Chapter 16
Introduction to fluid Petri nets

C. Renato Vazquez, Cristian Mahulea, Jorge Jilvez, and Manuel Silva

Abstract The fluidization of Petri nets is a relaxation technique introduced in the
literature in order to avoid the so called state explosion problem. This technique re-
sults in a model, named continuous or fluid, whose state variables (the marking at
the places) take real nonnegative values. Among the implications, the fluidization
opens the possibility for transferring concepts and techniques from the continuous-
state systems paradigm to the discrete event systems one. In this chapter, the concept
of non-forced continuous Petri net is recalled, together with the most usual firing se-
mantics for the timed interpretation of this model. Certain properties on the resulting
fluid models are described, remarking limitations and advantages found in the anal-
ysis of fluid Petri nets. The focus is on the relationships between the discrete and the
continuous Petri nets. It is also discussed the quality of the relaxation, from quali-
tative and quantitative perspectives. In particular, questions like the preservation of
liveness, boundedness or the marking evolution, are addressed.

16.1 Introduction and motivation

Several results can be found in the literature regarding the analysis of DEDS by
using models from the Petri net (PN) paradigm. Applications involve the imple-
mentation of sequence controllers, validation in software development, analysis of
communication protocols and networks, manufacturing systems, supply chains, etc.

It is well known that one of the most important limitations in the analysis (and
synthesis problems) of DEDS is the computational complexity that may appear. In
particular, the set of reachable markings of a Petri net frequently increases expo-
nentially w.r.t. the initial marking, what is known as the state explosion problem,
making prohibitive the application of enumerative techniques even for net systems
with a small structure (i.e., small number of places and transitions).
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In this context, the fluidization or continuization (i.e., getting a continuous-state
approximation) has been proposed as a relaxation technique in order to overcome
the state explosion problem. The idea consists in the analysis of the DEDS via a re-
laxed continuous approximation, i.e., a continuous-state system if behaves in a “sim-
ilar” way than the original model (or conserves certain interesting properties), re-
ducing thus the computational efforts. Nevertheless, not all PNs models allow some
continuous approximations. In DEDS, fluidization has been explored in queueing
networks (e.g., [5],[8],[1]), PNs ([9], [30]) and more recently in Process Algebra
[15].

Regarding PNs, David and Alla firstly introduced fluid PNs with constant and
variable speeds [9, 10]. From another perspective, the relaxation of the fundamen-
tal or state equation of the PN system was proposed in [29] (in the same meeting),
in order to systematically use Linear Programming for structural analysis. These
two approaches lead to continuous state equations (see Fig. 16.1), but the proposal
(more conceptual) of David and Alla leads to the possibility of describing the tran-
sient behavior of timed models. The resulting fluid PN models can be analyzed as
state-continuous systems but behave (quantitatively) as T-timed discrete PNs (ex-
amples can be found in [11]). This topic was revisited in [24], making emphasis
in the connection with the original discrete models. In fact, there the infinite server
semantics (which is the same that the variable speed) was derived as the approxi-
mation of the average behavior of a Markovian stochastic T-timed PN (a PN whose
transitions fire after exponentially distributed random time delays). From another
perspective, different authors have proposed hybrid PN systems (some transitions
remain discrete while the others are fluidified) that can be used as models per se,
for instance fluid stochastic PNs [35], differential PNs [4], batch hybrid PNs [12],
first-order hybrid PNs [2], etc. These hybrid models enjoy a broad representative
power, but the analysis of some of these systems is technically complex.

DEDS-PN
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Continuous fundamental
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state equation fluidization
Continuous
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Fig. 16.1 Two ways for the fluidization of Petri nets.

In this and the following chapters, the basic model in [11, 24] will be mostly con-
sidered in both its autonomous version (untimed) and timed version (mostly under
infinite server semantics or variable speed). Then, from our perspective, a continu-
ous Petri net model is derived as a potential approximation of an original discrete
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PN. In this way, the analysis of these continuous models provides coherence, syn-
ergy and economy with respect to the Petri net paradigm [32, 33].

The fluidization seems a promising technique when the initial marking can be
assumed as “large enough”(where the relative errors, and their consequences, tend
to be small, because the rounding effects are relatively less significant). In fact,
increasing the population does not affect the complexity of the analysis via fluid
models, since, in the resulting continuous PN, the number of state variables is upper
bounded by the number of places, being independent of the number of tokens in the
net system (thus, of the initial marking).

The risk of fluidization is a loss of fidelity. As linearization of non-linear mod-
els, fluidization does not always lead to relaxed models of similar behavior, i.e.,
they are not always approximations. The first problem that may arise when using
this approach is that the fluid model does not necessarily preserve all the behav-
ioral properties of the original DEDS model. For example, mutex properties (e.g.,
two places cannot be concurrently marked) are always lost, spurious markings (so-
lutions of the state equation that are not reachable markings in the discrete PN)
may appear in the continuous model or liveness is not preserved in the general case.
Thus, for certain cases, the analysis through fluidization may be useless. In other
cases, the fluidization may provide only an educated guess. Moreover, the resulting
fluid model may exhibit an important technical complexity. For instance, a timed
continuous PN under infinite server semantics is a piecewise linear system (a linear
system whose state and input matrices change, among a countable set of matrices,
according to the state), from a continuous-state dynamical systems’ perspective.
The number of embedded linear operation modes (equivalently, sets of linear dif-
ferential equations) usually increases exponentially w.r.t. the number of transitions
representing rendez-vous (synchronizations). Thus, even if the behavior of a DEDS
is approximately preserved by its corresponding fluid relaxation, this could be still
too complex to be properly analyzed. The number of state variables does not depend
on the initial marking, but in the number of places. Thus, large net structures may
lead to continuous models with a large number of state variables, since one state
variable is usually defined per each place. Furthermore, the addition of time in the
continuous model brings important additional difficulties for analysis and synthesis.
In this sense, the expressive power of timed continuous PNs (under infinite server
semantics) is surprisingly high, because they can simulate Turing Machines [23]!
This means that certain important properties as the existence of a steady-state are
undecidable.

On the other hand, when a system admits a “reasonable” fluidization (in the sense
that the fluid model preserves the desired properties of the discrete one), several ad-
vantages can be visualized by using continuous models: the first one is obviously
the reduction of the complexity related to a large marking population, since in con-
tinuous models the state explosion problem does not appear. Furthermore, certain
problems can be analyzed by using more efficient algorithms, for instance, the set
of reachable markings (including infinite firing sequences) is convex, thus reducing
the complexity of optimization problems. Additionally, the ability to fire in isola-
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tion minimal T-semiflows makes behavioral and structural synchronic relations !

to collapse, thus, for example, the bound of a place can be straightforwardly com-
puted in polynomial time [28, 29]. Another interesting advantage is that techniques
and concepts developed in the Control Theory for continuous-sate systems can be
applied to the timed continuous PN model. For instance, techniques for the anal-
ysis and application of performance controllers that reject perturbations, stability,
observability, estimation, etc. In this way, fluidization represents a bridge between
particular classes of continuous-state and discrete event systems.

In this chapter, continuous Petri nets are firstly introduced as untimed, i.e., fully
non-deterministic, and later as timed formalisms. The relationship between the prop-
erties of (discrete) PNs and the corresponding properties of their continuous approx-
imation is considered at several points. Observability and Control of timed continu-
ous Petri nets (TCPNs) will be considered in forthcoming chapters.

16.2 Fluidification of Untimed net models

This section presents the formalism of continuous Petri nets and its behavior in
the untimed framework. It deals with basic concepts, as lim-reachability [27] and
desired logical properties, and relates them to those ones of the discrete systems.

16.2.1 The continuous PN model

A continuous Petri net system [11, 25] is understood as the fluid relaxation of all
the transitions of a discrete Petri net one (as a consequence, the marking at all the
places becomes continuous). In the sequel, the set of input and output nodes of v
will be denoted as ®v and v*, respectively.

Definition 1 A continuous PN system is a pair (N ,my) where A is a P/T net
(like in a P/T system) and mg € le(‘) is the initial marking. The evolution rule is
different to the case of discrete P/T systems, since in continuous PNs the firing is
not restricted to integer amounts, and so the marking m € RLP(‘) is not forced to be
integer. Instead, a transition t; is enabled at m iff for every p j76 *ti, mp;] > 0; and
its enabling degree is enab(t;,m) = min, e, {m[p;]/Pre[p;,ti|}. The firing of t; in
a certain amount 0 < a < enab(t;,m) leads to a new marking m' = m+ o - C[P,1;],
where C = Post — Pre is the token flow or incidence matrix, and C[P,t;] denotes the

column of C corresponding to t;.

! Synchrony theory is a branch of general net theory that deals with the characterization of tran-
sition firing dependencies. Two transition subsets are in a given synchronic relation if the cor-
responding quantitative firing dependency is bounded. Behavioral relations depend on the initial
marking, while structural relations hold for any (finite) initial marking.
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The usual PN system, (4", M) with My € NP, will be said to be discrete so

as to distinguish it from a continuous PN system (.4",mg), in which mg € RLPO‘.
In the following, the marking of a continuous PN will be denoted in lower case
m, while the marking of the corresponding discrete one will be denoted in upper
case M. Observe that Enab(t;,M) € N in discrete PNs, while enab(t;,m) € R>¢ in
continuous PNs. Notice that to decide whether a transition in a continuous system is
enabled or not it is not necessary to consider the weights of the arcs going from the
input places to the transition. However, the arc weights are important to compute
the enabling degrees. Here no policy for the firing of transitions is imposed, that is,
a full non-determinism is assumed for the order and amounts in which transitions
are fired.

Right and left natural annullers of the token flow matrix are called T- and
P-semiflows, respectively (i.e., vectors y and x, whose entries belong to NN {0},
fulfilling y' -C = 0 and C - x = 0, respectively). The existence of P-semiflows in-
duces conservation laws, i.e., if 3y > 0,y - C = 0 then by the state equation it holds
yT'-mg =y’ - m for any initial marking mq and any reachable marking m. On the other
hand, T-semiflows represent potential cyclic behaviours, i.e., if 3x > 0,C-x =0
then Jmyq such that my—"smy with ¢ being a firing sequence whose firing count
vector equals x. As in discrete nets, when y’ - C = 0 for some y > 0 the net is
said to be conservative, and when C - x = 0 for some x > 0 the net is said to be
consistent. Given a vector x € RI”|, its support is defined as the set of transitions
[|x|| = {#: € T|x[i] # 0}, where x[i] denotes the ith entry of x. Similarly, for a vector
y € RIPL ||y|| = {p: € PIy[i] # 0}.

The definitions of subclasses that depend only on the structure of the net are also
generalized to continuous nets. For instance, in join free nets (JF) each transition has
at most one input place, in choice free nets (CF) each place has at most one output
transition, and in equal conflict nets (EQ) all conflicts are equal, i.e., *rN°*t' # 0 =
Pre[P,t] = Pre[P,t']. Moreover, a net ./ is said to be proportional equal conflict
if *tN*t’ # 0 = g € R such that Pre[P,t] = q- Pre[P,t']. Finally, a net .4 is
said to be mono-T-semiflow (MTS) iff it is conservative and has a unique minimal
T-semiflow whose support contains all the transitions (a T-semiflow is minimal if its
support does not contain the support of another T-semiflow).

16.2.2 Reachability

Let us now illustrate the firing rule in an untimed continuous Petri net system. For
this, consider the system in Fig. 16.2(a). The only enabled transition at the initial
marking is 71, whose enabling degree is 1. Hence, it can be fired in any real quantity
going from 0 to 1. For example, by firing it an amount equal to 1, the marking
m; = [l 1]T is reached. At m; transition #, has enabling degree equal to 1; if it is
fired in an amount of 0.5, the resulting marking is my = [1.5 0.5]7. In this way, both
my and my are reachable markings with finite firing sequences. On the other hand,
at m; the marking at p; is equal to 1, leading to an enabling degree for #; of 0.5,
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i.e., the half amount that at mg. By firing #; an amount of 0.5, the marking reached
is m3 = [0.5 1.5]7. Notice that by successively firing #; with an amount equal to
its enabling degree, the marking of p; will approach to 0. The marking reached in
the limit (with an infinite firing sequence), namely m’ = [0 2], corresponds to the
emptying of an initially marked trap ® = {p; } (a trap is a set of places ® C P s.t.
®° C *0), fact that can not occur in discrete systems. Thus, in continuous systems
traps may not trap! Nevertheless, such trap cannot be emptied with a finite firing
sequence. This leads us to consider two different reachability concepts.

m(py)

\ m(p,)

(@ )

N

Fig. 16.2 (a) Autonomous continuous system (b) Lim-Reachability space

Definition 2 A marking is said to be reachable if it is reachable with a finite fir-
ing sequence. On the other hand, a marking is said to be lim-reachable if it can be
reached with either a finite or an infinite firing sequence. More formally: m € R‘:(‘)
is lim-reachable if a sequence of reachable markings {m;};> exists such that

mo-Zsmy Zymy -+ - mi—1-2sm; - - - and hﬁm m; = m. For a given system (N ,my),
e

the set of all markings that are reachable in a finite number of firings is denoted as
RS(A,myg), while im-RS (A", mg) denotes the set of lim-reachable markings.

As an example, Fig. 16.2(b) depicts lim-RS (4", my) of the system in Fig. 16.2(a).
The set of lim-reachable markings is composed of the points on the line connecting
[20]7 and [0 2]7. On the other hand, all the points of that line excepting the circled
one [0 2] belong to RS(A",my), i.e., RS(A",mg) = lim-RS(A",mp) \ {[0 2]" }.

For any continuous system (.#",my), the differences between RS(.4",mg) and
lim-RS(.4",mp) are just in the border points on their convex spaces. In fact, it holds
that RS(.A4",mg) C lim-RS(.4",my) and that the closure of RS(.4",my) is equal to
the closure of lim-RS (A", myg) [16].

16.2.3 Some advantages

A system can be fluidizable with respect to a given property, i.e., the continuous
model preserves that property of the discrete one, but may be not with respect to
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other properties. Thus, the usefulness of continuous models highly depends on the
properties to be analyzed and the systems being studied.

An interesting property is that RSp (.4, mg) C RS(A",mg) (Where RSp (A", my)
is the set of markings reachable by the system as discrete). This can be explained as
follows: for any marking m reached by firing transitions in discrete amounts from
mo € N ‘f(‘), i.e., as if the system were discrete, m is also reachable by the system as
continuous just by applying the same firing sequence.

The fact that RSp (4", mo) C RS(.A",mp) might involve a mismatch among some
properties of the discrete and continuous systems, e.g., the new reachable markings
might make the system live or might deadlock it (examples can be found in [27, 31]).
This non-fluidizability of discrete net systems with respect to the deadlock-freeness
property, that may be surprising at first glance, can be easily accepted if one thinks,
for example, on the existence of non-linearizable differential equations systems .

Let us recall the concept of boundedness in discrete Petri nets: a PN system is
said bounded if k € N exists such that for every reachable marking m, m <k-1,
with 1 is the vector of ones, and it is structurally bounded if it is bounded with
every initial marking. These concepts can also be applied to continuous Petri net
systems. Similarly, a continuous system is said lim-live if for any transition ¢ and
any lim-reachable marking m, a successor m’ exists such that ¢ is enabled [27]. A
continuous net .4 is said structural lim-live if there exists an initial marking myq
such that the continuous system (4", mg) is lim-live.

The concept of limit-reachability in continuous systems provides an interesting
approximation to liveness properties of discrete nets, in the sense that lim-liveness
and boundedness of the continuous system is a sufficient condition for structural
liveness and structurally boundedness of the discrete one [27]:

Proposition 3 Ler (A" ,mg) be a bounded lim-live continuous PN system. Then,
Ais structurally live and structurally bounded as a discrete net.

From Proposition 3 it is clear that any necessary condition for a discrete system to
be str. live and str. bounded, is also necessary for it to be str. lim-live and bounded as
continuous. In particular rank theorems [26] establish necessary liveness conditions
based on consistency, conservativeness and the existence of an upper bound on the
rank of the token flow matrix, which is the number of equal conflict sets. Even more,
for the EQ subclass, such structural conditions are also sufficient for lim-liveness
[27].

There are some interesting advantages when dealing with fluid PN models. An
important one is that the reachability set RS(A",mg) is convex [27].

Proposition 4 Let (4 ,my) be a continuous PN system. The set RS(A ,mp) is
convex, Le., if two markings my and my are reachable, then for any a € [0,1],
om + (1 — a)my is also a reachable marking.

Notice that in a continuous system any enabled transition can be fired in a suffi-
ciently small quantity such that it does not become disabled. This implies that every
transition is fireable if and only if a strictly positive marking is reachable. This is
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equivalent to the non existence of empty siphons (a siphon is a set of places ), s.t.
*Y CY°, then an unmarked siphon cannot gain marks). From this, realizability of
T-semiflows can be deduced [27], and therefore behavioral and structural synchronic
relations [28] coincide in continuous systems in which every transition is fireable at
least once. In particular, considering boundedness and structural boundedness as in
discrete systems, both concepts coincide in continuous systems in which every tran-
sition is fireable. And, as in discrete systems, structurally boundedness is equivalent
to the existence of y > 0 such that y - C < 0 (see, for example, [3, 34]).

Another interesting property is that RSp (.4 ,mp) C RS(A",mp) implies that
boundedness of the continuous system is a sufficient condition for boundedness of
the discrete one. Moreover, it is important to stress that the set im-RS(.4",mg) can
be easily characterized if some common conditions are fulfilled [27].

Proposition 5 Let (A ,my) be consistent and such that each transition can be
fired at least once. Then m € im-RS(A",mp) iff there exists 6 > 0 such that
m=my+C-o.

Hence, if a net is consistent and all the transitions are fireable, then the set of lim-
reachable markings is fully characterized by the state equation. This immediately
implies convexity of lim-RS(.#",my) and the inclusion of every spurious discrete
solution in lim-RS(.4",myg). Fortunately, every spurious solution in the border of
the convex set lim-RS(./4",mp) can be cut by adding some implicit places (more
precisely the so-called cutting implicit places [7]) what implies clear improvements
in the state equation representation. This will be detailed in Subsection 16.4.1.

On the other hand, if (.#",my) is not consistent or some transitions cannot be
fired, lim-RS (4", myg) can still be characterized by using the state equation plus a
simple additional constraint concerning the fireability of the transitions in ||c||. The
set RS(4",my) can also be fully determined by adding one further constraint related
to the fact that a finite firing sequence cannot empty a trap [16] (in contrast to infi-
nite sequences which might empty initially marked traps as shown in the previous
section).

16.3 Fluidization of timed net models

This section introduces the notion of time in the continuous Petri net formalism
presenting the most used firing semantics. The main focus will be on infinite server
semantics. Some basic properties will be discussed.

16.3.1 Server semantics

If a timed interpretation is included in the continuous model (time is associated to
the transitions, thus they fire with certain speed), the fundamental equation depends
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on time: m(t) = my+C- o(T), which, by assuming that o (7) is differentiable, leads
to im(7) = C- 6(7). The derivative of the firing count vector of the sequence o is
f(t) = 6(7), called the (firing) flow, and leads to the following equation for the
dynamics of the timed continuous PN (TCPN) system:

m(t) =C- f(1). (16.1)

Depending on how the flow f is defined, different firing semantics can be ob-
tained. For finite server semantics (FSS), if the markings of the input places of ¢;
are strictly greater than zero (strongly enabled), its flow will be constant, equal to
A j, 1.e., all servers work at full speed. Otherwise (weakly enabled), the flow will be
the minimum between its maximal firing speed and the total input flow to the input
empty places. Formally,

& i ¥p €° 1, mlpi] > 0
fj(T) = . min f Post[ 7Pz] .
mn pi €° fj|m,' =0 Z Pre[p,,tj] A otherwise
(16.2)

The dynamical system under FSS corresponds to a piecewise constant system and
a switch occurs when a marked place becomes empty and the new flow values are
computed ensuring that the marking of all places remain positive. Many examples
using this semantics are given in [11] while in [20] a model is studied using this and
the following semantics.

In the case of infinite server semantics (ISS), the flow of transition #; is given by:
m;

fi(t) =Aj-enab(tj,m(t)) = A;- min

_— 16.3
pi€t; Pre[pj,t;]’ ( )

Under ISS, the flow through a transition is proportional to the marking of the in-
put place determining the enabling degree. As already advanced, TCPNs under ISS
have the capability to simulate Turing machines [23], thus they enjoy an impor-
tant expressive power; nevertheless, certain important properties are undecidable
(for example, marking coverability, submarking reachability or the existence of a
steady-state).

The flow through a transition under product (population) semantics (PS) 2 is

given by
=A;-
H Pre

16.4
pi€® tj [pl’t]] ( )

Product semantics can lead to chaotic models, i.e., models of deterministic dynam-
ical systems that are extremely sensitive to initial conditions. This semantic is fre-
quently adopted in population systems, like predator/pray, biochemistry, etc. (see,
for example, [14]).

2 Through discoloration of colored (discrete) nets, the minimum operator of ISS is transformed into
a PS [30].
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In the case of manufacturing or logistic systems, it is natural to assume that the
transition firing flow is the minimum between the number of clients and servers
and, FSS or ISS are mainly used [31, 11]. Since, these two semantics provide two
different approximations of the discrete net system, an immediate problem is to
decide which semantics will approximate “better” the original system. In [11], the
authors observed that most frequently ISS approximates better the marking of the
discrete net system. Furthermore, for mono-T-semiflow reducible net systems [17],
it has been proved that ISS approximates better the flow in steady state under some
(general) conditions [20]. For this reason, ISS will be mainly considered in the rest
of this work. Let us recall the formal definition.

Definition 6 A timed continuous Petri net (TCPN) is a time-driven continuous-state
system described by the tuple (N, A, mg), where (AN ,my) is a continuous PN and

the vector A € RLT(‘) represents the transitions rates that determine the temporal
evolution of the system. Under 1SS the flow (the firing speed) through a transition t;
is defined as the product of the rate A; and enab(t;,m), i.e., fi(m) = A;-enab(t;,m) =

Ai-minyee; {m[p]/Pre[p,t]}.
Let us recall now some useful concepts.

Definition 7 A configuration of a TCPN, denoted as €y, is a set of (p,t) arcs, one
per transition, covering the set T of transitions. It is said that the system at marking
m is at a configuration 6y if the arcs in 6 provide the minimum ration in the ISS
definition (16.3), or equivalently, G}, is the active configuration at m. A configuration
matrix |T| X |P| is associated to each configuration as follows:

1 .
Preipia))’ if (pistj) € G

(16.5)
0, otherwise

Hk[tj7[7i] {

The reachability set of a TCPN system can be partitioned (except on the borders) ac-
cording to the configurations, and inside each obtained convex region %, the system
dynamics is linear. More formally, % = {m € lim-RS(A",mq)|ITym <IT;m,YII; €
{I1}}, where {I1} denotes the set of all configuration matrices.

The number of regions and configurations is upper bounded by [,c|7| [*#| but
some of them can be redundant, thus removed [21]. Let us define the firing rate
matrix A = diag(A) (i.e., a diagonal |T| x |T| matrix containing the rates of the
transitions). The evolution of a TCPN, under ISS, can be represented as:

m(t)=C-f(t)=C-A-II(m) -m(1), (16.6)

where IT(m) is the configuration matrix operator (IT(m) = II; where % is the active
configuration at m). Notice that, while the system is evolving inside a region %,
it behaves linearly as riz = CAILym, thus a TCPN under ISS is a piecewise-linear
system.
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16.3.2 Qualitative properties under ISS

According to (16.3), it is obvious to remark that being the initial marking of a con-
tinuous net system positive, the marking will remain positive during the (unforced
or non-controlled) evolution. Hence, it is not necessary to add constraints to ensure
the non-negativity of the markings. On the other hand, according to (16.3) as well,
two homothetic properties are dynamically satisfied:

e if A is multiplied by a constant k > 0 then identical markings will be reached, but
the system will evolve k times faster;

o if the initial marking is multiplied by k, the reachable markings are multiplied by
k and the flow will also be k times bigger.

Unfortunately, ISS has not only “good” properties and some “paradoxes” appear.
For example, it could be thought that, since fluidization relax some restrictions, the
throughput (flow at steady-state) of the continuous system should be at least that
of the timed discrete one. However, the throughput of a TCPN is not in general
an upper bound of the throughput of the discrete PN [31]. Moreover, if only some
components of A or only some components of mg are increased the steady state
throughput is not monotone in general.

Two monotonicity results of the steady-state throughput are satisfied under some
general conditions [20]:

Proposition 8 Assume (N, A;,m;), i = 1,2 are mono-T-semiflow TCPNs under ISS
which reach a steady-state. Assume that the set of places belonging to the arcs of
the steady state configuration contains the support of a P-semiflow. If

1. (AN A1,my) and (N A1, my) verify m; < my or
2. (N A1, my) and (N Ao my) verify A < Ay,

then the steady state flows satisfy f1 < f».

Let us consider for instance the mono-T-semiflow TCPN in Fig. 16.3(a) under
ISS with A; = A3 = 1 and my = [15 1 1 0]”. Different modes can govern the evolution

of the system at steady-state. For example, if 0 < A < 0.5, the flow in steady-state

is £ () = mi (1), f2(7) = ma(t) and f3(t) = ms (1), respectively (i.e., "2 < ma(0)

and my4 () < my(7) in steady state). Therefore, 6> = {(p1,t1), (pa,t2), (p3,t3)} is the
steady-state configuration and the set of places {p1, p4, p3} determines (constrains)
the flow. Since this set contains the support of the P-semiflow y = [1041], the
steady-state flow is monotone (Fig. 16.3(b)). When A, > 0.5, the steady-state con-
figuration becomes 63 = {(pa,t1),(p2,12),(p3,13) }, i.e., the set of places governing
the evolution becomes {p4, p2, p3 }, that is the support of the P-flow y=[01 -3 —1],
not a P-semiflow, and monotonicity may not hold (Fig. 16.3(b)).

The connection between liveness in the autonomous (untimed) continuous model
and the timed ones has been investigated. First of all, notice that if a steady-state ex-
ists in the timed model, from (16.1) m = C - f; = 0 is obtained (independently of
the firing semantics), where f is the flow vector of the timed system in the steady
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Fig. 16.3 A Mono-T-semiflow net and its “fluid” throughout in steady-state. Observe that it is not
smooth, and that increasing A, > 0.5 the throughput is counterintuitive (faster machine, slower
behavior

state, fss = lim;_,e f(7). Therefore, the flow in the steady state is a T-semiflow of
the net. Deadlock-freeness and liveness definitions can be extended to timed contin-
uous systems as follows:

Definition 9 Let (A", A, mg) be a timed continuous PN system and f g be the vector
of flows of the transitions in the steady state.

o (N A,myp) is timed-deadlock-free if fs # O;
o (N, A,mo) is timed-live if fys > 0;
o (A, A) is structurally timed-live if 3 mq such that f; > 0.

Notice that if a timed system is not timed-live (timed-deadlock-free), it can be
concluded that, seen as untimed, the system is not lim-live (lim-deadlock-free) since
the evolution of the timed system just gives a particular trajectory that can be fired in
the untimed system. This fact allows us to establish a one-way bridge from liveness
conditions of timed and untimed systems. The reverse is not true, i.e., the untimed
system can deadlock, but a given A can drive the marking along a trajectory without
deadlocks. In other words, the addition of an arbitrary transition-timed semantics to
a system imposes constraints on its evolution what might cause the timed system to
satisfy some properties, as boundedness and liveness, that are not necessarily satis-
fied by the untimed system [38, 37]. The relationships among liveness definitions
are depicted in Fig. 16.4.

As an example, let us show how some conditions initially obtained for timed sys-
tems can be applied to untimed ones. It is known that if a MTS timed net (4", 1) is
structurally live for any A > 0 then for every transition ¢ there exists p € ¢ such that
p* = {t},1.e., pis structurally persistent or conflict-free [18]. Let (4", 1) be a MTS
timed net containing a transition ¢ such that for every p € *r, |p®| > 1. According to
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behavioral \ structural
by definition structurally
untimed lim-liveness ———> lim-liveness
) ) i . by definition structurally
timed timed-liveness———> {imed-liveness

Fig. 16.4 Relationships among liveness definitions for continuous models

the mentioned condition A exists such that (.#",A) is not structurally timed-live.
Therefore .4 is not structurally lim-live, since structurally timed-liveness is a nec-
essary condition for structurally lim-liveness (see Fig. 16.4).

16.3.3 On the quantitative approximation under ISS

Fluid PNs are usually considered as relaxations of original discrete models. In fact,
the definitions for the most usual semantics for timed continuous PNs were inspired
by the average behavior of high populated timed discrete PNs [11, 25]. Nevertheless,
the dynamic behavior of a timed continuous PN model does not always approximate
that of the corresponding timed discrete PN. For this reason, it is important to inves-
tigate the conditions that lead to a valid relaxation. In some sense, this subsection
deals with the legitimization of the so called ISS and the consideration of some
issues that affect the quality of the approximation.

Let us consider Markovian Petri nets (MPN), i.e., stochastic discrete Petri nets
with exponential delays associated to the transitions and conflicts solved by a race
policy [22]. In [36] it was shown that, in certain cases, the marking of a TCPN un-
der ISS approximates the average marking of the corresponding MPN (having the
same structure, rates and intial marking, under the assumption of ergodicity). The
approximation is better when the enabling degrees of the transitions (the number
of active servers) is large and the system mainly evolves inside one marking region
(according to one configuration or linear mode), i.e., for each synchronization, a
single place is almost always constraining the throughput. Errors in the approxima-
tion may appear due to the existence of sychronizations: arc weights greater than
one and joins (rendez-vous). The reason is that the enabling degree (thus the flow)
definition for the TCPN does not accurately describe the enabling degree (thus the
throughput) of the discrete model in these cases. In fact, the approximation is perfect
for ordinary Join-Free Petri nets.

Let us provide an intuitive explanation about how the arc weights introduce ap-
proximation errors. Assume that the continuous marking of a TCPN approximates
the average marking of the corresponding MPN at certain time 7, i.e., E{M(7)} ~
m(7). Given an arc with weight ¢ connecting a place p; to a transition t;, the expected
enabling degree of #; in the MPN would be E{Enab(t;)} = E{|M|[p;]/q]}, which is
different from the enabling degree in the TCPN enab(t;) = m[p;|/q ~ E{M|[p;]}/q,
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due to the presence of the operator |-| (note that in ordinary arcs ¢ = 1, thus
(M(p,l/q] = M[p;]/q), and the quality of the approximation will be reduced or
lost for future time.

Fig. 16.5 a) Cycle net with arc weights. b) Marked graph which evolves through different regions.

(@) (b)
k=1\gq=| 124816 q=4\k=[1]2]4[8]16
MPN, X [11] |0.50[0.40[0.32[0.26]0.22 MPN, x[t,] |0.32]0.80[1.76|3.78]7.68
TCPN, f[11]]0.50]0.50]0.50]0.50[0.50 TCPN, f]t1]0.50|1.00|2.00[4.00[8.00

Table 16.1 Throughput and its approximation for #; of the net of Fig. 16.5(a).

As an example, consider the MPN system of Fig. 16.5(a) with timing rates A; =
A2 = 1, and initial marking Mo = [k- g, 0]7, where k,q € NT. This system, and its
corresponding TCPN, were evaluated for different values of k and ¢g. The obtained
values for the throughput and flow of 71, at steady state, are shown in table 16.1. Note
that, when k = 1 (table 16.1(a), here the marking is relatively very small), the larger
the weight of the input arc of #; (i.e., g), the larger the difference (error) between
the throughput in the MPN (¥[f1]) and the flow in the TCPN (f]#;]). Observe that
the flow in the continuous model remains unchanged. On the other hand, when the
arc weights are fixed but the initial marking (i.e., k) is increased (table 16.1(b)), the
relative approximation error decreases (in such case, E{|M[p1]/q|} ~ E{M|[p1]}/q
for M[p1] >> q). Concluding, the relative errors introduced by arc weights become
smaller when the marking in the net is increased w.r.t. those weights.

Let us illustrate now how joins (rendez-vous) introduce approximation errors.
Given a synchronization #; with two input places {p;, p}, the expected enabling in
the MPN would be E{Enab(t;) } = E{min(M[p;], M[px]) }, which is not equal to the
enabling in the TCPN enab(m|[p;|,m[pi|) ~ min(E{M|p;|}, E{M|[pk]}), because
the order in which the expect value and the “min” operator are applied cannot be
commuted.

As an example, the MPN system of Fig. 16.5(b) was simulated with timing
rates Ay = A, = A3 = 1 and different rates for f4: A4 € {2,1.5,1.2,1}. The cor-
responding TCPN model was also simulated. The average markings at the steady
state are shown in table 16.2 (columns MPN and TCPN). The column denoted as
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E{Enab(t4)} is the average enabling degree of 74 at the steady state (this represents
a lower bound for the number of active servers in the transitions). The value in col-
umn P(M € Zyy) is the probability that the marking is inside the region Z,,, related
to the steady state of the TCPN (equivalently, the fraction of time that M(7) evolves
according to a single configuration or linear mode). Note that the lower the prob-
ability that M(7) belongs to %y, the larger the difference (the error) between the
MPN and the TCPN, even if the average enabling degrees increase. On the other
hand, a good approximation is provided when the probability that M(7) € %, is
high, which occurs for A4 = 2. The approximation holds because, in this case, M(7)
mainly evolves in one region %, (in particular, E{min(M|pa],M|ps])} ~ E{M|p4]}
and E{min(M|[p>|,M[p3])} ~ E{M|p>]}).

Table 16.2 Marking approximation of p3 for the MPN of Fig. 16.5(b).

74 [MPN[TCPN|TnCPN|E{Enab(i2)}|P(M € Zs)
2 [54.62] 55 | 54.63 253 0.8433
15[53.87] 55 | 53.88 322 0.661
12[51.16] 55 | 51.17 3.88 0.413
12997 55 |30.73 493 0.036

From a continuous-systems perspective, it can be deduced that approximation
does not accumulate in time if the steady state marking of the continuous model is
asymptotically stable (because the deviations of the MPN from its expected behav-
ior, which is similar to that of the TCPN, vanish with the time evolution). Therefore,
asymptotic stability is a necessary condition (together with liveness, otherwise, the
continuous system may die while the discrete is live) for the approximation of the
steady state.

16.4 Improving the approximation: removing spurious solutions,
addition of noise

Since the approximation provided until now by a fluid PN is not always accurate, a
question that may arise is the possibility of improving such approximation by means
of modifying the continuous Petri net definition. Through this section, a couple of
approaches, for such improvement, will be discussed.

16.4.1 Removing spurious solutions

The state equation provides a full characterization of the lim-reachable markings (in
the autonomous continuous model) for consistent nets with no empty siphons. This
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allows one to use the state equation to look for deadlocks, i.e., markings at which
every transition has at least one empty input place. In some cases, at such a deadlock
m there is an empty trap that was initially marked. Nevertheless, it is well known
that initially marked traps cannot be completely emptied in discrete nets. Thus, m
is a spurious solution of the state equation if we consider the system as discrete,
equivalently, deadlock-freeness has not been preserved during fluidization.

Consider for instance the net in Fig. 16.6 with my = [10 11 0]7. The marking m =
[0 1 10]” is a deadlock and can be obtained as a solution of the state equation with
o = [10 0]” as firing count vector. Thus given that the system satisfies the conditions
of Proposition 5, m is lim-reachable, i.e., the system lim-deadlocks. Notice that p;
is a trap (*p; = p1°®) that was initially marked and can be emptied by an infinite
firing sequence. Thus, m is not reachable in the discrete net, thus it is an spurious
deadlock.

Fig. 16.6 A continuous MTS system that integrates a discrete spurious deadlock m = [0 1 10]7,
reachable through the firing sequence 5¢;,2.5¢1,1.25¢y,....

Fortunately, some spurious deadlocks can be removed from the state equation by
adding implicit places [7]. For this, it is firstly necessary to detect if a deadlock m is
spurious or not. Let us define Preg and Postg as |P| x |T| sized matrices such that:

e Preg[p,t] = 1if Pre[p,t] > 0, Preg[p,t] = 0 otherwise
e Postg[p,t] = |*t] if Post[p,?] > 0, Postg [p,] = 0 otherwise.

Equations {yT -Co =0, y >0} where Co = Postg — Preg define a generator of
traps (@ is a trap iff 3y > 0 such that © = ||y||, ¥ -Ce = 0) [13, 34]. Hence:

Proposition 10 Given m, if the following bilinear system:

e m=my+C-0, m,0 >0, {state equation}
ey .Cog=0,y>0, {trap generator}
o v imp>1, {initially marked trap}

yom=0, {trap empty at m}
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has solution, then m is a spurious solution, and y is the support of a trap that be-
comes empty.

The result of Proposition 10 follows directly from the fact that ||y|| is a trap that
has been emptied. Let us illustrate now how spurious solutions can be cut by adding
an implicit place (a place is said to be implicit if it is never the unique place that
forbids the firing of its output transitions, i.e., it does not constraint the behavior of
the sequential net system).

Recalling the example of Fig. 16.6, since p; is an initially marked trap, its
marking must satisfy m[p;] > 1. This equation together with the conservative law
m[pi]+m[p3] = 10 leads to m[p3] < 9. This last inequality can be forced by adding
a slack variable, i.e., a cutting implicit place g3, such that m[p3] + m[q3] = 9. Thus
g 1s a place having #, as input transition, #; as output transition and 9 as initial mark-
ing. The addition of g3 to the net system renders p, implicit (structurally identical
but with a higher marking) and therefore p, can be removed without affecting the
system behavior [7, 34]. In the resulting net system, m = [0 1 IO]T is not any more
a solution of the state equation, i.e., it is not lim-reachable and then the net system
does not deadlock as continuous.

Since deadlock markings in continuous systems are always in the borders of the
convex set of reachable markings, discrete spurious deadlocks can be cut by the
described procedure. Nevertheless, such an addition creates more traps that might
be treated similarly in order to improve further the quality of the continuous ap-
proximation. It is important to remark that, by eliminating spurious deadlocks, the
approximation of the performance of the discrete net system, provided by the timed
relaxation, is also improved even if the deadlock is not reached in the timed con-
tinuous model. In any case, removing spurious solutions always represents an im-
provement of the fluidization, being specially important when those are deadlocks
or represent non-live steady states.

As an example, consider again the MPN given by the net of Fig. 16.6 with ini-
tial marking Mo = [10110]7 and rates A = [0.41]. As already shown, this PN has
a spurious deadlock, which can be removed by eliminated the two frozen tokens
from p,. This is equivalent to consider M}, = [10 9 0]” as the initial marking. The
MPN and the corresponding fluid model TCPN have been simulated for both initial
markings My (with spurious deadlocks) and M}, for different rates at 7| ranging in
A1 € [0.4,4]. The throughput at 7, for both models, is shown if Fig. 16.7(a). It can
be seen that the MPN is live for any A; € [0.4,4], furthermore, the throughput seems
as a smooth function of A;. On the other hand, the continuous model with the orig-
inal M reaches the (spurious) deadlock for any 4; € (2,4]. Note the discontinuity
at A; = 2 for the TCPN model with both initial markings, i.e., the continuous model
is neither monotonic nor smooth w.r.t the timing. Finally, it can be appreciated that
the TCPN provides a much better approximation when the spurious deadlock is
removed (TCPN’ with M), for any A; > 2 (for A; < 2 there is no change in the
TCPN).
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16.4.2 Stochastic continuous PN

The approximation of the average marking of an ergodic (ergodicity means that
the steady state is independent on the initial state, providing the P-flows have
the same total marking) Markovian Petri net may be improved by adding white
noise to the transitions flow of the TCPN [36]. Intuitively speaking, the tran-
sition firings of a MPN are stochastic processes, then, the noise added to the
flow in the TCPN may help to reproduce such stochastic behavior, which even
at steady state is particularly relevant at the synchronizations. The model thus
obtained (here denoted as TnCPN) is represented, in discrete time with a sam-
pling A7, as: myyy = my + C(AII(my)miAT + vi), with v, being a vector of
independent normally distributed random variables with zero mean and covari-
ance matrix Y, = diag(AII(m;)miAt). This modification is particularly rele-
vant when the system evolves near to the border between different regions, be-
cause in these cases, the continuous flow does not approximate the throughput
of the discrete transitions (remember that, in a join { pil, . pf‘} = °*t;, the differ-
ence between E{Enab(t;)} = E{min(M},..,M¥)} and its continuous approxima-
tion enab(t;) = min(m[p}],..,m[p"]) ~ min(E{M[p!1} ,..,E{M[p*]}) may become
large). The approximation improves as the enabling degrees of the transitions (the
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number of active servers) increase, as already mentioned, assuming asymptotic sta-
bility and liveness in the continuous system (thus it is important to previously re-
move any spurious deadlock).

An interesting issue is that the new continuous stochastic model approximates
not only the average value but also the covariance of the marking of the original
MPN. Moreover, since the TnCPN model is actually the TCPN one with zero-mean
gaussian noise, many of the results known for the deterministic model can be used
for analysis and synthesis in the stochastic continuous one. Nevertheless, the addi-
tion of noise cannot reduce the error introduced by arc weights.

For instance, consider again the MPN system of Fig. 16.5(b). The corresponding
TnCPN was simulated for A4 € {2,1.5,1.2,1}. The average steady state marking is
also shown in table 16.2. As it was pointed out in the previous section, the lower the
probability that M belongs to Z, the larger the difference (the error) between the
MPN and the deterministic TCPN. On the other hand, the approximation provided
by the TnCPN system is good for all of those rates.

Now, consider again the MPN of Fig. 16.6 with My = [10110]7. The steady
state throughput of the MPN and its different relaxations is shown if Fig. 16.7(a),
for different values A; € [0.4,4]. Note that the noise added to the TCPN makes this
to reach the spurious deadlock quickly and the approximation to the MPN does
not hold since the liveness precondition is not fulfilled. On the other hand, after
removing the spurious deadlock with M}, = [10 9 0]7, the TnCPN approximates
better the MPN than the TCPN model (curves TnCPN’ and MPN). Fig. 16.7(a)
shows the results of the same experiment but with a bigger population. In this case,
My=5-[10110]7 =[50550]" and the spurious solution is removed by considering
the initial marking M{ = [5049 0]7 (in this case, six frozen tokens are removed from
p2). Note that this marking is not equal to five times the one used in the first case,
i.e., M}y #5-[1090]7, then the curve TCPN’ in Fig. 16.7(b) is not in homothetic
relation with that in Fig. 16.7(a) (but the original TCPN does it). It can be observed
in Fig. 16.7(b) that now the continuous models provide a better approximation than
in the case of Fig. 16.7(a), because the population is bigger. Finally, Fig. 16.7(c)
shows the transient trajectory described by the average throughput of #;, for the case
Mo =[10 11 0]" and A; = 2. It can be observed, that not only the steady state of the
MPN is well approximated by the TnCPN’ (after removing the spurious deadlock),
but also the transient evolution.

16.5 Steady state: performance bounds and optimization

Product semantics may lead to continuous PN systems with steady orbits or limit cy-
cles [30]. This semantic also allows the existence of chaotic behaviors. Analogously,
when ISS are considered, a TCPN system may exhibit stationary oscillations (that
can be maintained for ever). An example of an oscillatory behavior, can be found
in [19] (Fig. 2 and 3). Usually, a TCPN evolves toward a steady state marking, like
in the examples of Section 16.3. The knowledge of this final marking is interesting
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for performance evaluation purposes, since this represents the number of useful re-
sources and active clients in the long term behavior of the modeled system. This is
explored through this section.

A performance measure that is often used in discrete PN systems is the through-
put of a transition in the steady state (assuming it exists), i.e., the number of firings
per time unit. In the continuous approximation, this corresponds to the firing flow.

In order to study the throughput in discrete systems, the classical concept of “visit
ratio” (from the queueing network theory) is frequently used. In Petri net terms, the
visit ratio of a transition ; with respect to #;, () [t;], is the average number of times
t; is visited (fired), for each visit to (firing of) the reference transition #;.

Let us consider consistent nets without empty siphons at mq (Prop. 5). In order
to simplify the presentation, let us assume that the net is MTS. Therefore, for any ¢,
fss=Xi 'v<"), with y; the throughput of #;. The vector of visit ratios is a right annuler
of the incidence matrix C, and therefore, proportional to the unique T-semiflow in
MTS systems. For this class of systems, a throughput bound can be computed using
the following non-linear programming problem that maximize the flow of a transi-
tion (any of them, since all are related by the T-semiflow)

max f[t]

st. mgg=myg+C-0
Fultsl =y min { gty § i€ T (16.7)
C- fss =0
mg, 0 >0

where myg; is the steady-state marking. A way to solve (16.7), that due to the min-
imum operator is non linear, consists in using a branch & bound algorithm [17].
Relaxing the problem to a LPP, an upper bound solution can be obtained in polyno-
mial time, although this may lead to a non-tight bound, i.e., the solution may be not
reachable if there exists a transition for which the flow equation is not satisfied. If
the net is not MTS, similar developments can be done adapting the equations in [6].
In the case of controlled systems, a LPP transformation of (16.7) can be used
to compute an optimal steady-state assuming only flow reduction (the speed of the
machines can only be reduced), / > 0 and the steady-state flow should be repetitive
C- f =0. If all transitions are controllable, it can be solved introducing some slack
variables in order to transform the inequalities derived from the minimum operator
in some equality constraints. These slack variables are used after to compute the
optimal steady-state control [19]. For example, let us consider the following LPP:

max ki - f—kp-m—k3-myg

st. C-f=0,f>0
m=my+C-0,m,c >0 (16.8)
fi = )Li' (P::[[ij]tl]) *V[Pjvti]aVPj €t V[pﬁti] >0

where v[p;,t;] are slack variables. The objective function represents the profit that
has to be maximized where k; is a price vector w.r.t. steady-state flow f, k> is the
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work in process (WIP) cost vector w.r.t. the average marking m and k3 represents

depreciations or amortization of the initial investments over myg. Using the slack

variables v the optimal control in steady-state for a transition #; if it is controllable,

i.e., permits a control u; > 0, is just u; = l’IIEIIlt v[p j,ti]. Therefore, this control prob-
pj€®ti

lem (a synthesis problem) seems easier than the computations of performance (an
analysis problem) even if, in general, is the opposite. Controllability issues will be
considered from dynamic perspective in chapter 19.
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