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Abstract

Liveness analysis of autonomous and timed continuous
systems is a difficult problem. The subclass of mono-T-
semiflow systems offers in practice an interesting mod-
eling power. For this subclass, the equivalence between
liveness and deadlock-freeness allows a more satisfac-
tory treatment. This paper focuses on the interleaving
of autonomous and timed properties of continuous sys-
tems. This allows a partial characterization of struc-
tural liveness for autonomous nets based on the analy-
sis of timed systems, generalizing the well-known rank
Theorem.

1 Introduction

Deadlock-freeness (DF) is a very important safety
property, asking for non-existence of blocking states,
i.e. states without successor. This paper concentrates
on the analysis of DF for a subclass of Petri nets (PN)
called mono-T-semiflow (MTS) nets [2]. The essential
properties of MTS nets are purely structural: consis-
tency with a single T-semiflow (i.e. all transitions are
covered by the unique minimal T-semiflow) and conser-
vativeness (i.e. all places are covered by P-semiflows).
Therefore the membership problem for MTS can be
decided in polynomial time. From a modeling expres-
sive power point of view, in particular, MTS general-
izes choice-free nets [10] by allowing generalized mutual
exclusion constraints (monitors). A subclass of choice
free nets are weighted-T-systems, a weighted general-
ization of the well-known subclass of marked graphs.

Continuization of discrete models is, in general, a clas-
sical relaxation aiming at computationally more effi-
cient analysis techniques, at the price of losing some
precision. Nevertheless, it should be pointed out that
not all MTS systems allow continuization, if such a
basic qualitative property as DF should be preserved.
Figure 1 shows examples of autonomous MTS systems
in which DF of the discrete model is neither necessary
nor sufficient for DF of the relaxed continuous approx-
imation [8]. This fact, that may be surprising at a first
glance, can be easily accepted if we think, for example,
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on the existence of non-linearizable differential equa-
tions models (for example, due to the existence of a
chaotic behavior).

(a) (b)

Figure 1: Two MTS systems which behave in very dif-
ferent ways if seen as discrete or as continu-
ous: (a) is non-live as discrete, but never gets
completely blocked as continuous unless an in-
finitely long sequence is considered. (b) is live
as discrete, but non-live as continuous.

As an example of these “mismatches” among proper-
ties of the four cases, discrete vs. continuous, and au-
tonomous vs. timed, it can be pointed out that the ad-
dition of an infinite servers semantics time interpreta-
tion [6] (variable speed in [1]) may allow the timed con-
tinuous model to have infinite behavior (DF), while a
“similar” timing in the discrete system leads to a dead-
lock. Under classical markovian time interpretation,
for the stochastic system in Figure 2(a) seen as dis-
crete, the probability of arriving into a deadlock state is
“1” (this is a particular case of the classical “gambler’s
ruin problem”). If A\; = A2 the mean time for dead-
lock is quadratic w.r.t. k, while it is “almost” linear in
other case. However, if \; = Ay the continuous system
is live, what may be interpreted as a “very large” tran-
sient to deadlock (see [9] for more details). Liveness
of a transition can also be affected when considering a
system as discrete or as continuous. Figure 2(b) shows
a non-MTS system (it is consistent and conservative,
but has two T-semiflows), that considered as discrete is
live (thus DF), but for which a deterministic timing of
transitions with t4 faster than ¢o (i.e. 64 < 62) makes
t3 non-live (in fact, to starve). Nevertheless, consider-
ing the model as continuous, it is live both for the au-
tonomous and the timed interpretations.

One important property of discrete (and continuous)
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Figure 2: (a) A continuous MTS system that deadlocks
as autonomous, and that with a timing that
assigns the same firing speed to t; and t2 has an
infinite behavior. (b) A non-MTS system that,
seen as discrete, is live as autonomous, and for
which a deterministic timing with ¢4 faster than
to prevents firing t3.

MTS systems is that DF is equivalent to liveness [2],
because all the infinite behaviors are “essentially con-
formed” by infinite repetition of sequences having the
T-semiflow as the firing count vector. Even more, for
MTS systems, DF of the autonomous model leads, for
any arbitrary transition-time semantics (deterministic,
exponential, coxian...), to non null throughput. Thus
there exists a one-way bridge from logical or qualita-
tive properties to performance properties.

Section 2 is devoted to basic concepts and notations,
while Sections 3 and 4 deal with DF analysis of au-
tonomous and infinite servers timed interpretation of
continuous MTS systems. Section 5 extracts results for
autonomous systems making use of some properties of
timed systems. Section 6 summarizes the main results.

2 Basic concepts and preliminary results

The reader is assumed to be familiar with Petri nets
(PNs) (see [5, 3]). The usual PN system, (M, mg)
(N = (P,T,Pre,Post)), will be said to be discrete
so as to distinguish it from a continuous relaxation.
The main difference between continuous and discrete
PNs is in the marking, which in a discrete PN is re-
stricted to be in the naturals, while in continuous PNs
is released into the non-negative real numbers. This is
a consequence of the firing, which is modified in the
same way: A transition ¢ is enabled at m iff for every
p € °t, m[p] > 0. In other words, the enabling con-
dition of continuous systems and that of discrete ordi-
nary systems can be expressed in an “analogous” way:
every input place is marked. As in discrete systems,
the enabling degree at m of a transition measures the
maximal amount in which the transition can be fired
in one go, i.e. enab(t,m) = min,c+;{m[p]/Pre[p,t]}.
The firing of ¢ in a certain amount a < enab(t,m)
leads to a new marking m’ = m + « - C[P, ], where
C = Post — Pre is the token flow matrix. Hence, as in
discrete systems, the state (or fundamental) equation
(m = mg + C - o) summarizes the way the marking
evolves along time. Notice that for a continuous tran-

sition being enabled or not does not depend on the arc
weights, although they are important to compute the
enabling degree and to obtain the new marking.

All the concepts based on the representation of the net
as a graph can be directly applied to continuous nets, in
particular, the conflict relationships. Two transitions,
t and t', are said to be in structural conflict relation if
*tN*t' # 0. The coupled conflict relation is defined as
the transitive closure of the structural conflict relation.
Each equivalence class is called a coupled conflict set
denoted, for a given t, CCS(¢). The set of all the equiv-
alence classes is denoted by SCCS. When Pre[P,t] =
Pre[P,t'] # 0, t and ¢’ are in equal conflict relation.
Right and left natural annullers are called T- and P-
semiflows, respectively. We call a semiflow v minimal
when its support, ||v]|, is not a proper superset of the
support of any other, and the g.c.d. of its elements is
one. When y-C = 0, y > 0 the net is said to be
conservative, and when C-x = 0, x > 0 the net is said
to be consistent.

We will not consider here the most technical aspects,
but it must be remarked that an immediate extension
of the liveness concept may lead to weird situations.
For example, a net that as discrete is non-live with any
marking, as continuous can allow the firing of arbitrar-
ily long firing sequences. (If a time base is added, the
problem is similar to the discharge of an R-C electric
circuit.) To avoid falling down into nonsense, in [8] the
idea of a marking being reachable at the limit (lim-
reachability) was introduced.

Definition 1 Let (N,mg) be a continuous system.
We say that a marking m € (RT U {0}IF] is lim-
reachable, iff a sequence of reachable markings {m;};>1
exists verifying

mo-“Lm; “2my---m;_ Zhm; -

and lim m; = m. The set of lim-reachable markings
is denoted lim-RS(N, my).

It can be proved that contrary to what happens in the
discrete case, in most practical cases there are no spu-
rious solutions of the state equation.

Property 2 ([8]) If N is consistent and every transi-
tion can be fired, 3 o > 0,mg-2, then:

lim-RS(N,mp) ={m|m=my+ C-0 > 0,0 >0}

Liveness and deadlock-freeness properties can immedi-
ately be extended.

Definition 3 Let (N, mg) be a continuous PN system.

e (M,mp) lim-deadlocks #f a marking m €
lim-RS(N, mg) exists such that enab(t,m) = 0
for every transition t



e (N,myg) is lim-live iff for every transition t and
for any marking m € lim-RS(N, mg) a successor
m’ exists such that enab(t,m’) > 0.

e N is structurally lim-live iff 3 mg such that
(N,my) is lim-live.

For the sake of notation, in the following we will shorten
lim-deadlock, lim-liveness or structurally lim-liveness
to just deadlock, liveness or str.liveness. Clearly,
str. liveness is a necessary condition for liveness.

For the timing interpretation of continuous PNs we will
use a first order (or deterministic) approximation of the
markovian discrete case [6], assuming that the delays
associated to the firing of transitions can be approxi-
mated by their mean values. Then, the state equation
has an explicit dependence on time m(7) = mg + C -
o (7). Deriving with respect to time, m(7) = C - &(7)
is obtained. We will denote f = &, since it represents
the flow through the transitions.

Different semantics have been defined for continuous
PNs, the most important being infinite servers (or vari-
able speed) and finite servers (or constant speed) [1, 6].
Infinite servers semantics will be considered here. In
this paper we will concentrate on the class of nets for
which a unique minimal T-semiflow exists [2].

Definition 4 A PN is a mono -T-semiflow (MTS)
net iff it is conservative and has a unique minimal T-
semiflow whose support contains all the transitions.

3 Liveness analysis of autonomous continuous
mono-T-semiflow nets

In MTS systems any subset of transitions, 7" C T', can
be disabled just by firing (indefinitely) every transition
in T

Lemma 5 [/] Let N' be a MTS net. For every mg
and every T'G T a marking m € lim-RS(N, my) exists
such that for allt € T' enab(t,m) = 0. Moreover, this
marking can be reached firing only transitions in T".

Notice that disabling a subset of transitions is not
equivalent to killing them, since they could be enabled
if other transitions not contained in the subset of dis-
abled transitions are fired.

Lemma 5 leads to the equivalence between deadlock-
freeness and liveness for continuous systems, something
well-known for the discrete case [2].

Property 6 [}] A continuous MTS system is live iff
it is deadlock-free.

Suppose that in a given system, (N, myg), there is a
transition, t, such that for any reachable marking ¢ is
never the only enabled transition. This means that if
the rest of transitions, T'— {t}, are disabled at a given
marking m, all the transitions are disabled at m. Since
every transition of the set T'—{t} can be disabled in the
limit (Lemma 5), we can infer that (N, mg) is not live.

Theorem 7 Let (N,mg) be a MTS system. If
(N, mg) s live then, for every transition t, 3 m €
lim-RS(N, mg) such that t is the only enabled transi-
tion at m.

Theorem 7 establishes a necessary liveness condition
that is illustrated in Figure 3. In that system, for every
reachable marking in which ¢, is enabled either ¢35 or t4
is enabled. Hence, t5 is never unavoidably “forced” to
fire. Firing several times t3 and ¢4 we reach a deadlock.
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Figure 3: A non-live system according to Theorem 7

Although the condition of Theorem 7 is in general not
easy to check, a simple structural condition (i.e. appli-
cable independently of the initial marking) can be ex-
tracted.

Corollary 8 Let N be a MTS net. If N is str. live
then for every t £ t', *t € *t'

Proof: If there exist ¢ # t’ such that *¢t C *¢, for
every marking in which ¢’ is enabled, ¢ is also enabled.
Thus, Theorem 7 can be directly applied and non-
liveness for an arbitrary initial marking is deduced. m

Hence, topological conflicts in which the set of input
places of one transition are contained in the set of input
places of other transition must be forbidden if the net
is wanted to be live. For example in the system in
Figure 4, for any reachable marking if ¢o is enabled
then t; is also enabled. Firing ¢3 and then t; with their
maximal enabling degree, a deadlock is reached for any
initial marking. Remarkably this system is live if seen
as discrete!

Figure 4: A system for which Corollary 8 detects non-
liveness

In other words, Corollary 8 detects a kind of “struc-
tural contradiction” in the MTS net: on the one hand
all transitions are included in the only repetitive se-
quence (the T-semiflow), and on the other hand there
exists t # t' such that *t C *t', thus, the net gives the
possibility of never firing transition ¢'. The result of
this contradiction entails a deadlock.



4 Analysis of timed continuous
mono-T-semiflow nets

4.1 Steady state and timed-liveness

Under infinite servers semantics, the flow through a
transition ¢ is the product of the firing speed, A[t] > 0,
and the enabling degree of the transition, i.e., f[t] =
Alt] - enab(t, m) = A[t] - min,ce,{m(p]/Prep,t]}, lead-
ing to non-linear ordinary differential and determinis-
tic systems. A continuous timed system will be repre-
sented as (N, A\, mg).

Although there is not a general formal proof, the re-
search community widely accepts that under the in-
finite servers semantics any bounded system always
reaches a steady state in which the flow through tran-
sittons and the marking remain constant. This is obvi-
ously true for Join Free (JF) nets, for which the timed
evolution is ruled by a single linear system. Notice that
a system under other firing semantics may never reach
a steady state. For example, when the flow through a
transition is defined as the product of the markings of
the input places, the system may describe orbits and
even chaotic behaviors [9].

In the sequel we will assume that any timed MTS sys-
tem evolves through a transient and eventually reaches
a steady state.

A performance measure that is often used in discrete
PN systems is the throughput of a transition in the
steady state, i.e., the number of firings per time unit. In
the continuous approximation, this corresponds to the
flow of the transition. Observe that in the steady state
m(7) = 0, and so, from the state equation, C - fs; =0
where £, or more explicitly f55(N, A, mgp), is the flow
vector of the timed system in the steady state, fs3 =
lim, o f(7). Since fgs > 0, the flow in the steady
state is proportional to the T-semiflow. Let us denote
as mgg the marking at the steady state.

A classical concept in queueing network theory is the
visit ratio. The visit ratio of transition t; with re-
spect to t;, vy), is the average number of times ¢;
is visited (fired) per visit to (firing of) the reference
transition ¢;. Observe that v is a “normalization”

of the flow vector in the steady state, i.e., v =

J
lime oo (£[t5](7) /£[t:](7)).

Liveness definitions of autonomous systems can be ex-
tended to timed systems. We will say that (N, A\, mg)
is timed-live iff £55(N, A, mg) > 0. The addition of fir-
ing speeds, A, to a net A/ produces a timed-net, (N, A).
We will say that (N, \) is str. timed-live iff there exists
an initial marking mg such that f,, (A, A, mg) > 0. As
in autonomous nets str.timed-liveness is a necessary
condition for timed-liveness.

If a MTS timed system deadlocks, we can conclude
that, seen as autonomous, the system is non-live since
the evolution of the timed system just gives a particu-
lar trajectory, i.e. a firing sequence, that can be fired
in the autonomous system reaching the same deadlock

marking. Therefore liveness is a sufficient condition for
timed-liveness. The reverse is not true (Figure 2(a) for
A1 = A2). Analogously, str. liveness is a sufficient con-
dition for str. timed-liveness. Relationships among live-
ness definitions are depicted in Figure 5.

liveness — »  str.liveness

! !

timed-liveness —  tr. timed-liveness

Figure 5: Relationships among liveness definitions for
MTS models

4.2 X’s influence on the existence of a non-dead
steady state

The A vector plays a crucial role in the evolution to the
steady state. Even str.non-live systems can be saved
from deadlocking by choosing an adequate A. One pos-
sible idea is to chose a A that avoids any transient state,
thus making the initial marking equal to the marking
in the steady state and therefore avoiding a deadlock,
thus a positive initial marking is required for that.

Proposition 9 [}/ Given a MTS net, N, for ev-
ery initial marking mg > 0, there exists A such that
(N, X\, myg) is timed-live.

For example, the continuous system in Figure 6 is non-
live as autonomous. However, defining A = (1 1 A3)
the timed system never deadlocks.

Figure 6: A non-live autonomous system that never dead-
locks as timed with A = (1 1 1). Every tran-
sition owns a CF place but the timed system
deadlocks with A = (21 1)

Another interesting problem consists in determining
which timed-nets are str. timed-live (i.e. given (A, ),
3 mg such that f55,(N, A, mg) > 07)

Proposition 10 [4] (N, \) is str. timed-live iff m de-
fined as
{Pre[p, - vi” }

Alt]
is a steady state marking for (N, \).

m(p| = max

Remark that m, defined according to Proposition 10, is
a steady state marking with f,; = v(!) iff the following
condition holds:

Pre[p, t] ‘V,El)

Vit I3pet mp = NG



From Proposition 10 we obtain that the net in Figure 4
is not str. timed-live with A = (4 1 1). In the steady
state marking (mss) the flow of transitions ¢; and ty
has to be the same since the T-semiflow of the net is
(111). Since Alt1] is four times greater than A[ts], then
enab(ta, mgs) = 4 - enab(t;, mgs) is required. This is
not possible since for every marking m, enab(ts, m) <
2-enab(t;, m). Therefore, no strictly positive marking
verifies the steady state conditions, and so for this A
the system will always deadlock.

4.3 Characterization of the A, set

Given N, an interesting problem lies in determining
the set of A vectors for which (N, \) is str. timed-live.
In other words, we are interested in computing a set
defined as follows:

Definition 11 Ax = {\ | (M, ) is str. timed-live }.

We have seen that if A is str. live then for any A, (N, \)
is str. timed-live. Hence for str.live nets A will be
equal to all positive real vectors (Ay = (R™)I1).

We will show that the computation of A, can be sim-
plified by considering separately each coupled conflict
set. An easy to state formula can be used to express
all the vectors contained in it.

Let us suppose that N has ¢ coupled conflict sets,
CCSy...CCS, with |CCSi| = ny...|CCSy| = ng,
[*CCS:| = s1...|°CCS,| = s4, and that transitions
and places are sorted according to the coupled con-
flict they belong to: t11...¢1,ny5 -+ -stq1---tqn, and
P11+ -Plsyy -+ >Pgl---Pqs,- We define Accs as the
a set of vectors associated to each coupled conflict set
as follows:

Definition 12 Accs, = {Aj | A\; € (RT)™  and
Im € (R")% such that V t € CCS; vt(l) = \[t] -
enab(t, m)}

Ay can be expressed as the cartesian product of all the
Accs of the net.

Theorem 13 [}/

AN = {()\171, ey /\qmq) | (/\i,h ey /\z,nl) S Accsi}
4.4 Critical timed-liveness

It has been seen that those A vectors not included in
A do not allow a MTS system to reach a steady state
with throughput greater than zero. Although A, is
never an empty set (for every positive initial marking
there exists A € Ay), its “size” can be much smaller
than desired. For example it is not desirable to use a
vector of Axs such that a minimum change in one of
its components puts the vector out of Axs. It would
mean that a small variation in the firing speed of one
transition can kill the system. Hence, a new concept is
needed to define wether a system can be robust enough
to bear the irregularities and variations of real world.

Definition 14 (N, ) is critically str. timed-live iff
s a border point of A

In some cases the net structure can reduce dramatically
the dimension of Axs. For every coupled conflict with
n transitions Accs is contained in (IR+)|”‘. There-
fore the maximum dimension that a given region of the
Accs set can have is n. Apart from this constraint,
the effective dimension of Accs is also limited by the
number of input places of the coupled conflict set, since
Accs is generated by as many independent variables
as input places So the maximum dimension of any re-
gion of Accs is bounded by the number of places and
transitions in the coupled conflict set.

If there is no region in A whose dimension is equal
to the number of transitions, all the points in A are
in fact border points. For example if A/ has a CCS
with less input places than transitions (as {¢1,%2} in
Figure 2(a)), all the the points in A s are border points.
In that case for a given A, if A & A,s then for every
initial marking the system will finally deadlock, and if
A € Ay then (N, \) is critically str. timed-live.

The above means that in practice, all the coupled con-
flicts sets should have at least as many input places as
transitions, otherwise the system will die or will remain
in a critical timed-liveness state.

In comparison with critical str.timed-liveness, one
could ask which features should be required to a system
in order to be safe, i.e. arbitrary variations in A > 0 do
not cause A to be out of Ay. In other words, we are
looking for those net structures that for any A they al-
low a non-dead steady state.

A place p is said to be choice-free (CF) iff |p*| = 1,
i.e. p has a single output transition. We will say that
a transition owns its (input) CF places.

Theorem 15 [/]V X > 0 (N, )) is str. timed-live iff
every transition owns at least one CF place.

From a different point of view, Theorem 15 states that
the transitions can be enabled independently iff every
transition owns a CF place. Remark that this condi-
tion does not guarantee that the system will always
reach a non-dead steady state for every initial mark-
ing. For example in Figure 6, every transition owns a
CF place (and it is not a CF net). However, choos-
ing A = (2 1 1) the system cannot reach a live steady
state in which the flow of ¢; and ¢y is the same. This
happens because the enabling degree of t; and t5 is al-
ways the same, since p; and ps are implicit places [7],
so they can be removed without changing the possible
behaviors (trajectories for the timed case) of the sys-
tem. From Theorem 15 it can be inferred that for those
nets that have a transition without CF places there ex-
ists a A for which the timed system deadlocks indepen-
dently of the initial marking. Transitions {¢1,t2,t3} in
Figure 7 do not own CF places. For A= (11211 1),
A & Ay, the system will evolve to a deadlock.



Figure 7: Transitions t1,t2 and t3 do not own CF places.
There exists a A = (1 121 1 1) for which no
steady state with positive throughput is possi-
ble for the timed system.

5 Coming back to structural liveness

According to Theorem 15, if N has a transition without
CF places, a A exists such that (N, \) is not str. timed-
live. Therefore N is not str.live, since str.timed-
liveness is a necessary condition for str. liveness.

Theorem 16 Let N be a MTS net. If N is str. live
then every transition owns at least one CF place.

The system shown in Figure 7 is non-live according
to Theorem 16, since there are three transitions, ¢, to
and t3 that do not own a CF place. In this case, the
firing of a sequence that corresponds to vector o =
(01001 0) leads to marking m = (02 0 0 0 0),
where the system deadlocks. Notice that in consistent
continuous systems in which every transition can be
fired at least once, there do not exist spurious solutions
of the state equation (Proposition 2), hence a sequence
can be fired that reaches marking m.

Transition ¢ does not own a CF place iff all the input
places of ¢ are contained in the set of input places of the
rest of transitions. Thus, Theorem 16 can be rewritten
as: If NV is str. live then for every ¢, *¢t € *(T\{t}). No-
tice the similarity of this statement to that of Corol-
lary 8. In fact, Theorem 16 and Corollary 8 express ex-
actly the same condition if all the coupled conflict sets
of the net have at most two transitions, for the rest of
nets Theorem 16 imposes a stronger condition.

6 Conclusions

In MTS systems the firing of all the transitions is re-
quired to make the system live. If the firing of a tran-
sition can be avoided from any reachable marking, the
autonomous system is not live. Corollary 8 translates
this fact to a necessary str. liveness condition.

The addition of time to the basic formalism entails new
liveness definitions. Timing restricts considerably the
behavior of systems, to the point that an adequate tim-
ing can “save” a non str.live system from deadlock-
ing. Str.timed-live nets have been fully characterized

as those timed- nets that allow a non-dead steady state.
The existence of a relationship between autonomous
and timed-liveness definitions allows to obtain a new
liveness condition: If a net is str. live then every transi-
tion, ¢, has a input place whose only output transition
is t.

In [7] the rank Theorem states a necessary str. liveness
condition for general nets. The application of the rank
theorem to continuous MTS systems yields that if a net
has two transitions in equal conflict relation then the
net is not str. live. Theorem 16 improves this necessary
condition by disregarding arc weights at conflicts and
paying attention exclusively to topological features.
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