
tion of a TCPN is firstly transformed in order to representhtiebavior around an
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equilibrium markingm?, i.e., the evolution oAm = m— md. As a consequence,
some transformed inputdu = (u— u?) can be settled only as nonnegative while
others can be settled as either positive or negative. Thefdeansitions related
to this last kind of inputs is denoted Eéf C Te. Let us denote ag;* the set of
all equilibrium markings in a regio%, s.t.Au[TCif] can be settled as either pos-
itive or negative (equivalentlyfA7;md); > ul > 0 for all t; € T!). In this way,

it can be proved that if a TCPN is controllable over a BgtthenVmy, my € E*:

3z s.t. (mp — my) = Contr((CATT;),C[T¢]) - z This condition is only necessary,
as already pointed out in [1], because the existence of inpustraints. Further-
more, a system is controllable (in finite time) ovgf if Vmp,m € E: 3z s.t.
(mp —my) = Contr((CA;),C[T)]) - z. This sufficient condition is also necessary
if TC‘f = T¢ (but not ifTC‘f C T¢). Note that now the controllability depends not only
on the structure of the net, but also on the timing [24].

As an example, let us consider the regi@h in the system of Fig. 1.2, where
Tc?’f ={t4}. Given that'l'c?’f = Tc then the span condition introduced above is sufficient
and necessary for controllability. In this case, it can befieel that the system is
BIC overE; = E3. Consider now the same system but with= 1 instead ofA4 =
2. In this casejl'f’f = 0 (this set depends on the timing), then we cannot use the
same sufficient condition. Nevertheless, it is still fudfdithatvmp, my € E5 1 Jzs.t.
(mp —my) = Contr((CATI3),C[T¢]) -z Therefore, the controllability matrices do not
provide enough information for deciding whether the sysieBIC or not overE;.

By using other results from [24], it can be proved that thdesysis notBIC with
A4 = 1. This implies that controllability is a timing-dependgnbperty.

1.4 Control techniques under infinite server semantics

This section describes some few techniques proposed irténatlire for the con-
trol of TCPNs when all transitions are controllable. Simijldo theset-pointcontrol
problem in state-continuous systems, the control objedt&re consists in driving
the system towards a desired target marking here denotegl dis desired mark-
ing can be selected, in a preliminarily planning stage, ating to some optimality
criterion [23], e.g., maximizing the flow. Most of the work ke on this issue is
devoted to centralized dynamic control assuming #fiaghe transitions are control-
lable. We will first present those control techniques thgtinee all the transitions to
be controllable, then a basic comparison of such technigilelse performed, and
finally a couple of approaches where uncontrollable traorstare allowed will be
presented.
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1.4.1 Control for a piecewise-straight marking trajectory

This subsection introduces a control approach that aimsaathing a given target
marking by following a piecewise-straight trajectory. Andliar approach was stud-
ied in [15] for Join-Free nets where the tracking controlijppeon of a mixed ramp-
step reference signal was explored, and later extendecheraePetri nets in [16].
In such a work, a high & low gain proportional controller isndlyesized, while a
ramp-step reference trajectory, as a sopath-planningoroblem at a higher level,
is computed. We will discuss the more simple synthesis ghaieeintroduced in [3].

Let us consider the lineconnectingny andmy, and the markings in the inter-
section ofl with the region’s borders, denoted @, mg, ..., m. Definen? = my
andml*! = my. Then,vk € {0,n} computery by solving the linear programming
problem (LPP):

minTy

st.: mfl=m,+C-x
0.<xj < AjA%min{m;, mi*) n
Vje{Ll,..,|T[} where i satisfie§1% # 0

(1.4)

where the first constraint is the fundamental state equatidrthe second constraint
ensures the applicability of the input actions. This wag,¢bntrol law to be applied
isw = x/Tx (the model is represented as in (1.3)), when the system \ecleetthe
markingsmk andmk*L. The time required for reaching the desired marking is given
by Tt = S¢_o Tk. Feasibilityandconvergencéo my were proved in [3].

If one aims at obtaining faster trajectories, intermedsédites, not necessarily on
the line connecting the initial and the target marking, canrroduced [16]. Ac-
cording to [3], they can be computed by means bflmear programming problem
(BPP). The idea is to currently compute the intermediatekings mk, on the bor-
ders of the regions that minimizes the total time= S |_, T« with some additional
monotonicity constraints. Finally, the same algorithm te@nadapted in order to
recursively compute intermediate markings in the inteoiothe regions, obtaining
thus faster trajectories.

1.4.2 Model Predictive Control

Within the Model Predictive Control (MPC) framework, two ma&olutions can be
considered based on timaplicit andexplicit methods (see, for instance, [6]). The
evolution of the timed continuous Petri net model (1.3)discrete-time can be
represented by the difference equationik+ 1) = m(k) + © - C - w(k), subject to
the constraints & w(k) < f(k) with f(k) being the flow without control, which
is equivalent toG - [w' (k),m" (k)]T < 0, for a particular matrixG. The sampling
© must be chosen small enough in order to avoid spurious mgskin particular,
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for ensuring the positiveness of the markings. For thatfallewing condition is
required to be fulfilled/ pe P 1 5t cpe 4j0 < 1.

A MPC control scheme can be derived [20] by using this repragion of the
continuous Petri net. The considered goal is to drive theeaysowards a desired
markingmy, while minimizing the quadratic performance index

3(m(k),N) = (m(k-+ N) — my)'Z(m(k-+ N) — my)
5N (mlk ) — ma)QUm(k-+ ) — my)
+(wW(k+ j) —wg) Rw(k+ j) —wg)]

whereZ, Q andR are positive definite matrices ahtis a given time horizon. This
leads to the following optimization problem that needs tosbklved in each time
step:

min J(m(k),N)
st.:Vje{0,..,N-1}, mk+j+1)=mk+j)+0O-C-wk+j)
, {W(kﬂ)} -0 (1.5)
mk+j) | —
w(k+j) >0

Let us show that, in general, the standard MPC approach dateguarantee
convergence [20].

Example 4 Consider the net system in Fig. 1.3 with=[15]". Let® = 0.1,my =
[01)T andwy = [00]". Moreover, lefQ =Z =R=1 andN = 1.

Fig. 1.4 shows the marking evolution of the system contdoliéth the MPC
policy. It can be seen that the desired marking is not readbiserve that to obtain
my, only t; should fire. Given that the timing horizon is too short and=5 >>
A1 =1, the optimality of (1.5) implies that it is better to fire &etbeginning “a
little” t so thatmy, approaches the desired final valme; = 0. However, oncé,
has fired,my cannot be reached because there is not enough markipgtm be
transferred tq;. [ |

— 2

Fig. 1.3 Example of an unstable TCPN system with basic MPC scheme.

The work in [20] shows that the standard techniques usedfsuréng converge
in linear/hybrid systems (i.e., terminal constraints anti@al cost) cannot be ap-
plied in continuous nets if the desired marking has zero aorapts. However, sev-
eral approaches can be considered to improve convergeatesldiscuss one of
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Marking evolution

_mz’

0 L Il o
0 20 40 60 80 100

Fig. 1.4 Marking evolution of the TCPN system in Fig. 1.3.

them that consists in constraining the system state at kira®l to belong to the
straight linem(k) — my. Roughly, this is equivalent to add a terminal constraint of
the form:

m(k+N) = m+ o - (mg —m(k))
{Ogagl (1.6)

to the optimization problem (1.5), wheoeis a new decision variable. As stated in
the following proposition, the inclusion of this constreguarantees asymptotically
stability.

Proposition 4 Consider a TCPN system withyrmnd ny the initial and target mark-
ings, respectively, beinggn> 0 and my reachable from m Assume that the system
is controlled using MPC with a terminal constraint of therfo¢l1.6)and prediction
horizon N= 1. Then, the closed-loop system is asymptotically stable.

Example 5Let us exemplify this result through the TCPN in Fig. 1.5. &e&my =
101" >0,my=[00"T,wg=[000T,A=[1117T,Z=R=1,Q=[10;0100
ando© =0.1.

Fig. 1.6 shows the marking evolution after applying MPC wiita terminal con-
straintm(k+N) = o -mq+ (1 — a) - m(k), for N = 1 andN = 2 respectively. It can
be observed that Nl = 1, my is reached, but iN = 2, my is not reached. Notice that
mg = [0 O is on the boundary of the feasible states since in a Petrimi&gj, > 0
for all reachability markings.

t1|:|

%O:HTQ%—ﬂ 5

Fig. 1.5 A TCPN showing that the terminal equality constraint mayergure stability iN > 1.
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An alternative MPC approach for this problem is the so-chégplicit solu-
tion [6], where the set of all states that are controllablspbt into polytopes. In
each polytope the control command is defined as a piecewise &finction of the
state. The closed-loogtability is guaranteed with this approach. On the contrary,
when either the order of the system or the length of the ptiedidorizon are not
small, thecomplexityof the explicit controller becomes computationally prativie.
Furthermore, the computation of the polytopes sometimesfisasible.

1.4.3 ON-OFF Control

If the control problem is constrained to particular net sabses, stronger results
may be obtained. For instance, &iructurally persistent continuous Petri ngit®.,
net systems where the enabling of any transitjozannot decrease by the firing of
any other transitiof) # t;j (in continuous nets this corresponds to choice-free nets),
the minimum-time control problem has been solved [28].

The solution to this problem can be obtained as follows tFirsninimal firing
count vectoio s.t.my = mp+ Co is computed § is minimal if for any T-semiflow
X, |[X]| € ||o||, where]| - || stands for the support of a vector). Later, the control law
is defined, for each transitidg, as:

it = 0 if f[o witj]dT < altj]
Pty i g witldr = o)

This means that ifi has not been fired an amountait;], thent; is completely ON.
Otherwisef;j is completely OFF (it is blocked).

. Marking evolution L Marking evolution
08} — Ml ost s
06 : — 0.6 — M
04r . 1 04f
02F : 1 o2t

0 o

0 10 20 30 40 50 60 0 1 2 3 4 5 6 7 8 9

Fig. 1.6 Marking evolution of the net in Fig. 1.5 with = 1 (left) andN = 2 (right).
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Fig. 1.7 Structurally persistent Petri net system
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Fig. 1.8 Marking trajectories of the net system in Fig. 1.7 under ORF@ontrol
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Example 6Let us consider the structurally persistent net in Fig. b.BHow the
ON-OFF control. Let us assume that the initial markingris=[1000Q", the
target marking isny = [0.3 0.4 0.3 0.4 0.4]" andthat\ =111 1". Fig. 1.8 shows
the marking trajectory after the application of the contliotan be appreciated that
the trajectory exhibitsudderchanges (the first derivative is not continuous) due to
the change from ON to OFF in the transitions. The markipgs reached in 5

time units.

According to the ON-OFF approach, once the final markingashed, all tran-
sitions are stopped. This trivially produces a steady stéteno flow in which the
final marking is kept. As it has been seen in previous sectisteady states with
positive flows can be easily maintained as long as the flonovésta T-semiflow.
The system in Fig. 1.7 has no T-semiflows, and therefore, tlaé rinarking cannot

be kept with a non-null flow vector.

In [28], it is proved that this ON-OFF control policy drivesiscturally persistent
continuous Petri net systems towardg in minimum time An intuitive reason for
this is that, for persistent nets, the firing order is irralevfor reaching a marking.
Hence, what only matters is the amount of firings requiredciwvts provided byo.
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1.4.4 Comparison of control methods

The availability of several control methods for TCPNs raisencerns about the se-
lection of the most appropriate technique for a given paldicsystem and purpose.
In order to make an appropriate choice, several propertes lme taken into ac-
count, e.g., feasibility, closed-loop stability, robuests, computational complexity
(for the synthesis and during the application), etc.

Table 1.1 Qualitative characteristics of control laws (assuming> 0). The following abbrevia-
tions are used: config. (configuration), min. (minimizepdu(function), compl. (complexity) and
poly. (polynomial).

Technique|Computationgl  Optimality Subclass| Stability
issues criterion
PW-straighf a LPP for heuristic for all yes
trajectory | each config. min. time
MPC poly. compl. | min. quadratic or all under suf
on|T|,N [linear func. ofm,u conditiong
ON-OFF | linear compl. minimum structurall yes
on|T]| time persistent]

Table 1.1 summarizes a few qualitative properties of sontieeoéontrol methods
described above. According to the presented propertidsg iT CPN under consid-
eration is structurally persistent, then the natural oheigl be an ON-OFF control
law, since it does not exhibit computational problems, essuonvergence and pro-
vides the minimum-time transient behavior. For non-pé&gaisnets, MPC ensures
convergence and minimizes a quadratic criterion. Neviatise when the number
of transitions grows, the complexity may become intracabi such a case, con-
trol synthesis based on other approaches as piecewisghstrajectories would be
more appropriate.

Given a TCPN system with just few configurations and tramsgimost of the
described control laws could be synthesized and appligddgasuring convergence.
In such a case, the criterion for selecting one of them maydueatitative one, like
minimizing either a quadratic optimization criterion oettime spent for reaching
the desired marking.

1.4.5 Control with uncontrollable transitions

This subsection briefly discusses two control methods thatbe used when the
system contains uncontrollable transitions.

Gradient-based control with uncontrollable transitions9]. This method pro-
duces control actions that reduce the rates of the contteltaansitions from their
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nominal maximum values. This is equivalent to reducing ta@aditions flow, as
considered along this chapter. However, the goal of therabptoblem is slightly
different, since it is no longer required to drive the wholarking of the system to a
desired value, but only the marking of a subset of placesdtityeutof the system).
The analysis is achieved in discrete time. Let us providé#sec idea for the case
of a single-output system. Firstly, a cost function is defimsv(k) = 1/2¢(k)?,
where g(k) denotes the output error. The control proposed has a steutike:
u(k) = u(k — 1) — (s(k)s(k)" + al)~s(k)e(k), where the inputi(k) is the rate of
the controllable transitions arsfk) is the output sensitivity function vector with re-
spect to the input (the gradient vectayy). The factora > 0 is a small term added
to avoid ill conditioned matrix computations. The gradientomputed by using
a first order approximation method. One of the advantagesi®@@ipproach is that
the change of regions (or configurations) is not explicillen into account during
the computation of the gradient. Furthermore, a sufficdemidition for stabilityis
provided.

Pole assignment control with uncontrollable transitio26]. This technique as-
sumes initially that the initial and desired markings areilgrium ones and belong
to the same region. The control approach considered haolibevihg structure:
u=uj+K(m—nmj), where (1, uj) is a suitable intermediate equilibrium mark-
ing. The gain matriX is computed, by using any pole-assignment technique, in
such a way that the controllable poles are settled as distieal and negative. In-
termediate markings;, with their corresponding input;, are computed during
the application of the control law (either at each sampliegqa or just at an ar-
bitrary number of them) by using a given LPP with linear coexjtly that guar-
antees that the required input constraints are fulfilledet.ahose results are ex-
tended in order to consider several regions. For this, ie@aired that the initial
and desired markings belong to a connected union of equitibsets (as defined
in subsection 1.3.2), i.emp € Ej, my € E;; andU ;E" is connected. Thus, there
exist equilibrium markingsn},...,m?_, on the borders of consecutive regions, i.e.,
m? € EjNEj11,Vj € {1,..,j—1}. Again matrixK, satisfying the previously men-
tioned conditions, is computed for each region. Then, m&dchjth region, the
control actionu = uy + Kj(m—my,) is applied, wherer; is computed, belonging
to the segmenﬂmq,m?ﬂ], by using a similar LPP. It was proved that this control
law can always be computed and appliggh6ibility). Furthermoregconvergencéo
the desiredny was also demonstrated, whenever the conditions for cdaibibity
are fulfilled andJ{_, E;" is connected (see section 1.3.2). The main drawback of this
technique is that a gain matrix and a LPP have to be deriveddon region in the
marking path.

Similarly to the previous subsection, Table 1.2 summarizesnain features of
the two presented methods.

Given that a pole assignment is required for each configuraifithe TCPN has
many configurations, the implementation of the pole assgrtmmethod becomes
tedious although automatizable. This problem does notagpethe gradient based
controller. On the contrary, the gradient based contrdltess not guarantee conver-
gence for the general case, while the pole assignment does it
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Table 1.2 Qualitative characteristics of control laws (assurming> 0) with uncontrollable tran-
sitions. The following abbreviations are used: min. (miizi@), compl. (complexity) and poly.
(polynomial).

Technique Computational | Optimality |Subclasp Stability
issues criterion
Gradient-based poly. compl. |min. quadrati¢ all |under a sulf.
on # outputs error condition
Pole-assignmefa pole-assignment  none all yes
for each config.

1.5 Towards distributed control

A natural approach to deal with systems having large netttres is to consider de-
centralized and distributed control strategies. In a cetepy distributed approach,
the model can be considered as composed of several subsytei@rahare informa-
tion throughcommunication channelsodeled by places. This problem has been
addressed in few works. For instance, [27] proposes théegde of an upper-level
controller, nameaoordinator This coordinator may receive and send information
to the local controllers, but it cannot apply control acsatirectly to the TCPN
system. The existence of such coordinator increases ttabitiyp of the local con-
trollers, allowing to consider wider classes for the netsyiskems (they are assumed
to be separately live and consistent, but they are not céstirto particular net sub-
classes). Affine control laws are proposed for local cotersl Feasibility and con-
current convergence to the required markings are proved.

We will describe in more detail an alternative approach g ttonsiders a sys-
tem composed ahono-T-semifloMTS) subsystems working under infinite server
semantics connected through places (recall that a netdeshie MTS if it is con-
servative and has a unique minimal T-semiflow whose suppatains all the tran-
sitions). For each subsystem, a local controller will beigiesd, being its goal to
drive its subsystem from its initial marking to a requireeolm order to achieve this
goal, it must take into account the interaction with the othésystems. For this,
it is required that neighboring local controllers shareiniation in order to meet
a consensushat determines the amounts in which transitions must firdter to
reach the target marking. We propose to reach such a corssbgsueans of an
iterative algorithm executed locally at each subsystem.

In order to illustrate the kind of systems that will be hawilleonsider a simple
net modeling a car manufacturing factory composed by twotpla and D in two
different cities. The Petri net model is given in Fig. 1.9€eTplant A produces the
car body (placep;) and then sends it to the plant D (plapg). The plant A can
produce concurrently a limited number of car bodies (thgahmarking of ps). In
plant D, the engine is constructegy] and then it is put in an intermediate buffer
ps. The same plant paints the body received from plant fAgand puts it inp7 to
be assembled together with the engine. The firingg @heans the production of a
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new car. We assume that D can produce concurrently a limitecber of engines
(initial marking of pg) and can paint a limited number of car bodies in parallel
(initial marking of pg). Placepy, is the buffer containing the car bodies produced
by plant A while p, is the buffer containing the finished products. Since we do no
want to produce more than we sell, the plant A starts to pre@utew body (firing

of t1) only when a car is sold.

| PLANT A - Subsystem 1 i ! PLANT D - Subsystem ¢

send g Ps @
! Pq

Fig. 1.9 A distributed marked graph modeling a car manufacturing plant wharend p, are
buffer places.

1.5.1 Distributed Continuous Petri nets

We will focus on distributed continuous Petri nets (DconYRIdich consists of a set
of MTS net systems (called subsystems) interconnecteddgfwbuffers modeled as
places. LeK denote the set of subsystems of a given DcontPN. The set cégla
transitions and token flow matrix of subsyst&ra K is denoted by*, TX andCk ¢
RIPXIT respectively. We assumBXNP = 0 andTKkNT =0, vk,| € K, k#£1.
The directional connection between subsystems is provdgiedset of places called
channelor buffer placeslin particular, the directional connection from subsystem
to | is provided by a set of places deno®¢'), whose input transitions are con-
tained only in subsysteitnand output transitions are contained only in subsydtem
|e Bk' —{pePl’peTX p* T, pg P4 vgeK]} foreverykl € K, k#1, and
B = ¢ for everyl e K.

Note that a place € B! is aninput bufferof subsystenh and anoutput buffer
of subsystenk. The set of all output buffers of subsysténis denoted byB(k*),
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i.e.,Bk* = |J BkD, and the set of all input channels of subsysteisdenoted by
leK

BN, i.e.,BUK = |J BIK,
leK .

The marking vector of a subsystéais denoted byn(PX) e R‘fo‘ . When design-
ing a controller, it must be taken into account that the auler of a given subsystem
only knows its marking and the marking of its input buffers, ithe marking of the
other subsystems and their input buffers are not observable

Among the different existing control problems, we will death a control prob-
lem of DcontPN which aims at reaching a particular targetkingrmy at each
subsystem. That is, after a finite period of time each subsy# at its target mark-
ing. In contrast to a centralized control, each subsysteegispped with its own
controller that computes the control actions that driveghiesystem to the target
marking. Given that the subsystems are interconnectegintiag require resources
to be available in the communication buffers to reach thgetamarking. The fol-
lowing example shows this situation.

Example 7 Consider the DcontPN in Fig. 1.9 withg(P*) = [0 0 37, mp(P?) =
[0000 227, my(pa) = 1, Mo(Pp) = 0 and letmy(P') = [0 0 3T, my(P?) =
[00 1021 be the target markings of each subsystem. Let the flow inegra
of subsystem 1 and 2 be denotedshands? respectively.

Let us assume that the controller of the second subsysterputess?(tg) =
1, S(ty) = (ts5) = P(t7) = (tg) = 0 so that the subsystem reaches the target
marking. Given that the initial marking and target markiriggobsystem 1 are the
same, a controller for that subsystem could yietdt; ) = s*(t,) = st(t3) = 0. Since
mo(pp) = 0, transitionts cannot fire unlest fires. Unfortunately, according to the
computed controldgg will not fire (st(t3) = 0). Hence, these controls are not valid
to reach the desired target marking of subsystem 2. In oodsoltze this situation,
subsystem 2 may ask subsystem 1 to put enough tokems irhis can be achieved
easily by firingts. However, this will imply that subsystem 1 moves away frog it
desired target marking.

Apart from the problem of tokens (resources) required irbilféer places at the
initial time, it could happen that the target markings carb®reached due to the
system structure and initial marking (the following examgeals with this case).
When stating the problem we are implicitly assuming thataiget markings of
subsystems are reachable, meaning that the final markitg @vierall net system,
i.e., the net containing all subsystems and buffers, ishalale.

Example 8 Consider again the DcontPN in Fig. 1.9. For subsystem 1hé&etdrget
marking bemy(P) = [0 0 3T which is reachable from(P') = [0 0 3T locally.
For subsystem 2, let the target markingiygP?) = [0 0 1 0 2 1" which is reachable
frommy(P?) =[00002 2" locally by firingte, i.e., if it is considered isolated from
the rest of the system. But when both subsystems are cowtbcteigh the buffers
pa and pp with my(pa) = mo(pp) = 0, the target markings are not reachable.
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1.5.2 A control strategy for DcontPNs

In this subsection, a distributed controller for DcontPNhatree structureis pro-
posed (this extends the results in [4] where the problem le&s Istudied for
DcontPN with two subsystems). In a system with tree strectycles are not al-
lowed. The following assumptions will be taken on the coaséd DcontPNs: (A1)
The target markingy is strictly positive and reachable at the overall systen2)(A
The DcontPN is composed of MTS subsystems. The minimal Tfkews of the
subsysteni is denoted by'; (A3) The overall system is a MTS net system.

The first assumption is simply a necessary condition fortrehitity of the target
markings. The second assumption reduces the class of Dddotthose systems
composed by MTS subsystems while the third one states thaiviérall system is
MTS. In order to drive the subsystems from their initial egato the target states,
Algorithm 5 is developed. It represents logic of the ruledb&executed in each
subsystem to meet a consensus.

In step 1, each subsystem computes the flow integeajuired to reach its target
marking without taking into account the marking of the btsfeStep 2 computes the
amounts of tokenq'i;eq to be produced in each input buffeim order to be able to fire
S. The connected subsystems are informed about the amouetgofed tokenqﬁeq
in step 4. In step 5, each subsystem receives the amountafddihas to produce (if
any) in its output buffers. In step 6, it is computed how maskens would remain
in each output buffer if the present control was appliedhi$ tvalue is negative,
more tokens must be produced in the output buffers, andftireréhe control law
must be recomputed. This re-computation is achieved in &teging LPP (1.10).
Observe that comparing with LPP (1.7) of step 2 only one exdrsstraint is added
in order to ensure that enough tokens are produced in theioouffers. Steps 4-7
are repeatedK| — 1 times in order to allow the communication along the longest
path connecting a pair of subsystems.

The following Theorem shows that Algorithm 5 computes a canaw for all
subsystems that ensures the reachability of their targetings (see [5] for the
proof).

Proposition 6 Let N be a DcontPN with tree structure satisfying assumgti@da),
(A2) and (A3), and let & be the flow integral vectors computed by Algorithm 1 for
each subsystem for a given initial and target marking. Theliaation of & drives
the subsystems to their target markings.

Example 9Consider the net system in Fig. 1.9 used also in Ex. 8. Assomiaé
first subsystem the same initial and desired marking$P') = my(P*) =[00 3T
while for the second oneny(P?) =[00002 2" andmy(P?) =[00102 1. For
the buffers, let us assum®(pa) = 1, my(pp) = 0. Let us compute local control laws
in each subsystem. For the first one, singgP*) = m; (P1), the minimum firing
vector is unique equal 8 = [00 0", i.e., not firing any transition. For the second
subsystem, it is easy to observe that the minimum firing vést& = [0010Q",
i.e., firingts in an amount equal to 1. Notice thgt cannot fire from the initial
marking becausey(pp) = 0. In order to avoid this, it is possible to fire once the
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Algorithm 5 [Distributed controller of subsystem k]
Input: CK, mo(PX), mg(P¥), B&*), BU-K), mo(B*)
Output: flow integral vector s

1) Solve
min 17-§
s.t. my(P¢) —my(Pk) =Ck.5 .7
s>0

2) Repeat |K| — 1times
3) For every pe B*K calculate

gt = (3 Pre(p.t)- 1)) ~mo(p) (1.8)

tep®

4) For all p € B send § to the connected subsystem
5) For all p € B%*) receive § from the connected subsystem
6) For all p e B**) calculate

hp = ( 5 Post(p,t)~sTt)> —riea (1.9)

tEp

7)1f min {hp} <O then solve
peB(k*)

min 1" -s
st my(P¥)—my(P¥) =C*-s
&, Postp.0)s(0) 2 1 vp e B (1.10)
s>0
Else
s=s
End If
8)s=s
9) End Repeat
10)return s

T-semiflow of subsystem 1 (equal to the vector of ones). Ththé control action
that Algorithm 5 computes for subsystem 1 after the firsaiien. The algorithm
performs just one iteration because, in this exanjple= 2.

Once the flow integral vectorsof the evolution from the initial marking to the
target marking have been computed by Algorithm 5, the vaftleeocontrol actions
u can be derived in several ways (for example applying thegatore in [3]) as long
ass= sz(f —u)dr is satisfied where, and1y, are the initial and final time instants
respectively. Remark thatan be seen as a firing count vector in the untimed system
and the problem of finding a control lawis equivalent to a reachability problem:
if the desired marking is reachable in the untimed net systésireachable in the
timed one with an appropriate control law if all transitiare controllable. This re-
sultis provedin [21] (Prop. 14. 3) where a procedure thatetes a firing sequence
of the untimed system in the timed one is also presented.
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1.5.3 Further reading

For further reading on the presented topics, the readefasreel to the survey pa-
per [22]. An introduction to fluidization of net models can foeind in [23], and
a comprehensive definition and application examples ofretisc continuous and
hybrid Petri nets can be found in the book by R. David and Ha f9I.
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