
Chapter 19
Continuous Petri Nets: Observability and
Diagnosis

Cristian Mahulea, Jorge Júlvez, C. Renato Vázquez, and Manuel Silva

Abstract Reconstructing the state of a system from available measurements is a
fundamental issue in system theory. It may be considered as aself-standing problem,
or it can be seen as a pre-requisite for solving a problem of different nature, such as
stabilization, state-feedback control, diagnosis, etc. In the case of Continuous Petri
Nets (CPNs), this problem has been studied for both untimed and timed models. In
this chapter it is considered first the problem of observability of timed CPNs un-
der infinite server semantics (or variable speed). It is assumed that the marking of
some places are measured due to some sensors and the problem is to estimate the ini-
tial/actual state/marking. Three different concepts of observability are defined based
on the knowledge of the firing rate vector and, algebraic and graph-based criteria are
presented. In the last part, untimed CPNs are considered. Measuring/observing the
firing amount in which some transitions are fired, it is shown that the set of possi-
ble markings in which the system may be is convex. Based on this characterization,
some linear programming problems are presented permittingthe computation of
diagnosis states when some unobservable transitions modelpossible faults.

19.1 Introduction and Motivation

The observability problem for CPNs has been studied for bothuntimed and timed
models. In the case of untimed systems, the state estimationis close to the one of
discrete event systems since the firing of transitions can beassumed/seen as sequen-
tial and the corresponding events are not appearing simultaneously. In the case of
timed systems, since the evolution can be characterized by aset of switching dif-
ferential equations, the state estimation problem is more related to the linear and
hybrid systems theory.
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In this chapter, we first study different aspects of observability of CPN under infi-
nite server semantics. The notion ofredundant configurationsis presented together
with a necessary and sufficient condition for a configurationto be redundant. In
some cases, this permits to reduce the system dimension. Three different concepts
of observability can be defined for timed CPN based on the firing rate vectorλλλ . The
classical observability problem is the one where the question is to estimate the ini-
tial state/marking measuring only a subset of states, whileassuming a constant value
for the firing vector. In this case, the set of differential equations is time invariant
and the concept is calledpunctualor classical observation. Observability criteria of
piecewise affine systems[4] can be applied to CPN since CPN is a subclass of those
systems.

As already known, observability of a hybrid system requiresnot only the estima-
tion of the continuous states but also of the discrete ones. To characterize this, the
notion ofdistinguishable regionsis introduced and a quadratic programming prob-
lem (QPP) is given to check if two regions are or are not distinguishable. Then, an
observability criterion is given for general CPN systems. Since the complexity of a
potential algorithm based on this criterion may be high, some rules permitting the
“deletion” of join transitions are given.

In many real systems it is impossible to have the exact valuesof the machine
speeds. In the extreme case, nothing is known about the firingrate vector and the
observability criteria of piecewise affine systems cannot be applied anymore. In
this case,structural observabilityis defined and approaches based on the graph
theory are used to study it. Only the knowledge of the system structure and the
firing count vector (even if not constant) is assumed to be known. The idea is to
determine which state variables can be estimated independently of the time values
associated to transitions.

Finally, if one wants to estimate the system for “almost all”possible values of
firing rate,generic observabilityis defined. In many cases, some punctual values of
firing count vector can produce the loss of observability butit is not very important
since it is observable outside a proper algebraic variety ofthe parameter space. Also
here, graph based approaches are used. This concept is similar to the works onlinear
structured systems[7].

In the last part of the chapter, we present the effect of fluidization of Petri nets
with respect to fault diagnosis. Untimed CPNs are considered and it is assumed that
the amount in which some transitions are fired can be observed. It is pointed out that
the set of potential marking after a sequence of observed transitions is convex. Based
on this convexity, two linear programming problems (LPP) are given that permit us
to assign three diagnosis states. The fluidization allows usto relax the assumption,
common to all discrete event system diagnosis approaches, that there exists no cycle
of unobservable transitions.

This chapter is mainly developed based on the theoretical results presented in
[9, 14] and in the survey [19] for the observability of timed CPN under infinite server
semantics. Theoretical results for state estimation and fault diagnosis for untimed
CPN have been presented in [15].
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19.2 A previous Technicality: Redundant Configurations

We assume that the reader is familiar with the notions and definition given inChap-
ter 18where CPNs have been introduced.

The number of configurations of a CPN is exponential and upperbounded by
∏t j∈T |•t j |. A necessary condition for the observability of a CPN systemis the ob-
servability of all linear systems. Therefore, if some configurations are “removed”,
the complexity analysis of the observability may decrease.Notice that the notion of
implicit places[20] andtime implicit arcs[18] cannot be used in the context of ob-
servability since the implicitness in these cases is provedfor a given initial marking
and for a given time intepretation. In our case, the initial marking is assumed to be
partially known. In this section we study a stronger concept, only depending on the

net structure and valid for all possible initial markingsmmm0 ∈ R
|P|
≥0, concept called

redundant configuration.

Definition 1. Let Ri be a region associated to a CPN system. If for allmmm0, Ri ⊆
⋃

j 6=i R j thenRi is aredundant regionand the corresponding configuration aredun-
dant configuration.
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Fig. 19.1 Continuous PN with redundant regions.

Example 1.Let us consider the subnet in Fig. 1(a) and assume allmmm∈ R
|P|
≥0 for

which the enabling degree oft1 is given bym1. Therefore, the following inequality is
satisfied:m1 ≤m2. Assume also that the enabling degree oft2 is given bym2. Hence,
m2 ≤ m1. Finally, let us assume that the enabling degree of all othertransitions are
given by the same places. Obviously, these markings belong to a regionR1 such
that for each markingmmm∈ R1 the following is truem1 = m2.

Let us consider now all markingsmmm∈ R
|P|
≥0 for which the enabling degrees of

t1 andt2 are given bym1 and the enabling degree of all other transitions is given
by the same set of places as for markings belonging toR1. It is obvious that these
markings belong to a regionR2 for whichm1 ≤ m2.

From the above definition ofR1 and R2, it is obvious thatR1 ⊆ R2 for all
mmm∈ R

|P|
≥0. Therefore,R1 (and the corresponding configuration) can be ignored in

the analysis of the CPN system. �
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According to Def. 1, a regionRi is non-redundant if it is a full-dimensional con-

vex polytope inR|P|
≥0. Therefore, for a given region we need to check if the inequal-

ities composing its definition are strictly satisfied. If fora join t j with pi , pk ∈ •t j

does not existsmmm∈R
|P|
≥0 such that mmm[pi ]

PPPrrreee[pi ,t j ]
<

mmm[pk]
PPPrrreee[pk,t j ]

then the linear systems of the

regions containing in its definitionmmm[pi ]
PPPrrreee[pi ,t j ]

≤ mmm[pk]
PPPrrreee[pk,t j ]

are redundant.

Proposition 1. LetN be a timed CPN system. The regionRi with the correspond-

ing configurationCi is redundant iff∄mmm∈ R
|P|
≥0 solution of the following system of

strict inequalities of the form mmm[pk]
PPPrrreee[pk,t j ]

<
mmm[pu]

PPPrrreee[pu,t j ]
, one for each mmm[pk]

PPPrrreee[pk,t j ]
≤ mmm[pu]

PPPrrreee[pu,t j ]

definingRi .

The existence of a solution for the system of strict inequalities in Prop. 1 can
be checked solving a linear programming problem using a variable ε. For each

mmm[pk]
PPPrrreee[pk,t j ]

<
mmm[pu]

PPPrrreee[pu,t j ]
, a constraint of the following form is added:mmm[pk]

PPPrrreee[pk,t j ]
+ ε ≤

mmm[pu]
PPPrrreee[pu,t j ]

. The objective function will be to maximizeε. If the resulting LPP is in-

feasible or has as solutionε = 0 thenRi is a redundant region.
A pre-arc (an arc connecting a placepi with a transitiont j ) is called implicit

in an untimed system, if for any reachable marking, the marking of pi is never
constraining/restricting the firing oft j . If the system is under a timed interpretation,
it is calledtimed implicit. It may seem that if a mode is redundant, a set of arcs has
to be implicit or timed implicit, since they cannot define theenabling. However, it is
not true, since it is not that an arc never defines the enabling, but that a combination
of arcs may never define the enabling. For example, in the net in Fig. 1(a), none
of the arcs is implicit, although a region (the one corresponding to m1 = m2) is
reduced to its borders. In this example, the redundant mode could also have been
avoided by fusing transitionst1 andt2 into a single one [18]. However, this kind of
transformation cannot always be applied, as shown in the following example.

Example 2.Let us consider the CPN in Fig. 1(b) and let us consider the regionR1 =
{m2≤m1,m3 ≤m2,m1 ≤m3} that it is equivalent to assume that the enabling degree
of t1 is given bym2, the one oft2 by m3 and oft3 by m1. Applying Proposition 1 we
want to check ifR1 is redundant. We have to consider the following system:







m2 < m1 (1)
m3 < m2 (2)
m1 < m3 (3).

(19.1)

Combining 19.1(2) and 19.1(3) we obtainm1 < m2 that is in contradiction with
19.1(1). Therefore, regionR1 and configurationC1 are redundant. �

The same problem of reducing dimension of a CPN under infiniteserver seman-
tics has been studied in [16] using the concept of symmetry. It is shown that such
a symmetry leads to a permutation of the regions and to equivariant dynamics (dy-
namical systems that have symmetries). This can be used for reductions to systems
of smaller dimension.
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19.3 Observability Criteria

Let us assume that the marking of some placesPo ⊆ P can be measured, i.e., the
token load at every time instant is known, due to some sensors. The observabil-
ity problem is to estimate the other marking variables usingthese measurements.
DefiningAAAi =CCC ·ΛΛΛ ·ΠΠΠ i (seeChapter 18for the definitions ofΛΛΛ andΠΠΠ i), the sys-
tem dynamic is given by:

{

ṁmm(τ) = AAAi ·mmm(τ), mmm∈ Ri

yyy(τ) = SSS·mmm(τ) (19.2)

whereSSS is a|Po|× |P| matrix, each row ofSSShas all components zero except the one
corresponding to theith measurable place that is 1. Observe that the matrixSSS is the
same for all linear systems since the measured places are characteristic to the CPN
system. Here it is considered that all linear systems are deterministic, i.e., noise-free.

Definition 2. Let 〈N ,λλλ ,mmm0〉 be a timed CPN system with infinite server semantics
andPo ⊆ P the set of measurable places.〈N ,λλλ ,mmm0〉 is observable in infinitesimal
time if it is always possible to compute its initial statemmm0 in any time interval[0,ε).

Let us first assume that the system is a Join Free (JF) CPN (a CPNis JF if there is
no synchronization, i.e.,∀t j ∈ T, |•t j |= 1). Therefore, it is a linear system and let us
assume that its dynamical matrix is denoted byAAA. In Systems Theory a very well-
known observability criterion exists which allows us to decide whatever a contin-
uous time invariant linear system is observable or not. Besides, several approaches
exist to compute the initial state of a continuous time linear system that is observ-
able. The output of the system and theobservability matrixare:

yyy(τ) = SSS·eAAA·τ ·mmm(τ0) (19.3)

ϑ =
[

SSST
, (SSSAAA)T , . . . ,(SSSAAAn−1)T

]T
. (19.4)

Proposition 2. [11, 17] Eq.(19.3)is solvable for all mmm(τ0) and for allτ > 0 iff the
observability matrixϑ has full rank (in our case, rank(ϑ) = |P|).

The initial state can be obtained solving the following system of equations that
has a unique solution under the rank condition:

















yyy(0)
d
dt yyy(0)
d2

dt2
yyy(0)

...
dn−1

dtn−1 yyy(0)

















= ϑ ·mmm(0). (19.5)

The observability of a JF CPN systems has been considered in [9], where an
interesting interpretation of the observability at the graph level. Let us assume that
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a placepi is measured, thereforemmmi(τ) and its variationṁmmi(τ) are known at every
time momentτ. Because the net has no join, the flow of all its output transitions
t j of pi is the product ofλ j andmmmi(τ) according to the server semantics definition.
Assume thatpi is not an attribution (a placep ∈ P is an attribution if|•p| ≥ 1).
Hence has at most one input transitiontk. Knowing the derivative and the output
flows, the input flow through the input transitiontk is estimated. Applying again the
server semantics definition,f [tk] = λk ·mmm[•tk] (|•tk| = 1 since the net is join free).
Obviously, the marking of•tk can be computed immediately. Observe that this is a
backwardprocedure: measuringpi , •(•pi) is estimated in the absence of joins and
attributions.

The problem of state estimation of general CPN systems and not only JF net sys-
tems is not so easy. In this case, a very important problem forthe observability is the
determination of the configuration, also calleddiscrete state, i.e, the linear system
that governs the system evolution. It may happen that the continuous state estima-
tion fits with different discrete states, i.e., observing some places, it may happen that
more than one linear system satisfies the observation. If thecontinuous states are on
the border of some regions, it is not important which linear system is assigned, but
it may happen that the solution corresponds to interior points of some regions and it
is necessary to distinguish between them.

Example 3.Let us consider the timed CPN in Fig. 2(a). Assume the firing rate of
all transitions equal to 1 andPo = {p3} implying SSS= [0 0 1]T . This system has two
configurations corresponding to two linear systems:

Σi =

{

ṁmm(τ) = AAAi ·mmm(τ)
yyy(τ) = [0 0 1] ·mmm(τ) , i = 1,2 (19.6)

whereA1 is the dynamic matrix corresponding to the configuration in which the
marking ofp1 is defining the flow oft3 while for A2, the marking ofp2 is giving the
flow of t3.

The observability matrices of these two linear systems are:

ϑ1 =





0 0 1
1 0 −1

−3 1 1



 ; ϑ2 =





0 0 1
0 1 −1
1 −3 1



 .

Both have full rank, meaning that both linear systems are observable. Let us take
mmm1 = [1 2 0]T ∈ R1 \R2 andmmm2 = [2 1 0]T ∈ R2 \R1. As it is well-known, the
corresponding observations areϑi ·mmmi(τ) = [yyy(τ) ẏyy(τ) . . .]T . Nevertheless, for the
selected markings we have thatϑ1 ·mmm1 = ϑ2 ·mmm2 = [0 1 − 1]T . Therefore, it is
impossible to distinguish betweenmmm1 andmmm2. �

Definition 3. Two configurationsi and j of a CPN system aredistinguishableif for
anymmm1 ∈ R1 \R2 and anymmm2 ∈ R2 \R1 the observationyyy1(τ) for the trajectory
throughmmm1 and the observationyyy2(τ) for the trajectory throughmmm2 aredifferenton
an interval[0,ε).
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Fig. 19.2 Two CPN.

Remark that we remove the solutions at the borderR1∩R2 since for those points
both linear systems lead to identical behavior, therefore it is not important which one
is chosen. If all pairs of modes are distinguishable, it is always possible to uniquely
assign aconfiguration(or region) to an observed continuous state. Assuming that
the linear systems corresponding to all configurations are observable, a QPP per
pair of regions can be proposed to check their distinguishability.

z= maxβββ T ·βββ
s.t. ϑ1 ·mmm1−ϑ2 ·mmm2 = 0

βββ = mmm1−mmm2

mmm1 ∈ R1

mmm2 ∈ R2.

(19.7)

First, let us observe that if the feasible set of (19.7) is empty (i.e., the problem
is infeasible), linear systems are distinguishable. If in QPP (19.7)z= 0, using the
fact that both systems are observable, i.e.,ϑ1 andϑ2 have both full rank,mmm1 = mmm2

is obtained. Therefore, there exist no interior markingsmmm1 ∈ R1 andmmm2 ∈ R2 with
the same observation, i.e.,ϑ1 ·mmm1 = ϑ2 ·mmm2, and the modes are distinguishable. Fi-
nally, if the solution isz> 0 the linear systems are undistinguishable being the same
evolution in a small interval starting from two markings belonging to different re-
gions. Finally, if the solution isz> 0 we cannot say nothing about distinguishability
of the linear systems. Moreover, the exact solution of (19.7) is not necessary to be
computed and if a feasible solution withz> δ , with δ a small positive number, is
found the search can be stopped.

Example 4.In Example 3, for the timed CPN in Fig. 2(a) it is shown thatϑ1 ·mmm1 =
ϑ2 ·mmm2 = [0,1,−1]T . Solving QPP (19.7), the problem is found to be unbounded,
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thus the linear systemsΣ1 andΣ2 are undistinguishable. For the interpretation of
this result, let us consider the equations that govern the evolution of the system:

f3 = λ3 ·min{m1,m2} (19.8)

ṁ1 = λ2 ·m2−λ1 ·m1− f3 (19.9)

ṁ2 = λ1 ·m1−λ2 ·m2− f3. (19.10)

Summing (19.9) and (19.10) and integrating, we obtain

(m1+m2)(τ) = (m1+m2)(0)−2
∫ τ

0
f3(θ ) ·dθ (19.11)

Obviously, if p3 is measured,f3 can be estimated sincef3(τ) = ṁ3(τ) + λ4 ·
m3(τ). Therefore, according to (19.8), the minimum betweenm1 and m2 is esti-
mated. Moreover, due to (19.11) their sum is also known. Nevertheless, these two
equations are not enough to compute the markings, i.e., we have the values but it is
impossible to distinguish which one corresponds to which place.

We use the same CPN system to illustrate that if the solution of LPP (19.7) is
z> 0 or unbounded we cannot decide. Let us take nowλλλ = [2 1 1 1]T . In this case,
the dynamical matrices are:

AAA1 =





−3 1 0
1 −1 0
1 0 −1



 , AAA2 =





−2 0 0
2 −2 0
0 1−1



 ,

and the observability matrices (assuming alsoPo = {p3}):

ϑ1 =





0 0 1
1 0 −1

−4 1 1



 ; ϑ2 =





0 0 1
0 1 −1
2 −3 1



 .

Letmmm1 = [1 5 1]T ∈R1\R2 andmmm2 = [2 1 1]T ∈R2\R1. Making the computations,
we have:ϑ1mmm1 = ϑ2mmm2 = [1 0 2]T . So, we have the same observations for these two
markings at a timeτ but the modes are distinguishable. To see this let us assume
the marking atτ + δ , whereδ is a very small value. Being a small time variation,
we can consider that the flow of the transitions are constant during the time interval
(τ,τ + δ ) and we can write:

mmm′
1(τ + δ ) = mmm1(τ)+AAA1mmm1(τ)δ = [1+2δ 5−4δ 1]T ,

and
mmm′

2(τ + δ ) = mmm2(τ)+AAA2mmm2(τ)δ = [2−4δ 1+2δ 1]T .

The corresponding observations for these markings are:ϑ1mmm′
1 = [1 2δ 2−12δ ]T 6=

ϑ2mmm′
2 = [1 2δ 2−14δ ]T . Since in all linear systems the set of measured places is

the same and the firing rates are also the same can be observed immediately that
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any mmm′′
1 ∈ R1, mmm′′

2 ∈ R1 with ϑ1mmm′′
1(τ) = ϑ2mmm′′

2(τ) it holds thatϑ1mmm′′
1(τ + δ ) 6=

ϑ2mmm′′
2(τ + δ ). Therefore, according to Def. 3, the modes are distinguishable. �

Using the notion of distinguishable modes, an immediate criterion for observ-
ability in infinitesimal time is:

Theorem 1.A timed CPN system〈N ,λλλ ,mmm0〉 under infinite server semantics is ob-
servable in infinitesimal time iff:

1. All pairs of configurations are distinguishable,
2. For each region, the associated linear system is observable.

A complementary observability problem is presented in [10]. For the discrete-
time model and measuring some places, the problem is to estimate the firing flow
(speed) of the transitions and not the marking of the other places. Since the flow of
a transition is the product between its firing rate (constantvalue) and the enabling
degree, in some cases, measuring places or transitions is equivalent. Anyhow, in
order to compute the flow through joins it is necessary to measure all of its input
places. Moreover, we may also have different markings that have the same firing
flow.

19.4 Reducing Complexity

Theorem 1 provides a criterion of observability of a CPN system. Observe that the
complexity of an algorithm to check this property is not small. The algorithm based
on this criterion should be linear in the number of subsystems (for each subsys-
tem the observability matrix and its rank should be computed) but this number is
exponential in the number of joins. Moreover, for each pair of subsystems, their dis-
tinguishability is necessary to be checked. For this reason, some results have been
proposed in order to “delete” the joins without affecting the observable space. After
that, observability can be checked using only the observability matrix. This reduc-
tion can be done under some general conditions if the net system is attribution free
(AF - a net is attribution free if there exists no placep ∈ P such that|•p| ≥ 2) or
equal conflict (EQ - a net is equal conflict if for anyt1, t2 ∈ T such that•t1∩ •t2 6= /0
thenPPPrrreee[·, t1] = PPPrrreee[·, t2]) [14].

Definition 4. Let N = 〈P,T,PPPrrreee,PPPooosssttt〉 be a net andN ′ = 〈F,T ′,PPPrrreee′′′,PPPooosssttt′′′〉 a
subnet ofN , i.e.,F ⊆ P, T ′ ⊆ T andPPPrrreee′′′,PPPooosssttt′′′ are the restrictions ofPPPrrreee,PPPooosssttt to
F andT ′. N ′ is a strongly connected p-component ofN if for all p1, p2 ∈ F there
exists a path fromp1 to p2 of the form〈p1, t1, pi , ti , . . . , t j , p j , t2, p2〉 with t1 ∈ p1

•,
pi ∈ t1•, . . ., p j ∈ t j

•, t2 ∈ p j
•, p2 ∈ t2•.

Further, a strongly connected p-componentN ′ = 〈F,T ′,PPPrrreee′′′,PPPooosssttt ′′′〉 is called
terminal if for all p ∈ F it holds that: there exists a path fromp to other placep′

implies p′ ∈ F .
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Proposition 3. [14] Let 〈N ,λλλ 〉 be a timed AF CPN and assume that for any join ti

there exists no strongly connected p-component containingall •ti . LetN ′ be the net
obtained fromN by just removing all join transitions together with its input and
output arcs.N is observable iffN ′ is observable.

Observe that the net in Fig. 2(a) is not satisfying the conditions of the previous
theorem since•t3 = {p1, p2} belongs to a strongly connected p-component. How-
ever, if the net has attributions, joins cannot be removed ingeneral.

p5

p3 p4

t4t3 t5t2

p1 p2

t1

Fig. 19.3 CPN used in Ex. 5.

Example 5.Let us consider the CPN system in Fig. 19.3 withλλλ = [a,1,2,3,4]T,
a ∈ R>0 and p5 the measured place. This net has an attribution in placep5 and
has a join int1. The linear system obtained by removing the joint1 is observable
and p1 and p2 do not belong to a strongly connected p-component. However,the
join transitiont1 cannot be removed without affecting the observability space. The
dynamical matrices of the two linear systems are:

AAA1 =













−1−a 0 0 0 0
−a −4 0 0 0

a 0 −2 0 0
a 0 0−3 0
1 2 3 4 0













, AAA2 =













−1 −a 0 0 0
0 −4−a 0 0 0
0 a −2 0 0
0 a 0 −3 0
1 2 3 4 0













.

Computing the determinants of the corresponding observability matrices, we
have:

det(ϑ1) = 192·a3−912·a2+720·a+288,
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which has two positive real roots (a1 = 3.5885 anda2 = 1.4498), and

det(ϑ2) =−96·a3−408·a2−216·a+288,

with one positive real root (a3 = 0.5885). Obviously, ifλ1 is equal to one of these
roots, the CPN system will not be observable since one of the corresponding linear
system will not be observable.

Hence, for some particular values ofλλλ , the system obtained removing the join is
observable but the original system (with join) is not observable. �

Proposition 4. [14] Let 〈N ,λλλ ,mmm0〉 be a timed EQ continuous Petri net system and
N ′ obtained fromN by just removing all join transitions together with its input
and output arcs.N is observable iffN ′ is observable.

The previous two propositions provide necessary and sufficient conditions to “re-
duce non-linearity” and study the observability of a non-linear system on an equiv-
alent, w.r.t. the observability space, linear system. Hence, it is enough to check the
rank of only one observability matrix in order to decide the observability of these
CPN net systems.

19.5 Structural and generic observability

In this section the main results of structural and generic observability of CPN are
presented. First we will illustrate by an example that the presence of an attribution
may lead to the loss of the observability. For this reason, the main result for struc-
tural observability has been given assuming that the net hasno attribution while
generic observability may be studied easily in the case of nets with attributions.

From the previous graph-based interpretation (the backward strategy) of the ob-
servability, it is obvious that the output connectedness isrequired for a placep to
be estimated from an observation. For those places for whichthere is no path to
an output, their marking cannot be estimated. Therefore, the terminal strongly con-
nected p-componentspresent a special interest because any place of the net should
be connected to those components in order to be able to be estimated.

Definition 5. A strongly connected p-componentN ′ = 〈F,T ′,PPPrrreee′′′,PPPooosssttt′′′〉 of a net
N is said to beterminal if there is no path from a place belonging toF to a place
not inF .

Strongly connected p-components of a PN can be computed immediately, adapt-
ing the classical polynomial time algorithms (for example the one in [6]) to a bipar-
tite graph.

Definition 6. Let 〈N ,λλλ ,mmm0〉 be a CPN system andPo the set of measured places.

N is structurally observableif 〈N ,λλλ ,mmm0〉 is observable for all values ofλλλ ∈R
|T|
>0.
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Proposition 5. [14] Let N be a join and attribution free CPN.N is structurally
observable iff at least one place from each terminal strongly connected component
is measured.

Let us consider now attributions and see that this construction can lead to the
loss of observability. Assume the CPN system in Fig. 2(b) where p3 (an attribution
place) is the measured place. Writing down the differentialequation we have:

ṁ3(τ) = λ1 ·m1(τ)+λ2 ·m2(τ)−λ3 ·m3(τ).

From the previous equation,λ1 ·m1(τ)+λ2 ·m2(τ) can be computed since the other
variables are known. However, ifλ1 = λ2, will be impossible to distinguish between
m1(τ) andm2(τ) and the system is not observable. In general, if there exist two
input transitions to an attribution place with the same firing rate, the system is not
observable[14]. Nevertheless, this is not a general rule since the observability is a
global property.

2

5

t5 t 4

t2 t3

t1

p1

p2 p3

p4p45
p

Fig. 19.4 A JF net that is observable measuring the attribution placep2 even ifλ4 = λ5 = λ2 = λ3

Let us consider the timed CPN is Fig. 19.4 withλλλ = 111, assume thatp2 is mea-
sured and let us see if the system is observable using the backward strategy presented
before. Thenm4 andm5 cannot be estimated directly, but their sum (a linear com-
bination of them) is computable (placep45 in the figure). Going backwards,m1 is
estimated and, even althoughm1 is an attribution, sincem2 is measured, thenm3 can
also be estimated. Usingm3, nowm4 is estimated and, through the linear combina-
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tion of p45, m5 as well. Therefore, by measuringp2 the system is observable for all
λλλ , i.e., structurally observable.

Observe that this loss of the observability is due to the presence of attributions
happens for very specific values ofλλλ . If the firing rates of the transitions are chosen
randomly inR>0, the probability to have such a loss of observability is almost null.
Hence, a concept weaker than structural observability can be studied. It is similar
with the concept of “structural observability” defined in [5, 7] for linear systems.

Definition 7. Let 〈N ,λλλ ,mmm0〉 be a CPN system andPo the set of measured places.
N is generically observableif 〈N ,λλλ ,mmm0〉 is observable for all values ofλλλ outside
a proper algebraic variety of the parameter space.

The relation between structural and generic observabilityis immediate. IfN is
structurally observable then it is generically observable. In general, the reverse is
not true.

p1

p2

p3

p4

p5

p1

p2

p4

p3

p5

t3 t4

t2t1

(a) (b)

Fig. 19.5 (a) A JF ContPN; (b) Its associated graph.

In [5], generic observability is studied for structured linear systems using anas-
sociated graph; observability is guaranteed when there exists a state-output con-
nection for every state variable (the system is said to beoutput connected) and no
contractionexists. The transformation of a JF net into its corresponding associated
directed graphis straightforward (see Fig. 19.5 for an example).

Using the associated graph and Proposition 1 in [5], the following result has been
obtained to characterize the generic observability.

Corollary 1. [14] Let N be a pure JF CPN.N is generically observable iff at
least one place from each terminal strongly connected p-component is measured.

The previous result can be extended immediately to general CPNs, i.e., it is not
true only for JF nets. In Example 3 is given a CPN system containing two undis-
tinguishable configurations. Then, changing the firing rates of the transitions in Ex-
ample 4, these modes become distinguishable. Obviously, two configurations are
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undistinguishable when the path from states (markings) to the outputs are identical
in both linear systems. This happens for some particular values of firing rates, e.g.,
λ1 = λ2 in the CPN of Fig. 2(a). If the firing rates are chosen randomly, the backward
paths cannot be identical. Therefore, any pair of subsystems are distinguishable.

Corollary 2. [14]Let N be a pure CPN.N is generically observable iff at least
one place from each terminal strongly connected p-component is measured.

For example, the net in Fig. 2(a) is not observable (hence neither structurally
observable) but it is generically observable.

19.6 Observers Design

JF nets lead to linear systems, for which, Luenberger’s observers [11, 17] are fre-
quently used for the estimation of the states. Such an observer for a JF PN, i.e., with
a single linear system, can be expressed as:

˙̃mmm(τ) = AAA· m̃mm(τ)+KKK · (yyy(τ)−SSS· m̃mm(τ)),

wherem̃mm(τ) is the marking estimation,AAA andSSS are the matrices defining the evo-
lution of the marking of the system and its output in continuous time,yyy(τ) is the
output of the system, andKKK is a design matrix of parameters.

At a particular time instant, a CPN evolves according to a given linear system.
Thus, an online estimation can be performed by designing one(Luenberger) linear
observer per each potential linear system of the PN (in a similar way to [8] for a
class of piecewise linear systems) and selecting the one that accomplishes certain
properties. The “goodness” of an estimate can be measured bymeans of aresid-
ual [3]. Let us use the 1-norm|| · ||1, which is defined as||xxx||1 = |xxx1|+ . . .+ |xxxn|.
The residual at a given instant,r(τ), is the distance between the output of the system
and the output that the observer’s estimate,m̃mm(τ), yields

r(τ) = ||SSS· m̃mm(τ)− zzz(τ)||1.

In order to besuitable, the estimations of the observers must verify the following
conditions:

• The residual must tend to zero.
• The estimations of the places in a synchronization have to becoherentwith the

operation mode for which they are computed.

Thus, at a given time instant, only coherent estimations aresuitable. Moreover,
a criterion must be established to decide which coherent estimation is, at a given
time instant, the most appropriate. An adequateheuristicsis to choose the coherent
estimation with minimum residual.

Consider the CPN system in Fig. 19.6. Let its output be the marking of placep1,
i.e.,SSS= [1 0 0]. The net has two configurations:C1 = {(p1, t1),(p1, t2),(p3, t3)} and
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t1

t2

t3

p1 p2

p3

2

Fig. 19.6 A CPN with two linear systems.

C2 = {(p1, t1),(p2, t2),(p3, t3)}. For the linear system corresponding toC1, m2 is
not observable. However, for the linear system corresponding toC2, the marking of
all the places can be estimated. Letλλλ = [0.9 1 1]T andmmm0 = [3 0 0]T . The marking
evolution of this system is depicted in Fig. 7(a).

One observer per linear system is designed. Let the initial state of observer 1
be eee01 = [1 2]T and its eigenvalues be[−12+ 2 ·

√
3 · i, −12− 2 ·

√
3 · i]. Since

observer 1 can only estimatem1 and m3, the first component of its state vector
corresponds to the estimation ofm1, and its second component to the estimation
of m3. For observer 2, let the initial state beeee02 = [1 0 2]T and its eigenvalues be
[−15, −12+ 2 ·

√
3 · i, −12− 2 ·

√
3 · i]. The evolution of the coherent estimation

with minimum residual is shown in Fig. 7(a).
The resulting estimation can be improved by taking into account some consider-

ations. When the first system switch happens, the estimationbecomes discontinuous
and, what is more undesirable, the estimation for the marking of p3 becomes worse.
A similar effect happens when the second system switch occurs. Another undesir-
able phenomenon is that, after the first switch, the estimation of m2 just disappears
(since it is unobservable in configurationC1).

One way to avoid discontinuities in the resulting estimation, is to use the estima-
tion of the observer that is going to be filtered out in order toupdate the estimation
of the observer that is not going to be filtered out. This estimation update must be
done when a system switch is detected. In order not to loose the estimation of the
marking of a place when it was “almost perfectly” estimated (recall the case ofm2

when the first switch happened) a simulation of the system canbe launched. The
initial marking of this simulation is the estimation of the system just before the ob-
servability of the marking is lost. Such a simulation can be seen as an estimation
for those markings that are not observable by the observer being considered. The
simulation should only be carried out when an estimation forall the places exists
and the residual is not significant. Fig. 7(b) shows the evolution of the estimation
obtained by this strategy.
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Fig. 19.7 The marking evolution is given by(mmm[p1], mmm[p2], mmm[p3]). (a) The estimate of the mini-
mum residual and coherent observer is(omcr1, omcr2, omcr3) . (b) The estimate of the observer
that makes use of a simulation is(obss1, obss2, obss3).
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One of the main advantages is that the residual does not increase sharply when
the mode of the system changes. Another interesting featureis that the use of a
simulation allows one to estimate the marking of places thatin some modes are in
principle not observable: in Fig. 7(b) it can be seen that themarking of p2 can be
estimated, even when it is unobservable due to configurationC1 being active.

19.7 Diagnosis using Untimed CPNs

Let us now consider untimed CPN (seeChapter 18for a short introduction and the
differences among the timed and untimed models). Observability and state estima-
tion problems in systems modeled by anuntimedCPN have also been studied [15].
Nevertheless, in this case it is assumed that the initial marking is known (and not
unknown as in previous sections) and the set of transitions is partitioned in two
subsets:observable(To ⊆ T) andunobservabletransitions (Tu ⊆ T, To ∩Tu = /0)
(hence transitions are observed and not places). When an observable transition fires,
its firing quantity is measured/observed. From the initial marking and given a se-
quence of observed transitions each one with a given firing amount, it is impossible
to uniquely determine the actual marking because the unobservable transitions can
fire intercalated with the observable transitions. All markings in which the net may
be given the actual observation is called theset of consistent markings.

Proposition 6. [15] Let 〈N ,mmm0〉 be a CPN system whereN = 〈P,T,PPPrrreee,PPPooosssttt〉
and T= To∪Tu. Assume that the net system obtained fromN removing all transi-
tions To has no spurious solution (solution of the state equation butcorresponding to
unreachable markings). Given an observed word t1(α1)t2(α2) . . . tk(αk) with ti ∈ To

∀i = 1, . . . ,k, the set of consistent markings is convex.

Based on this proposition, an iterative algorithm has be derived [15] in order to
characterize the set of consistent markings after an observation wordw. The main
idea of the algorithm is to start from each vertex of the previous set and compute the
vertices of some polytopes. Taking the convex hull of all newvertices, the new set of
consistent markings is obtained. The computational complexity of the algorithm is
exponential because requires the computation of vertices,but the compact represen-
tation as a convex polytope is a real advantage. The fluidization allows us to relax
the assumption, common to all the discrete event system diagnosis approaches, that
there exist no cycle of unobservable transitions.

Fault diagnosis problem has been considered inChapter 13in the case of discrete
Petri nets. Similarly, let us assume that a certain number ofanomalous(or fault)
behaviors may occur in the system. The occurrence of a fault behavior corresponds
to the firing of an unobservable transition, but there may also be other transitions that
are unobservable as well, but whose firing corresponds to regular behaviors. Then,
assume that fault behaviors may be divided intor main classes (fault classes), and
we are not interested in distinguishing among fault events in the same class. Usually,
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fault transitions that belong to the same fault class are transitions that represent
similar physical faulty behavior.

This is modeled in PN terms assuming that the set of unobservable transitions is
partitioned into two subsets

Tu = Tf ∪Treg,

whereTf includes allfault transitions andTreg includes all transitions relative to
unobservable butregular events. The setTf is further partitioned intor subsets,
namely,

Tf = T1
f ∪T2

f ∪ . . .∪T r
f

where all transitions in the same subset correspond to the same fault class. We will
say that thei-th fault has occurred when a transition inT i

f has fired.

Definition 8. Let 〈N ,mmm0〉 be a CPN system,T = To∪Tu andw an observed word.
A diagnoseris a function

∆ : T∗
o ×{T1

f ,T
2
f , . . . ,T

r
f }→ {N,U,F}

(whereT∗
o denotes the possible sequences obtainable combining elements in To,

where each sequence is characterized by the firing amounts ofall the transitions in
it) that associates to each observationw and to each fault classT i

f , i = 1, . . . , r, a
diagnosis state.

• ∆(w,T i
f ) =N if the ith faultcannot have occurred. This is true ifnoneof the firing

sequences consistent with the observation contains fault transitions of classi.
• ∆(w,T i

f ) = U if a fault transition of classi may have occurred or not, i.e., it is
uncertain, and we have no criteria to draw a conclusion in this respect.

• ∆(w,T i
f ) = F if the ith fault has occurredsince all fireable sequences consistent

with the observation contain at least one fault transition of classi. �

Thus, statesN andF correspond to “certain” states: the fault has not occurred
or it has occurred for sure; on the contrary stateU is an “uncertain” state: the fault
may either have occurred or not. Given an observation, the diagnosis state is com-
puted solving two LPPs. Since the set of consistent marking is convex, it can be
characterized by a set of vertices. Each vertex of the set of consistent markings is
reached from the initial marking by firing the observed wordw plus, eventually,
some unobservable transitions. Moreover, after the observationw, other unobserv-
able transitions may fire. For a given observed wordw, the vectors of unobservable
transitions that are fired in order to enable transition inwor afterware calledfireable
firing sequences consistent with the observation wand are denoted byY(mmm0,w).

Proposition 7. [15] Consider an observed word w∈ T∗
o and Y(mmm0,w) be the poly-

tope containing all fireable sequences consistent with the observation w. Let
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t j∈T i

f

ρ(t j)

s.t.
ρρρ ∈Y(mmm0,w).

(19.12)

It holds:

∆(w,T i
f ) = N ⇔ ui = 0

∆(w,T i
f ) =U ⇔ l i = 0∧ui > 0

∆(w,T i
f ) = F ⇔ l i > 0.

19.8 Further readings

For timed continuos Petri nets under infinite server semantics the problem of sen-
sor placement has been considered in [12]. It is assumed thateach place can be
measured using a sensor, each sensor having associated a cost. The problem is to
decide the set of places with minimum cost ensuring the observability of the sys-
tem. Since the observability is a global property, the bruteforce algorithm has an
exponential complexity because has to consider all combinations of places. Some
properties permitting to reduce this complexity have been proved in [12]. A similar
problem but using a geometrical approach has been considered in [1] where some
results in [12] received a different perspective. An observability problem for this fir-
ing semantics has been considered also in [10] using a discrete-time model. In this
case the problem was to estimate the firing flow of transitionsand not the marking
of the places.

In the case of timed CPN underfinite server semanticsthe problem has not been
considered in literature. However, for a similar semantics, the continuous part of
so calledFirst Order Hybrid Petri Nets[2], a timed reachability problem has been
considered in [13]. The observation problem reduces to determining the set of mark-
ings, in which the net may be at a given time. It is shown under which conditions
the reachability set of the timed net under finite server semantics coincides with that
of the untimed one and a procedure to compute the minimum timeensuring that the
set ofconsistent markingsis equal to the reachability set of untimed system is given
for some net classes.

Different problems regarding observability of CPNs deserve a more deep study.
For example, to check the distinguishability of two configurations, there exists no
necessary and sufficient criterion. Moreover, the concept can be extended to more
than two configurations. In the case of redundant regions, the structural symmetry
can be considered and, in many cases, such symmetry will conduct to redundant
linear systems. In the case of state estimation of untimed CPN, new approaches can
be studied in order to decrease the complexity of the actual algorithms.
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