
Técnicas Algebraicas para el Análisis y Control de

Redes de Petri Continuas

Jorge Emilio Júlvez Bueno

TESIS DOCTORAL

Departamento de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza

Directores: Manuel Silva Suárez

Laura Recalde Frisón

Noviembre 2004

Algebraic Techniques for the Analysis and Control of

Continuous Petri Nets

Jorge Emilio Júlvez Bueno

TESIS DOCTORAL

Departamento de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza

Directores: Manuel Silva Suárez

Laura Recalde Frisón

Noviembre 2004

‘ ‘If Achilles races a tortoise and gives the tortoise a head start, then

Achilles will never be able to overtake the tortoise. When Achilles reaches

the point where the tortoise started, the tortoise will have moved on.

When Achilles reaches that point, the tortoise will have moved on farther

- and so on indefinitely.”

Zeno of Elea. Achilles Paradox.

Acknowledgements

I am very grateful to Manuel Silva Suárez for his ideas, time and great expertise

in the Petri nets world. Many thanks as well to Laura Recalde Frisón for her close

collaboration and for being so involved in every matter of this work. Both have

effectively guided me during my PhD and have definitively contributed to carry out

the research presented in this work.

Thanks a lot to Alessandro Giua, Alberto Bemporad and René Boel for their

hospitality and for the very pleasant research stays they offered me in their research

groups. They helped me to focus and face Petri nets problems from different points of

view. Many thanks to Daniele Corona, Emilio Jiménez and Carla Seatzu for having

coauthored the works developed during this thesis.

I would like to thank the members of the Petri nets group of the Universidad de

Zaragoza, specially, I am very grateful to Javier Campos for having tempted me to

apply for a PhD grant four years ago. I also would like to thank all the excellent mates

I have met in the research laboratory and in the DIISasters team for the fantastic

atmosphere they create.

Let me also thank the institutions that provided this work with financial support:

A PhD grant from the Diputación General de Aragón (reference B106/2001), the

projects CICYT and FEDER DPI2003-06376 and TIC2001-1819 from the Spanish

Ministerio de Educación y Ciencia, and a European Community Marie Curie Fellow-

ship, Control Training Site (number: HPMT-CT-2001-00278).

I am infinitely grateful to my family and my friends. Doubtless, their warm

support throughout this period has been the key for the success of this thesis.

Técnicas algebraicas para el análisis y control

de Redes de Petri Continuas

Resumen

Las redes de Petri constituyen un potente formalismo para el modelado y análisis

de sistemas concurrentes. Tradicionalmente, las redes de Petri han sido utilizadas

en el contexto de sistemas discretos. Uno de los mayores problemas que aparece en

sistemas discretos altamente poblados es el de la explosión de estados: El número de

estados del sistema crece exponencialmente con respecto a su población inicial. La

fluidificación o continuización es una técnica de relajación clásica cuyo objetivo es

evitar la aparición de este problema.

Este trabajo está dedicado al estudio de las redes de Petri continuas. En una

red de Petri continua el disparo de las transiciones no está restringido al conjunto de

números naturales sino al de los reales positivos. De este modo, el estado/marcado

de una red continua viene dado por un vector de números reales. En redes de Petri

continuas el espacio de estados alcanzables es convexo lo que permite el uso de técnicas

lineales en vez de enteras. Este hecho repercute muy positivamente en la complejidad

de los algoritmos de verificación.

Por desgracia, la red de Petri fluidificada no siempre preserva las propiedades

de la red discreta original. Por ejemplo la vivacidad de la red discreta no es una

condición suficiente ni necesaria para la vivacidad de la red fluidificada. Esta y otras

discrepancias entre las redes discretas y sus fluidificadas dan a entender que las redes

de Petri continuas requieren un estudio independiente y riguroso.

El presente documento trata tanto redes continuas no temporizadas como tempo-

rizadas. Las principales propiedades que se estudian en redes no temporizadas son

alcanzabilidad y vivacidad. Con respecto a redes temporizadas los temas investiga-

dos están relacionados con vivacidad, evaluación del rendimiento, observabilidad y

controlabilidad.

Contents

Introduction 1

1 Continuous Petri Nets 7

1.1 Discrete Petri nets and systems. State explosion problem 9

1.1.1 Some basic concepts . 10

1.1.2 Petri net subclasses . 11

1.2 Untimed continuous Petri net systems 12

1.3 Timed continuous Petri net systems 14

1.3.1 Finite servers semantics . 14

1.3.2 Infinite servers semantics . 16

1.4 Discrepancies with the discrete case 18

1.5 Conclusions . 19

2 Reachability 21

2.1 Definitions and Preview . 22

2.2 RS(N ,m0) . 27

2.2.1 Reachability characterization 27

2.2.2 Deciding reachability . 32

2.3 lim-RS(N ,m0) . 34

2.4 δ-RS(N ,m0) . 35

2.5 Conclusions . 36

3 Liveness in Untimed Systems 39

3.1 No liveness preservation in untimed systems 40

3.2 lim-liveness in untimed systems . 41

3.2.1 Deadlock-freeness and lim-liveness definition 41

3.2.2 Conditions for lim-liveness for MTS nets 42

3.3 Reversibility and δ-liveness . 44

3.4 Conclusions . 47

i

ii Contents

4 Liveness in Timed Systems 49

4.1 No liveness preservation in timed systems 51

4.2 Deadlock-freeness and liveness in timed systems 51

4.3 Structural timed-liveness . 53

4.3.1 Characterization of the ΛN set 54

4.3.2 Restrictive places . 55

4.4 Critical timed-liveness . 59

4.5 Robust timed-liveness . 60

4.6 Coming back to structural liveness in untimed systems 61

4.7 Conclusions . 62

5 Steady State Performance Evaluation 63

5.1 Remarkable behaviours of timed continuous systems 65

5.1.1 Continuous is not an upper bound of discrete 65

5.1.2 Non monotonicities . 65

5.2 Performance evaluation bounds . 67

5.2.1 A non-linear programming problem for performance bounds . . 67

5.2.2 Towards a Branch & Bound (B & B) algorithm 70

5.2.3 Pruning nodes in the B & B algorithm 73

5.2.4 Lower bounds and exact throughput 75

5.2.5 Branching elimination for the computation of upper bounds . . 77

5.3 Extending the subclass of nets: MTS reducible nets 80

5.4 Conclusions . 83

6 Observability 85

6.1 Observability: Problem Statement . 87

6.2 Observability in Join Free Systems . 88

6.2.1 Structural Observability . 89

6.2.2 Computation Algorithm . 91

6.3 Observability in General Net Systems 94

6.3.1 Infeasible and Suspicious Estimates 95

6.3.2 Incoherent Estimates . 96

6.3.3 Deciding on Observability . 97

6.4 Observers and estimates . 99

6.4.1 Filtering estimates . 100

6.4.2 Observers’ steady state . 102

6.5 Design of a switching observer . 103

6.5.1 Filter based observer . 103

6.5.2 Improving the observer’s estimate 104

6.6 Conclusions . 107

Contents iii

7 Controllability 111

7.1 Controlled Petri net systems . 113

7.2 Modelling continuous Petri nets as event-driven MLD systems 114

7.2.1 Mixed Logical Dynamical systems 114

7.2.2 Continuous Petri nets as event-driven MLD systems 116

7.3 Optimal control using Mixed Integer Linear Programming 117

7.3.1 Obtaining a Mixed Integer Linear Programming 117

7.3.2 Optimality Criteria . 119

7.4 Conclusions . 122

8 Cases of Study 123

8.1 A Manufacturing System . 124

8.2 An Assembly Line . 130

8.3 A Car Traffic System . 134

Concluding Remarks 145

Bibliography 151

iv Contents

Introduction

Discrete systems with large populations or heavy traffic appear frequently in many

fields: manufacturing processes, logistics, telecommunication systems, traffic sys-

tems,... It becomes therefore interesting to develop adequate formalisms and tools

for the analysis and verification of highly populated systems. In principle, the “nat-

ural” approach to study such systems is through the use of discrete models. Several

formalisms as max-plus algebras, Markov processes and Petri nets have been proposed

to model and analyze the behaviour of dynamical discrete event systems. The popu-

larity of Petri nets [Pet81, Bra83, Sil85, Mur89, Sil93] is due to several reasons: On the

one hand it offers an intuitive graphical format based on very few simple primitives

that makes modelling tasks relatively easy. On the other hand, this reduced number

of primitives allows one to model a wide variety of system behaviours as concurrency,

synchronization, competition, cooperation, etc.

One of the main drawbacks inherent to discrete event systems is that they suffer

from the state explosion problem. This phenomenon leads to an exponential growth

of the size of the state space with respect to the size of the system. The undesirable

state explosion makes that some system properties are computationally too heavy

to be checked if an exhaustive exploration of the state space is required. In the

framework of Petri nets, structural techniques [Sif78, SC95] have been successfully

developed to avoid a comprehensive enumeration of states for the verification of some

properties. An interesting advantage of using structural techniques is that the results

they yield apply to any initial state of the system. Unfortunately, they often offer

only semidecision conditions, i.e., either necessary or sufficient conditions, or their

application is restricted to some net subclasses.

A way to face the state explosion problem is to relax the original discrete model in

order to deal with an “equivalent”, more friendly, non-discrete model. Fluidification

is a classical relaxation technique whose goal is to transform a discrete system into

a continuous system with similar properties and behaviours. The subject of study

of this thesis is continuous Petri nets, i.e., Petri nets to which fluidification has been

applied in order to avoid the state explosion problem.

In a continuous Petri net the firing of a transition is not constrained to the natural

2 Introduction

numbers but to the nonnegative real numbers. Thus, when a transition is fired, a real

(not necessarily natural) amount of tokens is removed from the input places of the

transition and a real amount of tokens is put in the output places. This way, the

marking of a continuous Petri net becomes a vector of nonnegative real numbers,

where the dimension of the vector is equal to the number of places. In a continuous

Petri net transitions can be seen as valves through which “fluid tokens” flow, and

places can be seen as deposits in which this fluid is stored. Exhaustive enumeration

techniques have no sense in continuous Petri nets since the set of reachable markings

is not a discrete set any more but a continuous region.

The fluidification of discrete Petri nets does not only avoid the state explosion

problem but also gives one the chance of using linear programming techniques instead

of integer programming techniques. This fact clearly involves a great computational

gain since linear programming problems can be solved in polynomial time while integer

programming problems usually entail an exponential complexity.

Continuous Petri nets inherit many interesting concepts of discrete Petri nets. In

particular, the concepts based on the representation of the net as a graph can be

directly applied to continuous nets. For example, the conflict relationships among

transitions and the concepts of (P-)T-semiflows, siphons and traps can be directly

applied to continuous Petri nets. However, the behaviour of a continuous Petri net

system with respect to these concepts is not necessarily equivalent to that of the

original discrete net system. This non equivalent behaviour appears, for instance,

when considering a trap: In contrast to a trap in a discrete Petri net, a marked

trap in a continuous Petri net might be emptied if infinitely long firing sequences are

allowed [Rec98]. Thus, a basic behavioural property of the discrete system as the

impossibility for a marked trap to become empty could be violated by the fluidified

system. This fact can be interpreted as if some discrete net systems could not be

reasonably fluidified.

Unfortunately, the number of behavioural discrepancies between discrete net sys-

tems and the fluidified versions is substantial and cannot be overlooked. If one consid-

ers qualitative properties, it is remarkable that a crucial system property as liveness

is not in general preserved by the fluidified net system. With respect to quantitative

properties, it could be thought that since the firing of transitions is not restricted

to the natural numbers, the performance of the fluidified net system should be an

upper bound for the performance of the original discrete system. This is, however,

not always the case, i.e., there exist systems that perform better as discrete than as

continuous. All these phenomena and unexpected behaviours make clear that the

results obtained for a continuous net system cannot be always extrapolated to the

original discrete net system. In other words, the at first glance naive fluidification of

Petri nets requires a thorough study. This work represents an effort to analyze and

better understand the behaviour and properties of continuous Petri nets.

Introduction 3

As in discrete Petri net systems, continuous Petri net systems can be studied

without time interpretation. These net systems will be called untimed. The order

and amount in which the transitions of untimed systems are fired is, in principle,

non determined. In fact, as in discrete nets, the amount in which a continuous

transition can be fired is just upper bounded by its enabling degree. In a continuous

net system, the set of reachable markings is the result of considering the net markings

obtained by all possible firing sequences. In addition to this set of reachable markings,

Chapter 2 shows that the concept of reachability can be refined in two ways: by

considering as reachable those markings that can be reached by firing an infinitely

long sequence; or by considering as reachable those markings to which the system can

get as close as desired. It can be proved that there exists an inclusion relationship

among all three reachability sets. Furthermore, the three reachability sets are very

similar: The differences (if any) among all three sets lay only in the border points of

the reachability sets. It turns out that the reachability set (under any reachability

concept) of any continuous Petri net is a convex set and can be fully characterized by

using the fundamental state equation and some other mathematical conditions. This

way, the problem of checking wether a given marking is reachable in a continuous Petri

net is decidable under any reachability concept. Therefore, in continuous Petri nets

the existence/absence of non desired potentially reachable markings can be checked

without the use of reachability trees.

One of the most often requested system properties is deadlock-freeness. A net

system is deadlock-free when it is impossible to reach a marking from which no tran-

sition can be fired, in other words, from any reachable marking there is a transition

that can be fired. A stronger condition than deadlock-freeness is liveness: A system is

live iff for any transition, t, and for any reachable marking, m, there exists a fireable

sequence from m that fires transition t. It derives that deadlock-freeness is a neces-

sary condition for liveness. Chapter 3 is devoted to the study of deadlock-freeness

for the subclass of untimed continuous mono-T-semiflow Petri nets, i.e., nets that

are conservative, consistent and have only one T-semiflow. For this subclass of nets

deadlock-freeness and liveness are equivalent. In order to be live, the transitions of a

mono-T-semiflow Petri net have to be fired according to the ratios given by the unique

T-semiflow. This fact allows one to extract easy to check structural conditions for

liveness.

Time can be introduced in the continuous Petri net formalism in several ways. It

is more common and intuitive to associate time to transitions than to places. The

most popular time interpretations for continuous transitions are finite servers seman-

tics [AD98a] (or constant speed) and infinite servers semantics [RS01] (or variable

speed). Both firing semantics are derived by considering a first order approximation

of the discrete case. The firing semantics define the flow (number of firings per time

unit) through transitions. Once the flow through transitions is known, the evolution

4 Introduction

of the marking can be computed by using the fundamental state equation.

Under finite servers semantics the flow of a transition keeps constant as long as

none of its input places becomes empty. If one of the input places becomes empty the

flow of the transition changes to a value that depends on the flow of the transition that

is providing fluid to the empty place. Thus, the evolution of the marking is piecewise

linear: A change in the marking dynamics happens when a place becomes empty.

Finite servers semantics are suitable to model systems whose queues/warehouses are

served at constant rates.

The flow of a transition working under infinite servers semantics is proportional to

its enabling degree. The enabling degree of a transition depends on the marking of its

input places and the weight of the arcs connecting the input places to the transition.

More precisely, the enabling degree is computed by considering the division of the

marking of each input place by its arc weight and taking the minimum of those

divisions. The place that is giving the minimum division is somehow constraining

the firing of the transition. As under finite servers semantics, the evolution of a net

system under infinite servers semantics is piecewise linear. Now, a change in the

marking dynamics happens when there is a change in the place giving the minimum

in the expression for the enabling degree of a given transition.

Σ 3

Σ 5

4Σ

Σ 1

Σ 2

Linear System

Linear System

Linear System

Linear System

Linear System

Figure 1: Timed continuous Petri net system as piecewise linear system. Each arc corre-

sponds to an internal event.

Thus, the differences between finite and infinite servers semantics are only in the

kind of internal events triggering the dynamics change and the kind of linear systems

driving the evolution of the marking: Under finite servers semantics an event occurs

when a place becomes empty and the flow through transitions is constant at every

linear system. Under infinite servers semantics an event is activated by a change in

the place giving the minimum for the enabling degree of a transition and the flow

through transitions is proportional to their enabling degree.

The properties of deadlock-freeness/liveness can be studied as well in the frame-

Introduction 5

work of timed continuous net systems. A net system is said to be live if the flow of

all its transitions is greater than zero in the steady state. As in untimed systems,

in timed mono-T-semiflow net systems deadlock-freeness and liveness are equivalent.

Chapter 4 shows how some liveness conditions for timed mono-T-semiflow nets under

infinite servers semantics can be obtained. Notice that the marking trajectory of the

timed net system is contained in the reachability set of the net system seen as untimed.

This implies that if the timed system deadlocks it can also deadlock as untimed. In

other words, liveness of the timed system is a necessary condition for liveness of the

untimed system. This relationship between liveness of timed and untimed systems

can be exploited to extract necessary liveness conditions for untimed systems.

The performance of a dynamical system is a real quantity measuring how well a

system behaves. Typically, the higher the performance the better the behaviour. The

performance of a system can be obtained for example by computing how many times a

given action is executed per time unit. In discrete Petri net systems, the performance

of a system is computed as the number of times a given transition is fired per time

unit. In a similar way, in continuous Petri net systems the performance is measured

as the flow (or throughput) of a transition at the steady state, i.e., when the marking

and flow through transitions remain constant. In mono-T-semiflow systems the only

sequences that can be indefinitely repeated have to be proportional to the unique

T-semiflow. Therefore, the vector representing the flow through transitions at the

steady state has to be proportional to the unique T-semiflow of the net. Thus, once

the throughput of one transition in the steady state is known, the throughput of

the rest of transitions can be immediately obtained. A Branch & Bound algorithm

can be used to compute throughput bounds of a net system. By slightly relaxing

some conditions it is also possible to derive a linear programming problem for the

computation of upper throughput bounds. These methods are presented in Chapter 5.

In many real situations the state variables of a dynamical system are not fully ac-

cessible, i.e., they cannot be directly measured by an external observer. This can be

the case of internal system variables and variables for which sensors do not exist or are

too expensive. Fortunately, under some conditions, it is possible to estimate/observe

the value of those “hidden” variables. In the framework of linear systems, it is rela-

tively easy to obtain the observability space of the system, i.e., the state space that

can be estimated from the output (the measurable variables) of the system. It is also

possible to design, under some conditions, a dynamical system called observer that

estimates the value of the hidden variables. The observer’s input is the output of the

system to be observed and its state gives an estimate for the hidden variables. Some

results on observability for linear systems and piecewise linear systems can be applied

to timed continuous Petri nets. Furthermore, Chapter 6 shows that these results can

be improved by considering some specific features of continuous nets. Basically, this

improvement is possible thanks to the fact that the linear system that rules the net

6 Introduction

system evolution depends exclusively on the marking of the net.

Controllability is the dual property of observability. Intuitively, a system is said

to be controllable when its state can be completely manipulated by means of input

actions. In Petri nets, input actions can be added to the model by introducing the

possibility of modifying the “normal unforced” flow of the transitions, i.e., its flow

according to finite or infinite servers semantics. The unforced flow of a transition can

be seen as its maximum working speed since it works completely unconstrained. An

input action is applied to a transition in order to slow down its normal working speed.

Following these ideas Chapter 6 proposes a method to solve optimal control problems

in timed continuous Petri nets. These problems aim to maximize/minimize a given

optimization function subject to the rules of the evolution of the net system.

Chapter 8 studies three different systems modelled with continuous Petri nets: A

manufacturing system, an assembly line and a car traffic system. The two first cases

strongly suffer from the state explosion problem. It is shown how they can be analyzed

as continuous models by using the concepts developed in this thesis. The third case

represents an effort to faithfully model a car traffic system. For that purpose some

model extensions, that go beyond the usual definitions for continuous Petri nets, are

proposed.

Chapter 1

Continuous Petri Nets

Summary

This chapter introduces some basic definitions and concepts related to discrete and

continuous Petri nets. Some Petri net subclasses are presented allowing one to classify

a net according to its structure. In particular, the subclass of mono-T-semiflow nets

is described more deeply. This subclass has interesting analysis features that will be

studied in the following chapters. A continuous Petri net is presented as a relaxation

of a discrete one. In a continuous Petri net the marking of a place and the firing of

a transition are not discrete amounts but nonnegative real amounts. This relaxation

may not preserve some basic properties of the original discrete system. Two different

possibilities to introduce time in a continuous Petri net system are described: Finite

servers semantics and infinite servers semantics. Under any of these two time inter-

pretations, timed Petri net systems are particular cases of piecewise linear systems.

7

8 1. Continuous Petri Nets

Introduction

Petri nets are widely used to model, analyze and verify discrete event systems. One

of the reasons for the success of Petri nets is that many behaviours of discrete systems

as concurrence, synchronization, mutual exclusion, resource sharing and coordination

can be modelled in a compact and intuitive way by Petri nets. Besides, there exist

many analysis techniques and methods for the verification of systems modelled by

Petri nets.

One of the main drawbacks of discrete Petri nets is that they suffer from the state

explosion problem, i.e., the number of states increases exponentially with respect to

the size of the system. That problem affects many discrete models causing some ver-

ification methods to be computationally very expensive. A way to avoid the state

explosion problem is to relax the model. A classical relaxation technique is to fluidify

the discrete model in order to obtain an “equivalent” continuous one. A fluidified

model gives one the chance of using linear methods instead of integer methods to an-

alyze the model. Usually, the complexity of linear methods is polynomial in contrast

to the exponential complexity of many integer methods. Unfortunately, some prop-

erties, as liveness, of the original discrete model may not be verified by the fluidified

one.

The basic concepts and notations of discrete Petri nets are introduced in Sec-

tion 1.1. Based on structural criteria several net subclasses are defined. Untimed

continuous Petri nets are presented in Section 1.2. The firing rule of the continuous

transitions is somehow similar to the rule for discrete transitions. However, the tran-

sitions can now be fired in nonnegative real amounts. This causes the marking of the

net to be a vector of nonnegative real numbers. The concept of time is introduced in

Section 1.3 as a first order approximation of the discrete case. Two different firing se-

mantics are considered: Finite servers semantics and infinite servers semantics. Under

finite servers semantics the flow of a transition depends on the set of its empty input

places. On the other hand, under infinite servers semantics the flow is proportional to

the enabling degree of the transition. In both cases, finite and infinite servers seman-

tics, the evolution of a timed continuous Petri net follows the pattern of a piecewise

linear system. Finally, Section 1.4 outlines some behaviours of the continuized Petri

net system that are not as coherent with the behaviour of the original discrete system

as it could be expected. In particular, liveness is not preserved and the performance

of the continuized system is not an upper bound of the performance of the original

discrete system. These facts motivate a detailed study of continuous Petri nets.

1.1. Discrete Petri nets and systems. State explosion problem 9

1.1 Discrete Petri nets and systems. State explo-

sion problem

The reader is assumed to be familiar with the basic concepts of discrete Petri nets

(see [Pet81, Bra83, Sil85, Mur89, Sil93] for an introduction). A Petri net (PN) is a

four-tuple, N = 〈P, T,Pre,Post〉, where P and T are disjoint (finite) sets of places

and transitions, and Pre and Post are |P | × |T | sized, non-negative integer valued

matrices. When all weights are one the net is ordinary.

A PN can be graphically represented as a weighted bipartite directed graph: Places

are drawn as circles and transitions as white rectangles, Pre[p, t] = w > 0 means that

there is an arc from p to t with weight (or multiplicity) w, and Post[p, t] = w > 0

means that there is an arc from t to p with weight w. Thus, classical concepts of graph

theory, as connectedness, strong connectedness, adjacent nodes,. . . , can be directly

applied to PN nets. Given a node v ∈ P ∪ T , its preset, •v, is defined as the set of its

input nodes, and its postset v• as the set of its output nodes. These definitions can

be naturally extended to sets of nodes.

If no place is at the same time input and output of a transition, i.e. ∀t ∈ T •t ∩
t• = ∅, the net has no self-loops and is pure. In this case the token flow matrix,

C = Pre − Post, contains all the information of the Pre and Post matrices and it

is also called incidence matrix.

A marking is a |P | sized, natural valued, vector. A PN system is a pair 〈N ,m0〉,
where m0 is called the initial marking, i.e., the initial state of the system.

A transition t is enabled at a marking m iff m ≥ Pre[P, t]. The firing of an

enabled transition t produces a new marking m′ = m+C[P, t]. The firing is denoted

by m t−→m′, and m′ is said to be a reachable marking (from m). The set of all the

reachable markings, or reachability set, from m, is denoted by RS(N ,m).

The size of the reachability set of a PN system can increase exponentially with re-

spect to the initial marking. Figure 1.1 presents a PN system and a table showing how

the size of the reachability set increases as the initial marking m0 = (3 2 0 1 0 1 0) is

multiplied by a constant k. This phenomenon is known as the state explosion problem

and poses serious difficulties when an exhaustive exploration of the reachability set is

required.

Given a sequence of transitions σ such that m σ−→m′, and denoting by σ the firing

count vector of σ, then m′ = m+ C ·σ. This is known as the state (or fundamental)

equation of the system. The set of all the markings that fulfill the state equation for a

given m ∈ IN|P |, with σ ∈ IN|T |, is called the linearized reachability set (with respect

to the state equation), LRS(N).

10 1. Continuous Petri Nets

2

2
2

3

4

PSfrag replacements

p1

p2

p3

p4

p5

p6

p7

t1

t2

t3

t4

t5 t6

k Number of reachable markings

1 54

2 1685

3 10354

4 37722

5 103914

Figure 1.1: A discrete Petri net and the size of its reachability set.

1.1.1 Some basic concepts

Flows and semiflows

Flows (semiflows) are integer (natural) annullers of C. Right and left annullers are

called T- and P-(semi)flows, respectively. A semiflow v is minimal when its support,

‖v‖ = {i | v[i] 6= 0}, is not a proper superset of the support of any other semiflow,

and the greatest common divisor of its elements is one.

If there exists y > 0 such that y · C = 0 then the net is said to be conservative

and it holds:

y · m = y · m0 + y · C ·σ = y · m0 = k

This provides a token balance law for the whole net. In a similar way, if there

exists x > 0 such that C · x = 0 then the net is said to be consistent and it holds:

m = m0 + C · x = m0

Hence, x represents a potential repetitive sequence covering all transitions.

Traps and siphons

Traps and siphons are structural dual concepts with high importance in the analysis

of many net properties as deadlock-freeness. A set of places, Θ, is a trap iff Θ• ⊆ •Θ.

In discrete net systems marked traps cannot get emptied. Analogously, a set of places,

Φ, is a siphon iff •Φ ⊆ Φ•. One interesting property about siphons is that empty

siphons will unavoidably remain empty throughout all the evolution of the net system.

1.1. Discrete Petri nets and systems. State explosion problem 11

Conflicts

A conflict is the situation where not all transitions that are enabled can occur at the

same time. More formally, t, t′ ∈ T are in (effective) conflict relation at marking m

iff there exist k, k′ ∈ IN such that m ≥ k · Pre[P, t] and m ≥ k′ · Pre[P, t′], but

m 6≥ k · Pre[P, t] + k′ · Pre[P, t′]. For this, it is necessary that •t ∩ •t′ 6= ∅, and in

that case it is said that t and t′ are in structural conflict relation. The structural

conflict relation (or choice) is a structural prerequisite for the behavioural property

of conflict.

The structural conflict relation is not transitive, and the coupled conflict relation

is defined as its transitive closure. Each equivalence class is called a coupled conflict

set denoted, for a given t, CCS(t). The set of all the equivalence classes is denoted

by SCCS.

When Pre[P, t] = Pre[P, t′] 6= 0, t and t′ are in equal conflict (EQ) relation,

meaning that they are both enabled whenever one is. This is an equivalence relation

on the set of transitions and each equivalence class is an equal conflict set denoted,

for a given t, EQS(t). An equal conflict set is called trivial if it is formed by just one

transition. SEQS is the set of all the equal conflict sets of a given net.

Liveness and deadlock-freeness

A transition t is live iff it can ultimately occur from every reachable marking, i.e.,

for every m, m′ ∈ RS(N ,m) exists such that t is enabled in m′. A Petri net system

〈N ,m0〉 system is live if every transition is live. Liveness ensures that no single action

in the system can become unattainable.

A PN system is deadlock-free when any reachable marking enables some transition.

Clearly, deadlock-freeness is a necessary condition for liveness.

A Petri net is structurally live (deadlock-free) if there exists an initial marking,

m0, for which the net system 〈N ,m0〉 is live (deadlock-free).

1.1.2 Petri net subclasses

Typically, Petri net subclasses are defined by imposing some constraints on the struc-

ture of the net. The following ones are among the most usual net subclasses:

Definition 1.1 (Some Petri net subclasses).

• State machines (SM) are ordinary Petri nets where each transition has one input

and one output place, i.e., ∀t |•t| = |t•| = 1.

• Marked graphs (MG) [CHEP71] are ordinary Petri nets where each place has

one input and one output transition, i.e., ∀p |•p| = |p•| = 1.

12 1. Continuous Petri Nets

• Join free (JF) nets are Petri nets in which each transition has at most one input

place, i.e., ∀t ∈ T , |•t| ≤ 1).

• Choice free (CF) nets [TCS97] are Petri nets in which each place has at most

one output transition, i.e., ∀p |p•| ≤ 1.

• Free choice (FC) nets [Hac72] are ordinary Petri nets in which conflicts are

always equal, i.e., ∀t, t′, if •t ∩ •t′ 6= ∅, then •t = •t′.

• Equal Conflict (EQ) nets [TS96] are Petri nets in which conflicts are always

equal, i.e., for all t, t′ ∈ T such that •t ∩ •t′ 6= ∅, Pre[P, t] = Pre[P, t′], or,

equivalently, SCCS = SEQS.

Mono-T-semiflow nets

A Petri net is Mono-T-semiflow (MTS)[CCS91] if it is conservative (i.e., all places

are covered by P-semiflows), consistent and has only one T-semiflow (i.e., all tran-

sitions are covered by the unique minimal T-semiflow). Hence, it can be decided in

polynomial time whether a given net, N , is MTS or not.

MTS nets have a single repetitive sequence that is represented by its unique T-

semiflow. This offers interesting analysis advantages and implies the equivalence be-

tween deadlock-freeness and liveness. From a modelling point of view the subclass of

MTS nets represents an important generalization of choice-free nets (see Figure 1.2).

A subclass of choice free nets are weighted-T-systems [TCS97], a weighted general-

ization of the subclass of marked graphs.

Marked Graphs Choice FreeWeighted t−systems

Mono−T−Semiflow

Figure 1.2: Subclasses included in the subclass of MTS nets.

1.2 Untimed continuous Petri net systems

An interesting approach to study discrete systems with large populations is based on

the fluidification/continuization of the model. Thus, the model is not discrete any

more but continuous. This is a relaxation technique that can also be applied in the

context of Petri nets in order to overcome the state explosion problem. Usually, but

not always [SR02], the greater the population of the discrete system the better the

continuous approximation.

1.2. Untimed continuous Petri net systems 13

In PNs, fluidification has been introduced independently from three different per-

spectives:

• At the net level fluidification was introduced and developed by R. David and

coauthors since 1987 [DA87, AD98a]. In this case, the fluidification of timed

discrete systems generates deterministic continuous models, and also hybrid

models if there is a partial fluidification.

• Analogously, fluidifying the firing count vector (thus also the marking) in the

state equation allows one to use convex geometry and linear programming in-

stead of integer programming, making possible the verification of some proper-

ties in polynomial time. The systematic use of linear programming on untimed

and timed systems was proposed also in 1987 [SC88, STC98].

• K. Trivedi and his group introduced [TK93, CNT99] a partial fluidification on

some stochastic models. The fluidification only affects one or a limited number

of places originating stochastic hybrid systems.

In this work, a continuous system is understood as a relaxation of a discrete

system. The main difference between continuous and discrete PNs is in the firing

count vector and consequently in the marking, which in discrete PNs are restricted

to be in the naturals, while in continuous PNs are relaxed into the non-negative real

numbers. The marking of a place can be seen as an amount of fluid being stored,

and the firing of a transition can be considered as a flow of this fluid going from a

set of places (input places) to another set of places (output places). Thus, instead

of tokens and discrete firings, it is more convenient to talk of levels in the places

(deposits/reservoirs) and flows through transitions (valves).

A transition t is enabled at m iff for every p ∈ •t, m[p] > 0. In other words, the

enabling condition of continuous systems and that of discrete ordinary systems can be

expressed in an “analogous” way: every input place should be marked. Notice that to

decide whether a transition in a continuous system is enabled or not it is not necessary

to consider the weights of the arcs going from the input places to the transition.

However, the arc weights are important to compute the enabling degree of a transition

and to obtain the new marking after a firing. As in discrete systems, the enabling

degree at m of a transition measures the maximal amount in which the transition

can be fired in a single occurrence, i.e., enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The

firing of t in a certain amount α ≤ enab(t,m) leads to a new marking m′, and it is

denoted as m αt−→m′. It holds m′ = m + α · C[P, t], where C = Post − Pre is the

token flow matrix. Hence, as in discrete systems, the state equation, m = m0 +C ·σ,

summarizes the way the marking evolves.

As in discrete systems, when y·C = 0, y > 0 the net is said to be conservative, and

when C ·x = 0, x > 0 the net is said to be consistent. As an immediate generalization

14 1. Continuous Petri Nets

of equal conflict relations, it will be said that t and t′ are in continuous equal conflict

(CEQ) relation when there exists k > 0 such that Pre[P, t] = k · Pre[P, t′] 6= 0.

In order to illustrate the firing rule in a continuous system, let us consider the

system in Figure 1.3. The only enabled transition at the initial marking is t1 whose

enabling degree is 1. Hence, it can be fired in any real quantity going from 0 to 1.

For example, the firing by 0.5 would yield marking m1 = (0.5, 0.5, 1, 0). At m1 the

enabling degree of transition t2 is equal to 0.5; if it is fired in this amount the resulting

marking is m2 = (0.5, 0.5, 0, 0.5). Both m1 and m2 are reachable markings of the

continuous Petri net system.

2
PSfrag replacements

p1

p2

p3

p4t1

t2 t3

Figure 1.3: Untimed continuous Petri net system.

1.3 Timed continuous Petri net systems

For the timing interpretation of continuous PNs a first order (or deterministic) approx-

imation of the discrete case [RS01] will be used, assuming that the delays associated

to the firing of transitions can be approximated by their mean values. Then, the state

equation has an explicit dependence on time m(τ) = m0 + C · σ(τ). Deriving with

respect to time, ṁ(τ) = C · σ̇(τ) is obtained. Let us denote f = σ̇, since it represents

the flow of the transitions.

Different semantics have been defined for continuous PNs, the most important

being finite servers [AD98a](or constant speed) and infinite servers [RS01](or variable

speed).

1.3.1 Finite servers semantics

Under finite firing semantics, every transition, t, has associated a real parameter

λ[t] > 0 that is the maximum flow of the transition. Intuitively, if a transition is seen

as a valve through which a fluid passes, λ can be seen as the maximum flow admitted

1.3. Timed continuous Petri net systems 15

by the valve. In contrast to [BGM00] no lower bound for the flow of the transitions

will be considered along this work, thus, the minimum flow of every transition is 0. A

transition, t, is strongly enabled if every input place of t is marked or t has no input

places. If t is strongly enabled then f [t] = λ[t]. A transition, t, is weakly enabled if

one or more input places of t are empty and receiving an input flow from some of

their input transitions, and the rest of input places of t are marked. The flow of the

weakly enabled transitions has to be defined in such a way that the nonnegativity of

the marking is assured. The computation of an admissible f is not trivial when several

empty places appear. In [AD98b], an iterative algorithm is suggested to compute one

admissible f . In this work, f will be computed in a similar way to [BGM00] where

the set of admissible f is characterized by a set of linear inequalities. The vector f

that will be chosen fulfils the system of linear inequalities and maximizes
∑s

i=1 f [ti].

If a transition is neither strongly nor weakly enabled its flow is 0.

Under finite server semantics, the flow vector, f , is piecewise constant, and there-

fore the marking evolution is piecewise linear. The vector f keeps constant until an

event occurs. Between events, the system is said to be at an invariant behavior state

(IB - state) [AD98a]. An event occurs only when a place becomes empty. Thus, the

number of potential IB - states equals the number of sets of places that can be empty.

In principle, each place can be empty or not empty, hence the number of potential

IB - states for a general system with n places is 2n. However, the number of potential

IB - states is usually not so big since initially marked P-semiflows ([Mur89, DHP+93])

cannot be emptied.

Let us consider the system in Figure 1.4(a). The only input place of t1 is marked,

hence it is strongly enabled and f [t1] = λ[t1] = 2. The evolution of m[p1] is given by

ṁ = λ[t2] − λ[t1] = −1. At time 1, p1 becomes empty, i.e., an event occurs, and t1
becomes weakly enabled. Now, the maximum flow admitted by t1 is 1, a greater flow

will cause m[p1] to be negative. Being f [t1] = 1, p1 remains empty. Now p1 can be

seen as a tube instead of a deposit and no more events occur. For arbitrary values of

λ[t1] and λ[t2], the flow of t1 when p1 is empty is defined as f [t1] = min(λ[t1],λ[t2]).

Transitions t1 and t2 of the system in Figure 1.4(b) are strongly enabled for the

given initial marking m[p1] = 2. After two time units, p1 becomes empty and t1, t2
become weakly enabled. At this point, it has to be decided how to split the input

flow, λ[t3], coming into p1. Since t1 and t2 are considered to have the same priority,

half of the flow should be routed to t1 and half to t2. Unfortunately, the maximum

flow of t1, λ[t1] = 1, is smaller than λ[t3]/2. To solve this situation, the flow that

cannot be consumed by t1, λ[t3]/2 − λ[t1], is routed to t2. This results in f [t1] = 1

and f [t2] = 2. The explicit analytic expressions for f [t1] and f [t2] with arbitrary λ[t1],

λ[t2] and λ[t3] when m[p1] = 0 are f [t1] = min(λ[t3]/2+max(0,λ[t3]/2−λ[t2]),λ[t1])

and f [t2] = min(λ[t3]/2 + max(0,λ[t3]/2 − λ[t1]),λ[t2]).

Consider the system in Figure 1.5(a) with λ = (1.5 1 2) and m0 = (0 0 3). The

16 1. Continuous Petri Nets

PSfrag replacements

t1

t2

t3

p1

λ[t1] = 2

λ[t2] = 1

λ[t1] = 1

λ[t2] = 3

λ[t3] = 3

(a)

PSfrag replacements

t1 t2

t3

p1λ[t1] = 2

λ[t2] = 1

λ[t1] = 1 λ[t2] = 3

λ[t3] = 3

(b)

Figure 1.4: (a) Transition t1 becomes weakly enabled at τ = 1. (b) Transitions t1 and t2

become weakly enabled at τ = 2.

evolution of the system is depicted in Figure 1.5(b). At time instant τ = 3 place p3

empties and transition t3 becomes weakly enabled, and so its flow changes. At time

τ = 12 place p1 also becomes empty and the system dies, that is, the flow of every

transition is zero.

2

PSfrag replacements

t1

t2

t3

p1 p2

p3

(a)

0 5 10 15
−1

0

1

2

3

4

5

6

7
m1
m2
m3

PSfrag replacements

t1
t2
t3
p1

p2

p3

(b)

Figure 1.5: A continuous PN system and its marking evolution.

1.3.2 Infinite servers semantics

Under infinite servers semantics the flow of a transition is given by the product

of a parameter λ by its enabling degree, i.e., f [t] = λ[t] · enab(t,m) = λ[t] ·

1.3. Timed continuous Petri net systems 17

minp∈•t{m[p]/Pre[p, t]}, what leads to a non-linear system. The vector λ is con-

stant and can be seen as the internal speed of the transitions.

In JF systems, transitions have only one input place, and so the computation

of the enabling degrees does not require the min operator. Hence, the flow of the

transitions can be expressed as f = Ψ · m where Ψ[t, p] = λ[t]/Pre[p, t] if p = •t,

Ψ[t, p] = 0 otherwise. Consequently, the evolution of the marking can be described

by an equation in the form ṁ = C · f = A ·m, where A = C ·Ψ. Hence, a JF system

evolves as a linear system.

For a general system, matrix A is not constant but piecewise-constant. The value

of A at a given instant is determined by the marking m at that instant. To compute

A, it is necessary to know the set of places that is actually enabling the transitions,

i.e., the set of places that are giving the minimum in the expression for the enabling

degree. Once this set is computed, it is easy to establish a linear relationship between

the marking of the places in this set and the flow of the transitions: ṁ = A ·m, with

A = C · Ψ where

Ψ[t, p] =

{
λ[t]/Pre[p, t] if p ∈ •t and m[p]/Pre[p, t] = minq∈•t{m[q]/Pre[q, t]}
Ψ[t, p] = 0 otherwise

The marking of the places restricts the behaviour/flow of their output transitions.

For each marking m, its PT-set can be defined as the set of all the pairs, (p, t), such

that the marking of p is restricting the flow of transition t at marking m.

Definition 1.2. Given a net system, the PT-set at a marking m is

PT-set(m) = {(p, t) | f [t] = λ[t] · m[p]/Pre[p, t]} (1.0)

Obviously, for JF systems a unique PT-set exists, and ṁ = A · m. Otherwise, if

the PT-set is known, the system evolves according to ṁ = A1 ·m where A1 depends

on PT-set(m) and the λ of the transitions. If at a given instant the PT-set changes,

i.e., a transition is restricted by other input place, the system will be ruled by another

linear system ṁ = A2 · m. That is, every PT-set, k, has associated a square matrix

Ak and a linear system Σk : ṁ = Ak ·m. The set of PT-sets that will be active during

the evolution of the system, i.e., behavioral PT-sets, depends on the net structure and

the initial marking. If the initial marking is not known, the net structure defines the

set of potential PT-sets, i.e., structural PT-sets, that might be active. Clearly, the

set of structural PT-sets contains the set of behavioral PT-sets.

This way, a continuous Petri net system can be seen as a piecewise linear sys-

tem [Son81] in which the switches among the linear systems are activated by internal

events, i.e., the change from one PT-set to another does not need any external agent,

just a certain change in the system marking. Due to the way in which the system

18 1. Continuous Petri Nets

evolution is defined, it can be assured that the marking of the system and its first

derivative with respect to time are continuous.

In order to illustrate the evolution of a non JF system, let us consider the system

in Figure 1.5(a) with initial marking m0 = (3 0 0) and transition speeds λ = (0.9 1 1).

If m[p1] ≤ m[p2], the flow of transition t2 will be defined by the marking of p1 (Σ1)

and the PT-set will be {(p1, t1), (p1, t2), (p3, t3)}. Similarly, if m[p1] ≥ m[p2] the flow

of t2 will be restricted by p2 (Σ2) and the PT-set will be {(p1, t1), (p2, t2), (p3, t3)}.

Σ1 : ṁ =

−1.9 0 2

−0.1 0 0

1.0 0 −1

 · m (1.1)

Σ2 : ṁ =

−0.9 −1 2

0.9 −1 0

0.0 1 −1

 · m (1.2)

At the time instant in which m[p1] = m[p2], Σ1 and Σ2 behave in the same way

and any of them can be taken. Figure 1.6 shows the evolution of the system along

time. At the beginning the system evolves according to Σ2. Then a switch occurs

and the dynamics of the system is described by Σ1. A second switch turns the system

back to Σ2, the system stabilizes and no more switches take place.

Notice that for a given marking, the set of places that are not in the PT-set do

not play any role in the evolution of the system. Mathematically this is expressed by

null columns in the system matrix Aj corresponding to the places that are not in the

PT-set. Such places can be temporarily considered as a kind of timed-implicit places,

since the system evolution does not depend on them. However, when a switch occurs,

at least one place that was acting as timed-implicit becomes member of the new PT-

set. For the net system in Figure 1.5(a) with m0 = (3 0 0), p2 is timed-implicit only

in the period when Σ1 is describing the system dynamics.

From a modelling point of view, it holds that for any bounded time invariant

linear system there exists a continuous Petri net with identical behaviour [JJRS04a].

Therefore, any dynamic behaviour that can be modelled by a time invariant linear

system can also be modelled by a timed continuous Petri net working under infinite

servers semantics.

1.4 Discrepancies with the discrete case

Fluidification of discrete models is, in general, a classical relaxation technique aiming

at computationally more efficient analysis techniques. Nevertheless, it should be

1.5. Conclusions 19

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

System evolution

m[p1]
m[p2]
m[p3]

Σ Σ Σ2 2 1

commutation

Figure 1.6: Marking evolution of the system in Figure 1.5(a) under infinite servers semantics

with m0 = (3 0 0) and λ = (0.9 1 1).

pointed out that not all Petri systems allow continuization, if some basic properties as

liveness should be preserved. Regarding to untimed systems, Chapter 3 presents some

examples to show that liveness of the original discrete system is neither a necessary

nor a sufficient condition for liveness of the continuized system. The same fact is

reported for timed systems in Chapter 4.

With respect to the performance of the continuized system, it could be thought

that it represents an upper bound for the performance of the original discrete system.

However, in general, this is not the case. Chapter 5 focuses on the performance

evaluation of continuous systems and presents a net system whose performance is

higher as discrete than as continuous.

1.5 Conclusions

Continuous Petri nets represent a relaxation of classical discrete Petri nets. This

relaxation avoids the state explosion problem that appears when large discrete nets

are considered. In a continuous Petri net the amount in which a transition is fired is

not constrained to the natural numbers but to the real numbers.

Time can be easily introduced in the continuous Petri net formalism by consider-

ing timed transitions through which a flow exists. A first order approximation of the

discrete case is taken to define the flow through transitions. The flow through transi-

tions defines the evolution of the net system. Two different firing semantics have been

20 1. Continuous Petri Nets

described. Under finite servers (or constant speed) semantics the flow of a transition

is piecewise constant and depends on the set of empty input places of the transition.

This semantics is appropriate to model the behaviour of a system whose speed is

not sensitive to the population (for example customers waiting to be served) of the

system. On the other hand, the flow of a transition working under infinite servers

semantics is proportional to its enabling degree, i.e., to the number of customers. In

both cases, finite and infinite servers semantics, timed continuous Petri nets can be

seen as a particular case of piecewise linear systems. Some work related to the anal-

ysis of general piecewise linear systems can be found in [Joh99, GMD03, SGL02]. In

continuous Petri nets, the switch from one linear system to another one is triggered

by a change in the marking of the net. This change can be interpreted as an internal

event. Under finite servers semantics this event occurs when a place becomes empty.

Under infinite servers semantics an event occurs when there is a change in the place

defining the enabling degree for a given transition.

One could think that fluidification is a naive relaxation of discrete nets. However,

it can cause some properties of the discrete model not to be preserved by the fluidified

one. Liveness is one of those properties that can be affected by the relaxation. A

thorough study of continuous Petri nets is therefore required in order to analyze their

properties and to establish under which conditions the properties of the discrete model

are preserved by the fluidified one.

Chapter 2

Reachability

Summary

In continuous Petri net systems reachability can be interpreted in several ways. The

concepts of reachability and lim-reachability were considered in [RTS99]. They stand

for those markings that can be reached with a finite and an infinite firing sequence

respectively. A third concept, δ-reachability, can be useful for many practical pur-

poses. A marking is δ-reachable if the system can get arbitrarily close to it with a

finite firing sequence. In this chapter, a full characterization, mainly based on the

state equation, is provided for all three concepts for general nets. Under the condition

that every transition is fireable at least once, it holds that the state equation does not

have spurious solutions if δ-reachability is considered. Furthermore, the differences

among the three concepts are in the border points of the reachability sets that they

define.

21

22 2. Reachability

Introduction

The study of reachability, i.e., the set of markings that can be reached by the net

system, is essential to face the analysis and verification of many system properties.

For example, liveness of a system can be easily checked if a good characterization

of the system reachability exists. In contrast to discrete Petri nets, in a continuous

Petri net the set of reachable markings can be described by a continuous space region.

This chapter shows that the use of the fundamental state equation greatly helps to

describe the set of reachable markings.

Untimed Petri net models will be considered throughout this chapter. In par-

ticular, this means that no time interpretation will be applied to the firing of the

transitions. Thus, a nondeterminism in the evolution of the system exists. Notice,

however, that if the transitions are timed, the evolution/behaviour of the system will

always be constrained to one of the possible evolutions/behaviours of the untimed

system.

Three different ways of understanding (interpreting) reachability will be consid-

ered [JRS03]: reachability with a finite number of steps or simply reachability, reach-

ability with an infinite number of steps or lim-reachability, and δ-reachability that

has to do with the capacity of the system to get arbitrarily close to a given marking

with a finite number of steps.

The chapter is organized as follows: in Section 2.1 reachability in continuous sys-

tems is introduced formally and by means of examples. A preview of the main results

is given in that section. Sections 2.2, 2.3 and 2.4 are devoted to the characterization

of the sets of reachable markings according to the different concepts: reachability,

lim-reachability and δ-reachability respectively. Moreover, it will be seen that it is

decidable whether a given marking belongs to any of those three concepts.

2.1 Definitions and Preview

The set of markings that are reachable with a finite firing sequence for a given system

〈N ,m0〉 is denoted as RS(N ,m0). It is defined as:

Definition 2.1. RS(N ,m0) = { m| a finite fireable sequence σ = α1ta1
. . . αktak

exists such that m0

α1ta1−→m1
α2ta2−→m2 . . .

αktak−→ mk = m where tai
∈ T and αi ∈ IR+}.

An interesting property of RS(N ,m0) is that it is a convex set (see [RTS99]).

That is, if two markings m1 and m2 are reachable, then for any α ∈ [0, 1] αm1 +

(1−α)m2 is also a reachable marking. The markings m1 = (0.5, 0.5, 1, 0) and m2 =

(0.5, 0.5, 0, 0.5) are reachable for the system in Figure 2.1(a) by firing respectively

t1 in an amount of 0.5, and t1 and t2 in an amount of 0.5. Therefore, since the set of

2.1. Definitions and Preview 23

reachable markings is convex then any marking in the line connecting m1 and m2 is

also reachable.

2
PSfrag replacements

p1

p2

p3

p4t1

t2 t3

(a)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������

m(p2)

0.5

1

1

m
0

m(p4)

m(p3)

PSfrag replacements

p1

p2

p3

p4

t1
t2
t3

(b)

Figure 2.1: (a) Untimed continuous system. (b) Lim-Reachability set.

Let us consider again the system in Figure 2.1(a) with initial marking m0 =

(0.5, 0.5, 0, 0.5). At this marking either transition t1 or transition t3 can be fired. The

firing of t3 in an amount of 0.5 makes the system evolve to marking (0.5, 0.5, 0.5, 0)

from which t2 can be fired in an amount of 0.25 leading to marking (0.5, 0.5, 0, 0.25).

Now, the markings of places p1, p2 and p3 are the same as those of the system at m0,

but the marking of p4 is half of its marking at m0. The firing of transitions t2 and

t3 in its maximum enabling degree causes the elimination of half of the marking of

p4. Assume that transitions t2 and t3 are further fired. Then, as the number of

firings increases the marking of p4 approaches 0, value that will only be reached in

the limit. Notice that the marking reached in the limit (0.5, 0.5, 0, 0) corresponds

to the emptying of an initially marked trap (Θ = {p3, p4},Θ• = •Θ = {t2, t3}), fact

that does not occur in discrete systems. From the point of view of the analysis of the

behaviour of the system, it is interesting to consider this marking as limit-reachable,

since in the limit the system may converge to it. Let us define the set of such markings

that are reachable with a finite or an infinite firing sequence:

Definition 2.2. [RTS99] Let 〈N ,m0〉 be a continuous system. A marking m ∈
(IR+ ∪ {0})|P | is lim-reachable, iff a sequence of reachable markings {mi}i≥1 exists

such that

m0
σ1−→m1

σ2−→m2 · · ·mi−1
σi−→mi · · ·

and lim
i→∞

mi = m. The lim-reachable set is the set of lim-reachable markings, and

will be denoted lim-RS(N ,m0).

24 2. Reachability

Figure 2.1(b) depicts the lim-reachability set of system in Figure 2.1(a). It is

not necessary to represent the marking of place p1 since m1 = 1 − m2. The set of

lim-reachable markings is composed of the points inside the prism, the points in the

non shadowed sides, the points in the thick edges and the points in the non circled

vertices.

For some systems, the sets RS(N ,m0) and lim-RS(N ,m0) are identical. In that

case, with regard to the set of reachable markings, there exists no difference between

considering sequences of finite or infinite length. See Figure 2.2 for an example. Only

m2 and m4 are represented since m1 = 1−m2 and m3 = 1−m4. The innner points

of the square defined by the vertices (0, 0), (0, 1), (1, 1) and (1, 0), and the thick

lines in Figure 2.2(b) are part of the reachability and the lim-reachability set, while

the points going from m0 to (0, 1) (including (0, 1)) do not belong to these sets.

PSfrag replacements

p1

p2

p3

p4t1

t2 t3

(a)

1m

1

0

m(p4)

m(p2)

PSfrag replacements

p1

p2

p3

p4

t1
t2
t3

(b)

Figure 2.2: (a) Untimed continuous system. (b) Reachability set and Lim-Reachability

set coincide.

In general, the set of reachable markings, RS(N ,m0) is a subset of the set of lim-

reachable markings, lim-RS(N ,m0). For the system in Figure 2.3(b), neither p1 nor

p2 can be emptied with a finite firing sequence because every time a transition is fired

some marks are put in both places. For that system the set of reachable markings

is (α, 2 − α), 0 < α < 2. Nevertheless, considering the sequence 1
2 t1,

1
4 t1,

1
8 t1, . . .,

in the k-th step, the system reaches the marking (2−k, 2 − 2−k). When k tends to

infinity the marking of the system tends to (0, 2). Therefore the infinite firing of t1
(t2) will converge to a marking in which p1 (p2) is empty. Thus the set of markings

reachable in the limit is (α, 2−α), 0 ≤ α ≤ 2. Notice that the only difference between

lim-RS(N ,m0) and RS(N ,m0) is in the markings (0, 2) and (2, 0). Observe that

2.1. Definitions and Preview 25

even under consistency and conservativeness RS(N ,m0) 6= lim-RS(N ,m0).

For the system in Figure 2.3(a), p1 (p2) can be emptied with the firing of t1 (t2) in

an amount of 1. Hence, although the systems in Figure 2.3 have the same incidence

matrix, their sets of finitely reachable markings are not the same.

PSfrag replacements

p1

p2

t1 t2

(a)

2

2

PSfrag replacements

p1

p2

t1 t2

(b)

Figure 2.3: Continuous systems that have the same incidence matrix and whose reacha-

bility sets do not coincide.

Both RS(N ,m0) and lim-RS(N ,m0) are not in general closed sets. For example

in Figure 2.2(b) the points on the segment going from (0, 0) (initial marking) to (0, 1)

do neither belong to RS(N ,m0) nor to lim-RS(N ,m0). Nevertheless, any point on

the right of this segment does belong to both sets RS(N ,m0) and lim-RS(N ,m0).

For a given set A, the closure of A is equal to the points in A plus those points which

are infinitely close to points in A, but are not contained in A. In the case of the

set depicted in Figure 2.2(b) its closure is equal to the inner and edge points of the

square defined by the vertices (0, 0), (0, 1), (1, 1) and (1, 0), that is, it is obtained

by adding the segment [(0, 0), (0, 1)] to RS(N ,m0).

Focusing on the sets defined by RS(N ,m0) and lim-RS(N ,m0) and closing them,

it will be noticed that the points limiting both sets are exactly the same. This is

because if the system can get as close as desired to a given point with an infinite

sequence, it can also get as close as desired with a finite sequence and vice versa.

Hence, the following property can be stated:

Property 2.3. The closure of RS(N ,m0) is equal to the closure of lim-RS(N ,m0).

Assume that, given a system, RS(N ,m0) and lim-RS(N ,m0) are not iden-

tical sets, i.e., RS(N ,m0)⊆/ lim-RS(N ,m0). This means that for every m in

lim-RS(N ,m0) \ RS(N ,m0), m is a border point of lim-RS(N ,m0) and there are

markings in RS(N ,m0) that are infinitely close to m. Let us make a final consid-

eration on the system of Figure 2.1(a). It has been seen that the initial firing of t1

26 2. Reachability

enables t2 and that an infinite sequence consisting on firing t2 and t3 will empty p3

and p4, reaching marking (0.5, 0.5, 0, 0). In that example t1 was fired in an amount

of 0.5. Nevertheless, p3 and p4 can be emptied also if t1 is fired in an amount α such

that 0 < α ≤ 1. For example, if one takes α = 0.1, transition t1 is fired in an amount

of 0.1 and then t2 is fired five times in an amount of 0.1. Now one can fire completely,

in an amount of 0.5, transition t3. Repeating this procedure, in the limit p3 and p4

become empty. Thus, it can be said that the marking (1−α, α, 0, 0) is lim-reachable

for any α such that 0 < α ≤ 1. Hence, marking (1, 0, 0, 0) is not lim-reachable but

the system can get as close as desired to it by taking a small enough α. This marking

can then be interpreted as the fact that a little leak of fluid from p1 to p2 can cause

the emptying of p3 and p4. In some situations, it may be useful to consider those

markings like (1, 0, 0, 0), that are not reachable, but for which the system can get

as close as desired.

Let us consider a norm in order to determine the proximity of two markings. Let

|x| denote the norm of vector x = (x1, . . . , xn) defined as: |x| = |x1|+. . .+|xn|. A new

reachability concept for continuous systems will be introduced: the δ-reachability. The

set of δ-reachable markings will be written as δ-RS(N ,m0) and accounts for those

markings to which the system can get as close as desired firing a finite sequence.

Formally:

Definition 2.4. δ-RS(N ,m0) is the closure of RS(N ,m0) : δ-RS(N ,m0) = { m |
for every ε > 0 a marking m′ ∈ RS(N ,m0) exists such |m′ − m| < ε}.

Since the closure of RS(N ,m0) is equal to the closure of lim-RS(N ,m0),

δ-RS(N ,m0) is also equal to the set of markings to which the system can get as close

as desired firing an infinite sequence. RS(N ,m0) and lim-RS(N ,m0) are, therefore,

subsets of δ-RS(N ,m0).

Therefore, till now three different kinds of reachability concepts have been defined:

• Markings that are reachable with a finite firing sequence, RS(N ,m0).

• Markings to which the system converges, eventually, with an infinitely long

sequence, lim-RS(N ,m0).

• Markings to which the system can get as close as desired with a finite sequence,

δ-RS(N ,m0).

Let us finish this section by defining the linearized reachability set with respect to

the state equation:

Definition 2.5. LRS(N ,m0) = {m|m = m0 +C ·σ ≥ 0 with σ ∈ (IR+ ∪{0})|T |}.

Notice that given a consistent system (i.e., ∃ x > 0|C · x = 0) it holds:

LRS(N ,m0) = {m|m = m0 + C · σ ≥ 0 with σ ∈ IR|T |}. In [RTS99] it was

2.2. RS(N ,m0) 27

shown that for consistent systems in which every transition is fireable at least once,

the sets LRS(N ,m0) and lim-RS(N ,m0) are the same. This result will be generalized

by describing the set of lim-reachable markings of a general system.

By definition LRS(N ,m0) is a closed set. m is a border point of LRS(N ,m0) iff

for every ε > 0 there exists m′, |m′ − m| < ε such that m′ 6∈ LRS(N ,m0).

The open set of LRS(N ,m0) is the result of removing every border point from

LRS(N ,m0) and will be denoted as]LRS(N ,m0)[.

Notice that given a system 〈N ,m0〉 if there exists y 6= 0 such that y · C = 0

then every m ∈ LRS(N ,m0) is a border point of LRS(N ,m0), and so in this case

]LRS(N ,m0)[= ∅. If such y exists all the points in LRS(N ,m0) are contained in a

hyperplane of smaller dimension than the number of places. In particular, if a system

has a P-semiflow, every marking in LRS(N ,m0) is a border point. Those markings

having null components are also border points of LRS(N ,m0).

Since all reachable, lim-reachable and δ-reachable markings are solution of the

state equation, the following relation is satisfied:

RS(N ,m0) ⊆ lim-RS(N ,m0) ⊆ δ-RS(N ,m0) ⊆ LRS(N ,m0).

Along the chapter this relationship among the different sets will be completed

showing that the open linearized set,]LRS(N ,m0)[, is contained in RS(N ,m0) and

that δ-RS(N ,m0) = LRS(N ,m0) if every transition is fireable at least once.

2.2 RS(N ,m0)

The goal of this section is first to provide a full characterization of the set of reachable

markings (Subsection 2.2.1) and then to show a computation algorithm that decides

the reachability of a given target marking (Subsection 2.2.2).

2.2.1 Reachability characterization

Before showing the main result (Theorem 2.12), some intermediate lemmas will be

presented in order to ease the final characterization. First, let us introduce an algo-

rithm to compute the sets of transitions fireable from the initial marking, and some

interesting results dealing with continuous systems.

Let FS(N ,m0) be the set of sets of transitions for which there exists a sequence

fireable from m0 that contains those and only those transitions in the set. Formally,

Definition 2.6. FS(N ,m0) = { θ| there exists a sequence fireable from m0, σ, such

that θ = ‖σ‖}.

Algorithm 2.7 (Computation of the set FS(N ,m0)).

1. Let V be the set of transitions enabled at m0

28 2. Reachability

2. FS := {v|v ⊆ V } % all the subsets of V including the empty set

3. Repeat

3.1. take f ∈ FS such that it has not been taken before

3.2. fire sequentially from m0 every transition in f without disabling

any enabled transition. Let m be the reached marking.

3.3. V := {t| t is enabled at m and t 6∈ f}
3.4. FS := FS ∪ {f ∪ v|v ⊆ V }

4. until FS does not increase

Notice that step 3.2. can always be achieved since for any element f ∈
FS(N ,m0) there exists a fireable sequence that contains every transition in f .

Algorithm 2.7 accounts for all possible subsets of transitions that can become en-

abled, and so its complexity is exponential on the number of transitions and so

is the size of the set FS(N ,m0). As an example, considering the net in Fig-

ure 2.4 with initial marking m0 = (1, 0, 1, 1, 0) the result of Algorithm 2.7

is FS(N ,m0) = { {}, {t2}, {t3}, {t4}, {t2, t3}, {t2, t4}, {t3, t4}, {t2, t3, t4},
{t1, t2}, {t4, t5}, {t1, t2, t3}, {t1, t2, t4}, {t2, t4, t5},{t1, t2, t4, t5},{t3, t4, t5},
{t1, t2, t3, t4}, {t2, t3, t4, t5}, {t1, t2, t3, t4, t5}}.

2

PSfrag replacements

p1

p2

p3

p4

p5

t1t2t3

t4 t5

Figure 2.4: Non-consistent continuous system.

Now let us introduce four lemmas that will help to characterize the set of reachable

markings. The first one simply states that continuous systems are homothetic with

respect to the scaling of m0.

Lemma 2.8. [RTS99] Let 〈N ,m0〉 be a continuous system. If σ is a fireable sequence

yielding marking m, then for any α ≥ 0, ασ is fireable at αm0 yielding marking αm,

2.2. RS(N ,m0) 29

where ασ represents a sequence that is equal to σ except in the amount of each firing,

that is multiplied by α.

Although this section deals with those markings that are reachable with a finite

firing sequence, a lemma that has to do with the markings that can be reached in the

limit will be presented. Lemma 2.9 establishes that if all the transitions in the support

of a given firing vector σ are enabled, then m = m0 + C · σ ≥ 0 is reachable in the

limit, whatever the value of σ is. Furthermore, there exists a sequence of reachable

markings that are “in the direction” of m.

Lemma 2.9. Let 〈N ,m0〉 be a continuous system. Let m = m0 + C ·σ ≥ 0, σ ≥ 0

and m0 such that for every t ∈ ‖σ‖ enab(t,m0) > 0. Then, there exists a succession

of reachable markings m1,m2, . . . fulfilling m1 = m0+β1C·σ, m2 = m0+β2C·σ, . . .

with 0 < β1 < β2 < . . . that converges to m.

Proof. Since at m0 every transition of ‖σ‖ is enabled, α and σ′ exist such that σ′ is

fireable from m0 and σ′ = ασ, i.e., a sequence proportional to the vector leading from

m0 to m can be fired. If α ≥ 1, it is clear that m can be reached from m0. Otherwise,

the firing of σ′ leads to m0 +C ·ασ = (1−α)m0 +αm0 +C ·ασ = (1−α)m0 +αm.

By Lemma 2.8, if σ′ was fireable from m0, then (1−α)σ′ is fireable from (1−α)m0.

In this way, one obtains

αm + (1 − α)m0

(1−α)σ′

−→ αm + α(1 − α)m + (1 − α)2m0

Repeating this procedure, in the iteration n the system reaches the marking

αm(1 + (1 − α) + (1 − α)2 + . . . + (1 − α)n) + (1 − α)nm0

Thus, the marking of the system as n goes to infinity converges to m.

Based on this result a part of the set of reachable markings can be described.

Lemma 2.10. Let 〈N ,m0〉 be a continuous system. Let m = m0 +C ·σ ≥ 0, σ ≥ 0

and for every t ∈ ‖σ‖ enab(t,m0) > 0 and enab(t,m) > 0. Then m ∈ RS(N ,m0).

Proof. Every t ∈ ‖σ‖ is enabled at m. This means that for every t ∈ ‖σ‖ all its

input places are positively marked at m. Then, one can define an m′ such that

m′ = m0 + C · (1 + α)σ ≥ 0 with α > 0. According to Lemma 2.9 there is a

succession of markings that converges to m′. Since m is in the line that goes from

m0 to m′ one can stop that sequence at a given step and reach exactly m in a finite

number of firings.

The following last lemma imposes a necessary and sufficient condition for the

fireability of a transition in terms of siphons.

30 2. Reachability

Lemma 2.11. Let m ∈ RS(N ,m0). Transition t is not fireable for any successor

of m iff there exists an empty siphon at m containing a place p such that p ∈ •t.

Proof.

(⇐)

If there exists such an empty siphon Θ, no transition in Θ• is fireable.

(⇒)

Assume t is not fireable for any successor of m. Then there exists a place p such that

p ∈ •t and m(p) = 0. Furthermore, no input transition of p, t′, can ever be fired.

Hence, for every t′ there exists an empty input place p′. Repeating this reasoning

a set of empty places Q is obtained. This set Q has the property that all its input

transitions (•Q) are output transitions (Q•). Hence Q is an empty siphon.

Before going on with the characterization of the set of reachable markings let us

make some considerations on the conditions a given marking m should fulfill in order

to be reachable. First of all, it is clear that a necessary condition for m to be reachable

is that it has to be solution of the state equation, that is, there must exist σ such that

m = m0 +C ·σ. Furthermore, ‖σ‖ must be in FS(N ,m0) in order to have a fireable

sequence. In Section 2.1 it has been seen that some marked traps can be emptied

in a continuous system with the firing of an infinite sequence. If only finite firing

sequences are considered, no marked trap can be emptied. Since now the interest

lies in finite firing sequences those σ’s that correspond to a firing count vector that

empties (or fills and then empties) a trap have to be explicitly forbidden. As it will

be seen, these necessary conditions are also sufficient for a marking to be reachable.

Given a net N and a firing sequence σ, let us denote as Nσ the net obtained

removing from N the transitions not in the support of σ and the resulting isolated

places. In other words, Nσ is the net composed of the transitions of N in the support

of σ and their input and output places. Using the previous lemmas a full characteri-

zation of the set of reachable markings is obtained.

Theorem 2.12. A marking m ∈ RS(N ,m0) iff

1. m = m0 + C · σ ≥ 0, σ ≥ 0

2. ‖σ‖ ∈ FS(N ,m0)

3. there is no empty trap in Nσ at m

Proof.

⊆
Let m ∈ RS(N ,m0). Then, there exists σ ≥ 0 such that m = m0 + C · σ and

‖σ‖ ∈ FS(N ,m0). Furthermore, there cannot be an empty trap in Nσ at m since

it would mean that the trap was emptied with a finite firing sequence.

⊇

2.2. RS(N ,m0) 31

Let m be such that m = m0 + C · σ ≥ 0, σ ≥ 0, ‖σ‖ ∈ FS(N ,m0) and there is no

empty trap in Nσ at m. It will be shown that m can be reached from m0 by a finite

firing sequence. This will be done in three steps: from m0 the system will reach a

marking m′ at which every transition t ∈ ‖σ‖ is enabled. From m′ the system will

be driven to a marking m′′ at which also every transition t ∈ ‖σ‖ is enabled and is

as closed as desired to m. Finally, due to the way m′′ is defined it is shown that m

is reachable from m′′. Although the order of the sequence of reachable markings is

m0, m′, m′′ and m, let us start by defining m′′ and showing how it can be reached.

If every t ∈ ‖σ‖ is enabled at m then m′′ = m. Otherwise, let us consider

the system with marking m and let us fire backwards and sequentially transitions

in ‖σ‖ until a marking (m′′) is reached at which every transition in ‖σ‖ is enabled.

Notice that this backward firing is equivalent to a forward firing in the reverse net

(changing directions of arcs). It will be reasoned that such a firing from m to m′′ is

always feasible. Notice that in the reverse net traps have become siphons (structural

deadlocks) and the forward firing in the reverse net of transitions in ‖σ‖ never involves

the filling of empty siphons of Nσ at m. This is because according to the initial

condition 3, “there is no empty trap in Nσ at m”. Therefore, by Lemma 2.11 it can

be assured that every transition t ∈ ‖σ‖ can be fired in the reverse net. Let us denote

σ̂ the firing count vector such that m = m′′ + C · σ̂ with ‖σ̂‖ = ‖σ‖.
Now let us define m′ as a marking reached from m0 at which every transition

t ∈ ‖σ‖ is enabled, m′ = m0 + C · σ′ and σ′ ≤ σ. This is always possible since

‖σ‖ belongs to FS(N ,m0) and so one can fire small amounts of the transitions in

‖σ‖ until every transition in ‖σ‖ is enabled. Let us define σ′′ as σ′′ = σ − σ′ − σ̂,

then m′′ = m′ + C ·σ′′. Notice that since σ′ and σ̂ can be taken as small as wanted

and their supports are contained in the support of σ, it can always be verified that

σ′′ ≥ 0 and ‖σ‖ = ‖σ′′‖. Moreover, Lemma 2.10 can be directly applied on m′ and

σ′′ obtaining that m′′ is reachable from m′. And finally, it can be concluded that m

is reachable from m0.

Figure 2.5 sketches the trajectory built by the proof of Theorem 2.12 to reach m.

m

m’

σ m

m’’
σ

σ ’’

σ’

0

Figure 2.5: Trajectory to reach m with a finite firing sequence.

As an example, let us take the system in Figure 2.6. The marking m =

32 2. Reachability

(0, 0, 0, 0, 1) is solution of the state equation and can be obtained with vectors:

σ1 = (1, 0, 1, 1, 0, 0) and σ2 = (0, 1, 0, 0, 1, 0). Obviously, σ2 fulfills the condi-

tions of Theorem 2.12, and so it can be concluded that m can be reached. However, if

one considers the system that results of removing transitions t2, t5 and the place p4,

then the only possibility to reach m is with σ1 or with σ1+x where x is a T-semiflow.

Notice that the nets Nσ1
and Nσ1+x have an empty trap at m composed of {p2, p3}.

Hence, the third condition of Theorem 2.12 is violated and m cannot be reached with

a finite sequence.

2

PSfrag replacements

p1

p2

p3

p4

p5

t1 t2

t3

t4 t5

t6

Figure 2.6: Marking (0, 0, 0, 0, 1) can be reached with a finite and with an infinite firing

sequence.

2.2.2 Deciding reachability

Based on Theorem 2.12, an algorithm that decides whether a given marking m is

reachable or not is introduced. A necessary condition for m to be reached is that there

must exist a σ ≥ 0 such that m = m0 +C ·σ ≥ 0. Given a marking m the number of

σ ≥ 0 fulfilling the state equation can be infinite. However, as stated in Theorem 2.12,

it is only interesting to consider those σ’s such that ‖σ‖ ∈ FS(N ,m0). Furthermore,

it is not necessary to consider two different σ’s that are solution of the state equation

and have the same support, since clearly one of those σ’s fulfills the condition on the

traps of Theorem 2.12 iff the other one also fulfills it, and the support of one belongs

to FS(N ,m0) iff the other one also belongs to it. This reasoning reduces the number

2.2. RS(N ,m0) 33

of σ’s to be considered to a finite number.

Now let us take into account a set Σ of σ’s that are solution of the state equation,

have different supports and the support of all of them is in FS(N ,m0). To decide

reachability it is only necessary to consider those σ’s with minimal support. This

is because if there is a non minimal σ ∈ Σ fulfilling the condition on the traps of

Theorem 2.12, then its support contains the support of a σ′ ∈ Σ that also fulfills this

condition.

Summing up, to decide reachability it is only necessary to consider the σ’s in a

set Σ = {σ1, . . . ,σk} that fulfills the following conditions:

1. m = m0 + C · σi ≥ 0 and ‖σi‖ ∈ FS(N ,m0)

2. ‖σi‖ is minimal, i.e., for every j 6= i ‖σj‖ 6⊆ ‖σi‖

3. for every γ such that m = m0 + C · γ ≥ 0 and ‖γ‖ ∈ FS(N ,m0) there exists

i ∈ {1, . . . , k} such that ‖σi‖ ⊆ ‖γ‖

The third condition guarantees that every σ that verifies the first two conditions

is included in Σ.

The following algorithm takes as inputs a continuous system, a target marking m,

and a set Σ verifying the above conditions for the target marking. The output of the

algorithm is the boolean variable answer that takes the value YES iff m is reachable.

The general idea of the algorithm is first checking whether all traps are marked at

m, step 2, and whether there is an empty trap at m that was marked at m0, step

3. In these both cases a quick answer to reachability can be given. Otherwise, it is

required to iterate on the elements of Σ.

Algorithm 2.13.

INPUT: 〈N ,m0〉, m, Σ = {σ1, . . . ,σk}
OUTPUT: answer

1. If Σ = ∅ then answer:=NO; exit; end if

2. If there is no empty trap in N at m then answer:=YES; exit; end if

3. If there is an empty trap in N at m that was not empty at m0 then

answer:=NO; exit; end if

4. i:=0

5. loop

5.1. i:=i+1

5.2. If there is no empty trap in Nσi
at m then answer:=YES;

exit; end if

6. until i=k

7. answer:=NO

34 2. Reachability

In [ECS93] a method to compute traps based on the solution of a system of linear

equations was proposed. According to this method the support of a solution of that

system represents the places of a trap. In steps 2 and 5.2 of Algorithm 2.13, the

interest lies only on empty traps at m, therefore only the subnet composed of empty

places at m has to be considered. In step 3, the focus is on the empty traps at m

that were marked at m0. The only thing that has to be included in the system of

inequalities proposed in [ECS93] is forcing that a solution of the system must have at

least one non null component corresponding to a non empty place at m0.

2.3 lim-RS(N ,m0)

As it has been shown, some traps (for example the one composed of p3 and p4 in

the system of Figure 2.1(a)) can be emptied with an infinite firing sequence. Hence

when facing the problem of describing the set of lim-reachable markings, it is not

necessary to exclude those markings that are result of the state equation and that

have empty traps that were previously filled. In this way, the characterization of the

lim-RS(N ,m0) is easier and it is only necessary to care about the fireability of the

firing count vector σ (conditions 1. and 2. of Theorem 2.12).

Theorem 2.14. A marking m ∈ lim-RS(N ,m0) iff

1. m = m0 + C · σ ≥ 0, σ ≥ 0

2. ‖σ‖ ∈ FS(N ,m0)

Proof.

⊆
Let m ∈ lim-RS(N ,m0). Since m is reached by a finite or infinite firing sequence

there must exist a firing count vector, σ ≥ 0, corresponding to this sequence such

that m = m0 + C · σ. If the sequence was fireable then ‖σ‖ ∈ FS(N ,m0).

⊇
Let m be such that m = m0 + C · σ ≥ 0, σ ≥ 0 and ‖σ‖ ∈ FS(N ,m0). From

m0 it is possible to fire sequentially a subset of transitions in ‖σ‖, since it belongs

to FS(N ,m0), reaching marking m′ = m0 + C ·σ′ at which every transition in ‖σ‖
is enabled. Since σ′ can be taken arbitrarily small, it can always fulfill σ − σ′ ≥ 0.

Lemma 2.9 can be applied on the system (N ,m′) and therefore marking m can be

reached in the limit.

According to Theorem 2.14 checking whether a given marking is reachable in the

limit is a decidable problem. For the system in Figure 2.6 without transitions t2, t5 and

place p4 it can can be assured that the marking m = (0, 0, 0, 0, 1) is lim-reachable

(but not reachable) since it is solution of the state equation with σ = (1, 0, 1, 1, 0, 0)

and ‖σ‖ ∈ FS(N ,m0).

2.4. δ-RS(N ,m0) 35

If the system fulfills some initial conditions, then the set lim-RS(N ,m0) can be

described without the use of FS(N ,m0). For example, for a system, 〈N ,m0〉, in

which every transition is enabled at m0, it holds FS(N ,m0) = {q|q ⊆ T} and

therefore every σ ≥ 0 belongs to FS(N ,m0). Furthermore, this condition can be

checked in polynomial time.

Corollary 2.15. If for every transition t enab(t,m0) > 0 then lim-RS(N ,m0) =

LRS(N ,m0).

Let 〈N ,m0〉 be a consistent system in which every transition is fireable at least

once, i.e., for every transition t there exists m′ ∈ RS(N ,m0) such that enab(t,m′) >

0. Clearly T ∈ FS(N ,m0). Since the system is consistent it has a T-semiflow x > 0

that can be added to a given σ, m = m0+C ·σ ≥ 0, fulfilling σ+x > 0. It is obvious

that C · σ = C · (σ + x) and that ‖σ + x‖ = T . Therefore, m is lim-reachable.

Corollary 2.16 ([RTS99]). If (N ,m0) is consistent and every transition is fireable

at least once, then lim-RS(N ,m0) = LRS(N ,m0).

2.4 δ-RS(N ,m0)

Let us now assume that given a system, 〈N ,m0〉, every transition is fireable at

least once. That is for every transition t there exists m ∈ RS(N ,m0) such that

enab(t,m) > 0. The existence of transitions that do not fulfill this condition can be

easily detected (see [RTS99]): It is sufficient to iterate on the enabled transitions fir-

ing them in half its enabling degree until no more transitions become enabled. Those

transitions that are not enabled after the iteration can never be fired. Notice that

this assumption does not imply a loss of generality in the following results, since if

a transition can never be enabled it can be removed without affecting any possible

evolution of the system or changing the set of reachable markings.

In this section the set of markings to which the system can get as close as

desired is described. For example, in Figure 2.4 with m0 = (1, 0, 0, 0, 1),

m = (0, 1, 0, 0, 1) does not belong neither to RS(N ,m0) nor to lim-RS(N ,m0), how-

ever m = (0, 1, 0, α, 1− 2 ·α) belongs to RS(N ,m0) (hence also to lim-RS(N ,m0))

for every α fulfilling 0 < α ≤ 0.5.

For this set of markings, that will be called δ-reachable, there are no spurious

solutions of the state equation.

Theorem 2.17. If every transition is fireable at least once from the initial marking,

then a marking m ∈ δ-RS(N ,m0) iff

1. m = m0 + C · σ ≥ 0, σ ≥ 0

i.e., δ-RS(N ,m0) = LRS(N ,m0).

36 2. Reachability

Proof.

⊆
δ-RS(N ,m0) ⊆ LRS(N ,m0) since LRS(N ,m0) is a closed set that includes the

RS(N ,m0).

⊇
Let m be a solution of the state equation, i.e., m = m0 +C ·σ ≥ 0. Since every tran-

sition is fireable at least once, let us consider a sequence, σ′, that reaches a marking,

m′, at which every transition in the support of σ is enabled. Let us consider the real

quantity α determined by α = min{1,max{β|m′ + C · β · σ ≥ 0}}. Then, according

to Theorem 2.14, the marking m′′ = m′ + C · α · σ is reachable in the limit from

m′. And clearly, it is also reachable in the limit from m0 (m′′ ∈ lim-RS(N ,m0)).

Notice that if |σ′| tends to zero, then the value of α goes to one and m′′ approaches

m. Thus, by firing a finite sequence the system can get as close to m as desired.

Establishing a bridge to discrete systems, it can be said that if the system is highly

populated and it is not necessary to exactly determine the marking at places, then

the system can evolve to any marking that is solution of the state equation.

Summarizing on reachability, the following relationship among the different sets

of reachable markings can be stated. It asserts that the only differences among the

described sets of reachable markings are in the border points of the space defined by

the state equation.

Corollary 2.18. If every transition is fireable then:

1.]LRS(N ,m0)[⊆ RS(N ,m0)⊆ lim-RS(N ,m0)⊆ δ-RS(N ,m0)=LRS(N ,m0).

2. Under consistency of N : lim-RS(N ,m0) = δ-RS(N ,m0) = LRS(N ,m0).

Proof. 1. is a direct consequence of the fact that δ-RS(N ,m0) is the closure of

RS(N ,m0) and lim-RS(N ,m0), and δ-RS(N ,m0) = LRS(N ,m0).

2. is immediate from Corollary 2.16 and Theorem 2.17.

2.5 Conclusions

In continuous nets the concept of “reachable marking” can be interpreted in three

different ways:

a) reachability, a marking can be reached with a finite firing sequence.

b) lim-reachability, a marking can be reached with a finite or with an infinite

firing sequence.

c) δ-reachability, the system can get as close as desired to a marking with a

finite firing sequence.

2.5. Conclusions 37

Each of the three concepts has its own reachability set. These reachability sets can

be fully characterized using, among other elements, the state equation. Moreover, it

is decidable whether a marking is reachable according to each concept. Furthermore,

there is an inclusion relationship among the sets of markings associated to each con-

cept: a ⊆ b ⊆ c. The only differences among these sets are in the border points of

the sets (i.e., the convex hull).

As the level of “exigency” regarding reachability decreases (a is the “strongest”

and c the “weakest”) the characterization of the reachability set becomes progressively

easier. In particular, if every transition is fireable at least once, a very weak condition

because unfireable transitions can be simply removed, the set of the markings in c is

equal to the solutions of the state equation. In other words, for this last case there

exist no spurious solutions of the state equation.

38 2. Reachability

Chapter 3

Liveness in Untimed Systems

Summary

Liveness is a very desirable system property that ensures that any transition can be

eventually fired from any reachable marking. Unfortunately, liveness may not be pre-

served when the discrete model is continuized. Therefore, a detailed study of liveness

in continuous Petri nets is required. In general, liveness analysis of untimed contin-

uous systems is a difficult problem. For mono-T-semiflow systems, the equivalence

between liveness and deadlock-freeness allows a more satisfactory treatment. For mu-

tual lim-reachability and δ-reachability (concepts introduced in Chapter 2) among

markings, i.e., reversibility, a necessary and sufficient condition is provided in terms

of liveness.

39

40 3. Liveness in Untimed Systems

Introduction

The continuization of some Petri net systems may yield a non appropriate continuous

model: some qualitative properties as liveness may not be preserved [RTS99]. Hence,

it becomes interesting to analyze continuous Petri nets in order to establish when

a discrete Petri net allows a “reasonable continuization”, i.e., when it preserves the

properties to be analyzed.

This chapter concentrates on the analysis of liveness on the subclass of mono-

T-semiflow (MTS) Petri nets[JRS02, JRS]. Untimed continuous Petri nets will be

considered throughout this chapter. One important property of discrete (and con-

tinuous) MTS systems is that deadlock-freeness is equivalent to liveness [CCS91],

because all the infinite behaviors are “essentially conformed” by infinite repetition of

sequences having (multiples of) the minimal T-semiflow as the firing count vector.

Even more, for MTS systems, deadlock-freeness of the untimed model leads, for any

arbitrary transition-time semantics (deterministic, exponential, coxian...), to non null

throughput. Thus there exists an interesting one-way bridge from logical or qualita-

tive properties to performance or quantitative properties. This fact will be exploited

in Chapter 4 where a liveness condition for untimed systems is inferred from a liveness

condition for timed systems.

The chapter is structured as follows: In Section 3.1 it is shown that the property

of liveness can be lost by the continuized model. In Section 3.2, the concept of lim-

liveness is introduced as a natural extension of liveness for discrete systems. In that

section, some necessary conditions for lim-liveness in untimed systems are obtained

as well. Section 3.3 establishes a tight relationship between liveness and reversibility.

3.1 No liveness preservation in untimed systems

Due to the integrality relaxation in the firing of transitions, the set of potentially

reachable markings in an untimed continuous system is much larger than the set of

reachable markings if the same system is interpreted as discrete. This fact may have

serious consequences in the property of liveness for continuous net systems.

Figure 3.1 shows examples of untimed MTS systems in which liveness of the dis-

crete model is neither necessary nor sufficient for liveness of the relaxed continuous

approximation [RTS99]. The system in Figure 3.1(a) deadlocks as discrete after the

firing of transition t1. However, it never gets completely blocked as continuous unless

an infinitely long sequence is considered. On the other hand, the system in Fig-

ure 3.1(b) is live as discrete but gets blocked as continuous if transition t2 is fired

in an amount of 0.5. This non-continuizability of discrete net systems, that may be

surprising at first glance, can be easily accepted if one thinks, for example, on the

existence of non-linearizable differential equations systems (for example, due to the

3.2. lim-liveness in untimed systems 41

existence of a chaotic behavior).

2

2

2

2

3

3

PSfrag replacements

p1

p2

t1 t2

(a)

3 2

PSfrag replacements

p1

p2

t1 t2

(b)

Figure 3.1: Two MTS systems which behave in very different ways if seen as discrete or

as continuous.

3.2 lim-liveness in untimed systems

3.2.1 Deadlock-freeness and lim-liveness definition

As shown in Chapter 2, in continuous systems, it may happen that a marking cannot

be reached with a finite firing sequence, but there exists an infinite firing sequence that

converges to that marking. As an example of this phenomenon, let us consider the

system in Figure 3.1(a). The marking m[p1] = 0, m[p2] = 4 cannot be reached with a

finite firing sequence. However, if transition t2 could be fired indefinitely in an amount

equal to its enabling degree, the marking of p1 and p2 would converge to 0 and 4

respectively. According to Chapter 2, m = (0 4) is lim-reachable. At that marking, no

transition can be further fired, i.e., the system deadlocks. In practice, a well designed

system should have no deadlock markings that are reached either with an infinite

firing sequence or with a finite firing sequence. Such deadlock markings represent a

non desirable system behaviour towards which the net system may converge. This

section is devoted to the study of lim-liveness, i.e., liveness according to the lim-

reachability concept.

Definition 3.1. [RTS99] Let 〈N ,m0〉 be a continuous PN system.

• 〈N ,m0〉 lim-deadlocks iff a marking m ∈ lim-RS(N ,m0) exists such that

enab(t,m) = 0 for every transition t.

42 3. Liveness in Untimed Systems

• 〈N ,m0〉 is lim-live iff for any marking m ∈ lim-RS(N ,m0) and for every tran-

sition t there exists m′ ∈ RS(N ,m) such that enab(t,m′) > 0.

• N is structurally lim-live iff ∃ m0 such that 〈N ,m0〉 is lim-live.

The study of lim-liveness is particularly interesting because liveness of a discrete

system is strongly related to lim-liveness of its fluidified version: In [Rec98] it was

shown that if 〈N ,m0〉 is a bounded lim-live continuous system then N is structurally

live as a discrete net.

3.2.2 Conditions for lim-liveness for MTS nets

In MTS systems any subset of transitions, T ′⊆/ T , can be disabled just by firing

(indefinitely) every transition in T ′.

Lemma 3.2. Let N be a MTS net. For every m0 and every T ′⊆/ T a marking

m ∈ lim-RS(N ,m0) exists such that for all t ∈ T ′ enab(t,m) = 0. Moreover, this

marking can be reached firing only transitions in T ′.

Proof. Let f0 = maxt∈T ′{enab(t,m0)}. Let us fire sequentially every transition in

T ′ in an amount equal to its enabling degree (maximum firing amount). This action

yields a new marking m1. Let us recompute f1 = maxt∈T ′{enab(t,m1)}. If after

repeating these steps a finite number of times it is obtained that every t ∈ T ′ is

disabled, then the result is proved. Otherwise the procedure can be repeated without

limit. Let us suppose that lim(fn)n→∞ = k > 0. That would mean that there exists

a repetitive sequence different from the T-semiflow. Contradiction.

Notice that disabling a subset of transitions is not equivalent to killing them, since

they could be enabled if other transitions not contained in the subset of disabled

transitions were fired.

Lemma 3.2 leads to the equivalence between lim-deadlock-freeness and lim-liveness

for continuous systems, something well-known for the discrete case [CCS91].

Property 3.3. A continuous MTS system is lim-live iff it is lim-deadlock-free.

Proof. Assume 〈N ,m0〉 is not lim-live. There is a transition t that cannot be fired

from any successor of a certain reachable marking. The application of Lemma 3.2 on

transitions T − {t} leads to a deadlock.

Suppose that in a given system, 〈N ,m0〉, there is a transition, t, such that for any

reachable marking t is never the only enabled transition. This means that if the rest

of transitions, T − {t}, are disabled at a given marking m, then t is also disabled at

m. Since every transition of the set T −{t} can be disabled in the limit (Lemma 3.2),

it can be inferred that 〈N ,m0〉 is not lim-live.

3.2. lim-liveness in untimed systems 43

Theorem 3.4. Let 〈N ,m0〉 be a lim-live MTS system. For every transition t, ∃ m ∈
lim-RS(N ,m0) such that t is the only enabled transition at m.

Theorem 3.4 establishes a necessary lim-liveness condition that is illustrated in

Figure 3.2. In that system, for every reachable marking in which t2 is enabled either

t3 or t4 is enabled. Hence, t2 is never unavoidably “forced” to fire. Firing several

times t3 and t4 a deadlock is reached.

2

PSfrag replacements
t1 t2 t3 t4

t5

Figure 3.2: A non lim-live system according to Theorem 3.4.

Although the condition given by Theorem 3.4 is in general not easy to check,

a simple structural condition (i.e., applicable independently of the initial marking)

necessary for liveness can be extracted at net level.

Corollary 3.5. Let N be a MTS net. If N is str. lim-live then for every t 6= t′,
•t 6⊆ •t′ (i.e., preconditions of transitions are non comparable)

Proof. If there exist t 6= t′ such that •t ⊆ •t′, for every marking in which t′ is enabled,

t is also enabled. Thus, Theorem 3.4 can be directly applied and non lim-liveness for

an arbitrary initial marking is deduced.

Hence, topological conflicts in which the set of input places of one transition is

contained in the set of input places of other transition must be forbidden if the system

is wanted to be lim-live as untimed. For example in the system in Figure 3.3, for any

reachable marking if t2 is enabled then t1 is also enabled. Firing t2 and t3 in a

long enough sequence a deadlock is reached for any initial marking. Remarkably this

system is live if seen as discrete.

In other words, Corollary 3.5 detects a kind of “structural contradiction” in the

MTS net: on the one hand all the transitions are included in the only repetitive

sequence (the T-semiflow), and on the other hand there exist t 6= t′ such that •t ⊆ •t′,

thus, the net gives the possibility of never firing transition t′. The result of this

contradiction entails a deadlock.

44 3. Liveness in Untimed Systems

2

3

PSfrag replacements

p1 p2

p3 p4

t1 t2

t3

Figure 3.3: A system for which Corollary 3.5 detects non lim-liveness.

In Chapter 4 liveness conditions for timed systems are studied. Some of the

results obtained in that chapter can be applied to untimed systems. In particular,

Section 4.6 shows how Corollary 3.5 can be improved by making use of a necessary

liveness condition for timed systems.

3.3 Reversibility and δ-liveness

Reversibility is a basic property that has to do with mutual reachability among all

markings of the system, or equivalently with the ability to reach the initial marking

from any reachable one. In discrete systems if every transition is fireable at least

once, then reversibility implies liveness and consistency : if a system is reversible,

it can always get back to the initial marking, therefore it is live because from the

initial marking every transition is fireable at least once. Moreover, if a system can

always return to the initial marking after every transition has fired, it means that a

T-semiflow covering every transition has been fired, that is, the system is consistent.

However, liveness and consistency are not sufficient conditions for reversibility in

discrete systems. For example, the system in Figure 3.4 is consistent and live as

discrete, however once t1 has fired it is impossible to get back to the initial marking.

Thus the system is not reversible as discrete.

In continuous systems, assuming that every transition is fireable at least once, it

can be observed that reversibility also implies consistency and liveness. As in discrete

systems, if reachability with finite sequences is considered, liveness and consistency

are not sufficient conditions for reversibility. The system in Figure 2.6 is consistent

and live as continuous considering finite firing sequences. If transition t1 is fired in any

amount, the trap {p2, p3, p4} becomes marked, and cannot be emptied with a finite

firing sequence. Hence, once t1 has fired it is not possible to go back to the initial

marking, and therefore it can be said that the system is not reversible. Nevertheless,

3.3. Reversibility and δ-liveness 45

PSfrag replacements
p1 p2

p3

p4

p5

t1 t2

t3

t4

Figure 3.4: Non reversible system as discrete or continuous with finite number of firings,

but lim-reversible and δ-reversible.

as it will be seen, the system is reversible if lim-reachability and δ-reachability are

considered.

Let us define δ-liveness and lim-(δ-)reversibility as the natural extensions of the

classical definitions for the concepts of lim-reachability and δ-reachability respectively:

Definition 3.6. 〈N ,m0〉 is δ-live iff for every m ∈ δ-RS(N ,m0) and for every

t ∈ T there exists m′ ∈ RS(N ,m) such that enab(t,m′) > 0.

Definition 3.7.〈N ,m0〉 is lim-(δ-)reversible iff for every m ∈ lim-(δ-)RS(N ,m0),

m0 ∈ lim-(δ-)RS(N ,m).

The following theorem states that under lim-reachability and δ-reachability, if

every transition can be fired at least once, consistency and lim-(δ-)liveness are not

only necessary conditions for lim-(δ-)reversibility but also sufficient.

Theorem 3.8. Let 〈N ,m0〉 be such that every transition is fireable at least once.

〈N ,m0〉 is consistent and lim-(δ-)live iff 〈N ,m0〉 is lim-(δ-)reversible.

Proof.

(⇒)

Since the system is consistent and every transition is fireable at least once, it holds by

Corollary 2.18 that lim-RS(N ,m0) = δ-RS(N ,m0) = LRS(N ,m0). Let us consider

the lim-(δ-)reachable marking m, m = m0 + C · σ. It will be seen that m0 is lim-

(δ-)reachable from m. Since the system is lim-(δ-)live, every transition is fireable

from m, and therefore a strictly positive marking, m′ > 0, can be reached, m′ =

m0 + C · (σ + σ′). The net is consistent, hence a T-semiflow, x > 0, exists such that

x − σ − σ′ ≥ 0. By Corollary 2.15, m0 = m′ + C · (x − σ − σ′) is lim-(δ)reachable

from m′.

46 3. Liveness in Untimed Systems

(⇐)

If the system is reversible and every transition can be fired at least once, then it clearly

cannot lim-(δ-)reach a marking in which one transition is not fireable any more. It

would mean that it cannot get back to the initial marking. Moreover, if after the firing

of every transition the system always can return to the initial marking, it means that

it is consistent.

For example, the system in Figure 3.4 is consistent and lim-(δ-)live, therefore

according to Theorem 3.8 it is lim-(δ-)reversible. If from the initial marking t1 is fired

in an amount of 1, the marking (0, 0, 1, 0, 1) is reached. Applying the infinite firing

sequence 1
2 , t4

1
2 t2,

1
2 t3,

1
4 , t4

1
4 t2,

1
4 t3, . . . from (0, 0, 1, 0, 1) the system converge to

the initial marking.

From Theorem 3.8, the following Corollary is immediate:

Corollary 3.9. Let 〈N ,m0〉 be lim-(δ-)live. 〈N ,m0〉 is lim-(δ-)reversible iff N is

consistent.

2

PSfrag replacements

p1 p2p2

p3

t1

t2

t3

t4

Figure 3.5: A lim-(δ-)deadlock-free and not lim-(δ-)live system.

Notice that for non MTS systems, the lim-(δ-)liveness condition in Theorem 3.8

and Corollary 3.9 cannot be relaxed to lim-(δ-)deadlock-freeness, where lim-(δ-)

deadlock-freeness means that the system cannot lim-(δ-)reach a marking in which

no transition is fireable. In other words, as in discrete systems, for non MTS systems

lim-(δ-)deadlock-freeness does not imply lim-(δ-)liveness, even under consistency and

conservativeness. For example, the consistent and conservative system in Figure 3.5 is

lim-(δ-)deadlock-free but not lim-(δ-)live: transitions t3 and t4 are potentially fireable

from any lim-(δ-)reachable marking, but once t1 is fired in an amount of 1, neither t1
nor t2 will ever be fireable.

3.4. Conclusions 47

3.4 Conclusions

Continuous Petri nets can be used to overcome the state explosion problem of highly

populated discrete systems. Unfortunately, not every discrete system can be suitably

continuized if the property of liveness is wanted to be preserved by the continuized

system. In this chapter liveness has been studied in the framework of untimed con-

tinuous MTS systems, i.e., systems that are consistent, conservative and have only

one T-semiflow.

Since MTS systems have only one repetitive sequence, lim-deadlock-freeness be-

comes equivalent to lim-liveness. From an untimed point of view, that is, without time

interpretation, necessary structural lim-liveness conditions have been obtained. For

MTS systems these conditions are more accurate than the one established by the rank

Theorem [RTS98]. It is remarkable that those conditions (Theorem 3.4, Corollary 3.5)

are stated on topological features of the net, hence disregarding the arc weights. This

is a logical consequence of the continuous firing of transitions: The arc weights have

an influence on the amount in which one transition is enabled (enabling degree) but

deciding whether a transition is enabled or not does not depend on the value of its

input arc weights. The last section of the chapter provides a necessary and sufficient

condition for reversibility with respect to lim-reachability and δ-reachability.

48 3. Liveness in Untimed Systems

Chapter 4

Liveness in Timed Systems

Summary

The previous chapter was devoted to the study of liveness on untimed net systems.

The present chapter faces the same study on timed net systems. The framework of the

study is given again by the class of mono-T-semiflow (MTS) systems. For the timed

interpretation infinite servers semantics will be used as described in Chapter 1. As for

untimed systems, in MTS timed systems it holds that deadlock-freeness is equivalent

to liveness. A timed system is said to be live if the flow of its transitions is positive at

the steady state. The concepts of critical-liveness and robust liveness are introduced.

Critical-liveness stands for those systems that are live but a slight variation of their

firing rates (internal speeds of transitions) can turn them into non live. On the other

hand, robust-liveness applies to those systems that can be live for any value of their

firing rates. The use of robust-liveness allows one to establish a connection between

deadlock-freeness for untimed and timed systems.

49

50 4. Liveness in Timed Systems

Introduction

As for untimed net systems, liveness is a very desirable property for timed net systems.

A first order approximation of the timed discrete systems is taken to introduce time in

continuous Petri nets. Infinite servers semantics is considered in this chapter to define

the flow through transitions. This way, a timed continuous Petri net system can be

seen as a particular case of piecewise linear system (see Chapter 1 for details). The

goal of this chapter is the study of liveness in timed continuous MTS Petri nets. The

obtained results apply to any timed MTS Petri net that evolves through a transient

state and reaches a steady state in which the marking of places and the flow through

transitions are constant.

A timed system is said to be live when the flow of all its transitions is strictly

positive at the steady state[JRS02, JRS]. In a similar way to untimed systems, in

MTS timed systems deadlock-freeness is equivalent to liveness. Thus, in the steady

state either all transitions have positive flow or all transitions have null flow. A

timed net is the junction of a Petri net and a set of parameters, the firing rates of

the transitions (λ according to Chapter 1). Timed structural liveness is a property

that holds for those “timed nets” for which an initial marking exists such that the

system is live. Clearly, structural liveness is a necessary condition for liveness. The

set of firing rates that makes a given net structurally live strongly depends on the net

structure. This chapter shows how to compute the set of firing rates that makes a net

structurally live. Such a set is denoted as Λ. If the firing rate of a net is a border point

of its Λ, then the system is said to be critically live: Any small variation of its firing

rates may cause the system to become non structurally live. The opposite concept to

critical liveness is robust liveness. A net is robust live when it is structurally live for

any firing rate.

Notice that if a timed system evolves to a deadlock, then the same system seen

as untimed could be driven to a deadlock by following the same evolution. This fact

implies that (structural) liveness of the timed system is a necessary condition for

(structural) liveness of the untimed system. This relationship between untimed and

timed systems allows one to improve some necessary liveness conditions obtained in

the previous chapter.

Section 4.1 shows that liveness of a given timed discrete system is in general

not preserved by the timed continuous system. This phenomenon already appeared

when considering untimed systems (see Chapter 3). Deadlock-freeness and liveness

in timed systems are defined and some results are given in Section 4.2. Structural

liveness is studied in detail in Section 4.3. The concepts of critical liveness and robust

liveness are developed in Section 4.4 and Section 4.5 respectively. Section 4.6 derives

a necessary condition for liveness of untimed systems from the results obtained for

timed systems.

4.1. No liveness preservation in timed systems 51

4.1 No liveness preservation in timed systems

As an example of the “mismatches” among properties of timed models, it can be

pointed out that the addition of the infinite servers semantics time interpretation

may allow the timed continuous model to have infinite behavior (deadlock-freeness),

while a “similar” timing in the discrete system leads to a deadlock. Looking at the

system in Figure 4.1(a) as continuous with λ[t1] = λ[t2], it can be checked that it is

live and the flow through transitions t1 and t2 is always the same. However, if one

looks at the system as discrete and considers a classical markovian time interpretation,

the stochastic system will arrive to a deadlock marking with probability “1” (this is

a particular case of the classical “gambler’s ruin problem”). If λ[t1] = λ[t2] the mean

time for deadlock is a quadratic function of k (see [SR02] for more details).

k

2

PSfrag replacements

p1

p2 p3

t1 t2

t3
t4

(a)

k k

PSfrag replacements

p1

p2

p3

t1

t2 t3 t4

(b)

Figure 4.1: Timed systems whose discrete behaviour is different from the continuous one.

Liveness of a transition can also be affected when considering a system as discrete

or as continuous. Figure 4.1(b) shows a non-MTS system (it is consistent and conser-

vative, but has two T-semiflows), that considered as discrete is live (thus deadlock-

free), but for which a deterministic timing of transitions with t4 faster than t2 (i.e.,

θ4 < θ2) makes t3 non-live (in fact, it starves). Nevertheless, considering the model

as continuous, it is live both for the untimed and the timed interpretations.

4.2 Deadlock-freeness and liveness in timed systems

In order to define deadlock-freeness and liveness of timed net systems the flow of

the transitions in the steady state is considered. Observe that in the steady state

52 4. Liveness in Timed Systems

ṁ(τ) = 0, and so, from the state equation, C · fss = 0 where fss is the flow vector

of the timed system in the steady state, fss = limτ→∞ f(τ). Since fss ≥ 0, the flow

in the steady state is proportional to the minimal T-semiflow. The marking at the

steady state will be denoted as mss.

Definition 4.1. Let 〈N ,λ,m0〉 be a timed continuous PN system.

• 〈N ,λ,m0〉 is timed-deadlock-free iff fss(N ,λ,m0) 6= 0

• 〈N ,λ,m0〉 is timed-live iff fss(N ,λ,m0) > 0

• 〈N ,λ〉 is str. timed-deadlock-free iff there exists m0 such that fss(N ,λ,m0) 6= 0

• 〈N ,λ〉 is str. timed-live iff there exists m0 such that fss(N ,λ,m0) > 0

As in untimed nets, str. timed-deadlock-freeness is a necessary condition for timed-

liveness: If a timed MTS system is not timed-live (timed-deadlock-free), it can be

concluded that, seen as untimed, the system is non lim-live (lim-deadlock-free) since

the evolution of the timed system just gives a particular trajectory, i.e., a firing se-

quence, that can be fired in the untimed system. Therefore lim-liveness (lim-deadlock-

freeness) is a sufficient condition for timed-liveness (timed-deadlock-freeness). The

reverse is not true (Figure 4.1(a) for λ[t1] = λ[t2]). Analogously, str. lim-liveness is

a sufficient condition for str. timed-liveness. Relationships among liveness definitions

are depicted in Figure 4.2.

by definition

by definition

autonomous

timed

behavioral structural

lim-liveness

timed-liveness

str. lim-liveness

str. timed-liveness

Figure 4.2: Relationships among liveness definitions for continuous MTS models.

Notice that in the steady state the flow through transitions of a MTS system,

fss, is proportional to the only T-semiflow of the net, or equivalently to a normalized

vector of visit ratios, v(1) where v(1)[t1] = 1. Hence, the marking in the steady state,

that will be denoted as mss, verifies:

∀ t λ[t] · min
p∈•t

{
mss[p]

Pre[p, t]

}
= fss[t] = k · v(1)[t] (4.1)

Clearly, a MTS system under infinite servers semantics, 〈N ,λ,m0〉, is timed-live

iff k > 0.

4.3. Structural timed-liveness 53

4.3 Structural timed-liveness

The vector of firing speeds λ plays a crucial role in the evolution to the steady state.

As the system in Figure 4.1(a) shows, even str. non-lim-live systems can be saved from

deadlocking by choosing an adequate λ. It can be seen that for any strictly positive

initial marking it is always possible to find a λ that makes the system timed-live. One

idea is to chose a λ that avoids any transient state, thus making the initial marking

equal to the marking in the steady state and therefore avoiding a deadlock.

Proposition 4.2. Given a MTS net, N , for every initial marking m0 > 0, there

exists λ such that 〈N ,λ,m0〉 is timed-live.

Proof. Let us define λ[ti] = v
(1)[ti]

enab(ti,m0) where v(1) is the vector of visit ratios

normalized for t1. Since f [ti](τ = 0) = λ[ti] · enab(ti,m0) it is immediate to verify

that f(τ = 0) = v(1) = fss > 0

For example, the continuous system in Figure 4.3 is not lim-live as untimed. How-

ever, defining λ = (1 1 λ3) the timed version never deadlocks.

2

PSfrag replacements p1 p2 p3

p4 p5

t1 t2

t3

Figure 4.3: A non lim-live untimed system that never deadlocks as timed with λ = (1 1 λ3).

Another interesting problem is to determine which continuous timed-nets are

str. timed-live (i.e., given 〈N ,λ〉, ∃ m0 such that fss(N ,λ,m0) > 0?).

Proposition 4.3. 〈N ,λ〉 is str. timed-live iff m defined as

m[p] = max
t∈p•

{
Pre[p, t] · v(1)[t]

λ[t]

}

is a steady state marking for 〈N ,λ〉.

Proof.

(⇐)

If m is a steady state marking, then fss = v(1) and 〈N ,λ〉 is str. timed-live.

54 4. Liveness in Timed Systems

(⇒)

There exists m0 such that fss[t1](N ,λ,m0) = k > 0. Let mss be the steady state

marking associated to m0. Let us define µ = mss

k . Clearly fss[t1](N ,λ,µ) = 1. Then,

∀ p µ[p] ≥ maxt∈p•{Pre[p,t]·v(1)[t]
λ[t]

}. The components of µ being strictly greater can be

made equal without modifying fss and the result is m, as defined in the statement.

Let us apply Proposition 4.3 to the net in Figure 3.3 with λ = (4 1 1). The vector

of visit ratios of the net is v(1) = 1, and so the marking defined by the statement of

Proposition 4.3 is m = (1 1 1 1). This marking is not a steady state marking since

it does not verify Equation (4.1). Therefore, the timed net with λ = (4 1 1) is not

str. timed-live.

4.3.1 Characterization of the ΛN set

Given N , an essential problem lies in determining the set of firing speed vectors for

which 〈N ,λ〉 is str. timed-live. In other words, the goal is to compute a set defined

as follows:

Definition 4.4. ΛN = {λ | 〈N ,λ〉 is str. timed-live }.
It has been seen that if N is str. lim-live then for any λ, 〈N ,λ〉 is str. timed-live

(recall Figure 4.2). Hence for str. lim-live nets ΛN will be equal to all positive real

vectors (ΛN = (IR+)|T |).

Let us show that the computation of ΛN can be simplified by considering sepa-

rately each coupled conflict set.

Let us suppose that N has q coupled conflict sets, CCS1 . . . CCSq with |CCS1| =

n1, . . . , |CCSq| = nq, |•CCS1| = s1, . . . , |•CCSq| = sq, and that transitions and

places are sorted according to the coupled conflict they belong to: t1,1 . . . t1,n1
,

. . . , tq,1 . . . tq,nq
and p1,1 . . . p1,s1

, . . . , pq,1 . . . pq,sq
. Let us define ΛCCSj

as a set of

vectors associated to the coupled conflict set CCSj in the following way:

Definition 4.5. ΛCCSj
= {λj | λj ∈ (IR+)nj and ∃ m ∈ (IR+)sj such that ∀ t ∈

CCSj v(1)[t] = λj [t] · enab(t,m)}
The following Theorem states that ΛN can be expressed as the cartesian product

of all the ΛCCS of the net.

Theorem 4.6. ΛN = {(λ1,1, . . . , λq,nq
) | (λi,1, . . . , λi,ni

) ∈ ΛCCSi
}

Proof.

• ΛN ⊆ {(λ1,1, . . . , λq,nq
) | (λi,1, . . . , λi,ni

) ∈ ΛCCSi
}

If λ ∈ ΛN , there exists m0 such that fss[t1](N ,λ,m0) = l > 0. Let mss be

its associated steady state marking. Then ∀ i = 1 . . . q, λi = {λi,1 . . . λi,ni
} ∈

ΛCCSi
with mi,j =

mssi,j

l .

4.3. Structural timed-liveness 55

• ΛN ⊇ {(λ1,1, . . . , λq,nq
) | (λi,1, . . . , λi,ni

) ∈ ΛCCSi
}

If λ ∈ {(λ1,1, . . . , λq,nq
) | (λi,1, . . . ,λi,ni

) ∈ ΛCCSi
} with the marking

m1,1 . . . m1,s1
, m2,1 . . . m2,s2

, mq,1 . . . mq,sq
, then using this marking as m0,

one has fss(N ,λ,m0) = v(1) > 0. Therefore λ ∈ ΛN

According to Proposition 4.2, for every positive initial marking, m0, if λ is ade-

quately chosen, the system reaches a non-dead steady state. In fact the initial marking

is also the marking at the steady state. Clearly, in that case λ ∈ ΛN . In the proof

of Proposition 4.2 λ[i] is computed just by dividing the visit ratio of ti by its enabling

degree at m0. If this operation is executed on every positive marking one obtains

all the λ vectors contained in ΛN , since all positive markings represent all possible

steady states. The result of applying this reasoning to a CCS yields the following

expression for ΛCCS .

Proposition 4.7. Let CCS be a coupled conflict set such that |CCS| = n and

|•CCS| = s. Then:

ΛCCS = {λ|λ[ti] = v(1)[ti] · max
pj∈•ti

{αj · Pre[pj , ti]},α ∈ (IR+)s}

Proof. Let m > 0, for every ti ∈ CCS. Let us define λ as λ[ti] = v
(1)[ti]

enab(ti,m) .

Using Proposition 4.2 it is known that λ ∈ ΛCCS . One can rewrite λ as λ[ti] =
v[ti]

minpj∈•ti
{

m[pj]

Pre[pj,ti]
}

= v[ti] · maxpj∈•ti
{Pre[pj ,ti]

m[pj]
}. Defining αj = 1

m[pj]
one obtains

λ[ti] = v(1)[ti] · maxpj∈•ti
{αj · Pre[pj , ti]} with α ∈ (IR+)s

Let us consider the net depicted in Figure 3.3. Its vector of visit ratios is v(1) =

(1 1 1) and it has two CCSs: CCSt1,t2 and CCSt3 . Applying Proposition 4.7 the fol-

lowing sets are computed: ΛCCSt1,t2
= {(λ1,λ2)|λ1 = α1,λ2 = max{α1 ·2, α2}, α1 >

0, α2 > 0} = {(λ1,λ2)|λ2 ≥ 2 · λ1 > 0} and ΛCCSt3
= {(λ3)|λ3 = α3, α3 > 0}.

A direct application of Theorem 4.6 on these sets allows one to obtain the set

ΛN = {(λ1,λ2,λ3)|λ2 ≥ 2 · λ1 > 0,λ3 > 0}, i.e., the set of firing speeds for which

the system allows a non dead steady state.

4.3.2 Restrictive places

The expression in Proposition 4.7 describes the set of internal speeds of the transitions

in a CCS that have to be considered in order to avoid the system to deadlock. That is,

if the internal speeds of the transitions are in ΛCCS , there exists a marking at which

the transitions are fired proportionally to the vector of visit ratios. This means that

at that marking every transition is adequately enabled by at least one of its input

places.

56 4. Liveness in Timed Systems

Definition 4.8. Given a steady state marking, m, a place p is said to be a restrictive

place for its output transition t if the enabling degree of t at m is defined by the

marking of p, i.e., enab(t,m) = m[p]/Pre[p, t].

For a given 〈N ,λ〉, it turns out that in the steady state a place can be restrictive

only for some of its output transitions. The set of transitions for which a place can

be restrictive depends on the structure of the net and on the internal speeds of the

transitions. This fact can be interpreted in the following way: in the steady state

every transition is “demanding” a minimum quantity of marking to their input places

in order to have a positive throughput. From another point of view, this means

that places have to supply enough fluid to their output transitions. Hence, in the

steady state, a place can be restrictive only for the output transition(s) that is(are)

demanding the greatest amount of fluid.

Let us assume that the system 〈N ,λ,m0〉 reaches a steady state at which the

throughput is fss. Thus, the marking of a given place p has to be big enough to allow

its output transitions to fire according to fss. Considering all the output transitions

of a place p, its marking in the steady state, mss[p], has to fulfill:

mss[p] ≥ max
ti∈p•

{
Pre[p, ti]

λi
· fss[ti]

}
(4.2)

This equation can be directly obtained from Equation (4.1). Given a place p,

Equation (4.2) allows one to compute which of its output transitions is demanding the

greatest marking in the steady state. And so, it is possible to deduce the transition(s)

for which the place p can be restrictive. Since only MTS systems are being considered,

fss is proportional to the only T-semiflow of the system. Therefore, taking into

account Equation (4.2), the computation of the transition(s) for which a place p can

be restrictive only depends on the T-semiflow of the system and on the vector of

internal speeds λ, i.e., it does not depend on the initial marking.

Proposition 4.9. The set of transitions for which a place p can be restrictive is given

by:

{
tj ∈ p• | Pre[p, tj]

λj
· v(1)[tj] = max

ti∈p•

{
Pre[p, ti]

λi
· v(1)[ti]

}}
(4.3)

where v(1) is the vector of visit ratios normalized for transition t1.

According to Proposition 4.9, a place p can be restrictive for more than one tran-

sition only in the case that several of its output transitions are demanding exactly the

same marking to place p. Notice that every transition has an input restrictive place.

However not every place has to be a restrictive place for one of its output transitions.

4.3. Structural timed-liveness 57

Let us assume that given a 〈N ,λ〉 the only possible restrictive place for a transition

t is the place p. Thus, in a non dead steady state, place p has the responsibility of

adequately enabling transition t. The task of enabling transition t will be impossible

for place p if it is an implicit place [RTS98]. Therefore, if the system is desired to

reach a non dead steady state, it must be avoided that the set of restrictive places of

a transition is implicit.

In order to illustrate these reasonings, let us consider a CCS composed of two

places and two transitions whose normalized visit ratios are v1 and v2, see Fig-

ure 4.4(a). According to Proposition 4.7, the ΛCCS associated to that CCS is

ΛCCS = (λ1, λ2) = {(v1 · max{α1 · a, α2 · c},v2 · max{α1 · b, α2 · d}) | α ∈ (IR+)2}.
Through some algebraic operations it can be seen that the region in the two di-

mensional plane associated to this ΛCCS can be written as: ΛCCS = (λ1, λ2) =

{β1 · (v1 · a,v2 · b) + β2 · (v1 · c,v2 · d) | β ∈ (IR+)2}. That is, the set ΛCCS can be

seen as a two dimensional cone.

Let us assume, without loss of generality, that
d

c
≥ b

a
. The slopes of the upper

and lower edges of the cone are
d

c
and

b

a
respectively. Figure 4.4(b) depicts the region

associated to ΛCCS .

da cb

PSfrag replacements

p1 p2

t1 t2

λ1

λ2

v1 v2β2 · (v1 · c,v2 · d)

β1 · (v1 · a,v2 · b)

(a)

PSfrag replacements

p1

p2

t1
t2

λ1

λ2

v1

v2

β2 · (v1 · c,v2 · d)

β1 · (v1 · a,v2 · b)

(b)

Figure 4.4: (a) A simple CCS. (b) The ΛCCS set associated to the CCS assuming
d

c
≥

b

a
.

Only those speeds, (λ1, λ2), in the cone allow a non dead steady state. Assuming

that this CCS is part of a MTS, 〈N ,λ,m0〉, and that a non dead steady state is

reached, the following results based on Equation 4.3 hold:

• If (λ1, λ2) is not a border point of the cone ΛCCS , then p1 is the restrictive

place of t1 and p2 is the restrictive place of t2. Therefore, if any of the places is

58 4. Liveness in Timed Systems

implicit the system will deadlock.

• If (λ1, λ2) is a point in the upper edge of the cone then p1 is restrictive for t1

and p2 is restrictive for both transitions. If the system is wanted to reach a non

dead steady state it is necessary that place p2 is not implicit.

• If (λ1, λ2) is a point in the lower edge of the cone then p1 is restrictive for both

transitions and p2 is restrictive for t2. In this case if p1 is implicit the system

will deadlock.

Its not difficult to extend the previous results to a more complex CCS consisting of

several input places and two transitions. The CCS in Figure 4.5(a) has 4 input places

and two transitions. The region containing the set ΛCCS has the shape of a cone. See

Figure 4.5(b) for the representation of ΛCCS assuming that
q42

q41
≥ q32

q31
≥ q22

q21
≥ q12

q11
.

PSfrag replacements

p1 p2 p3 p4

t1 t2

λ1

λ2

v1 v2

q11 q12

q21 q22 q31 q32
q41 q42

β4 · (v1 · q41,v2 · q42)

β3 · (v1 · q31,v2 · q32)

β2 · (v1 · q21,v2 · q22)

β1 · (v1 · q11,v2 · q12)

(a)

B
A

C

PSfrag replacements

p1

p2

p3

p4

t1
t2

λ1

λ2

v1

v2

q11

q12

q21

q22

q31

q32

q41

q42

β4 · (v1 · q41,v2 · q42)
β3 · (v1 · q31,v2 · q32)

β2 · (v1 · q21,v2 · q22)

β1 · (v1 · q11,v2 · q12)

(b)

Figure 4.5: (a) A CCS with four places and two transitions. (b) The ΛCCS set associated

to the CCS assuming that q42/q41 ≥ q32/q31 ≥ q22/q21 ≥ q12/q11.

Three cones can be distinguished in the interior of ΛCCS . The set of restrictive

places depends on the cone to which (λ1, λ2) belongs. If (λ1, λ2) belongs to the cone

A, the possible restrictive places for t1 are p1, p2, p3 and for t2 the only possible

restrictive place is p4. Hence, in this case if p4 is implicit the system will deadlock.

A deadlock will also be reached if p1, p2 and p3 are implicit. For a (λ1, λ2) in the

cone B, the restrictive places for transition t1 are p1 and p2, and for transition t2 the

restrictive places are p3 and p4. If (λ1, λ2) is in cone C, the only restrictive place for

transition t1 is p1 and the possible restrictive places for transition t2 are p2, p3 and

p4. Finally, notice that in the edges of the cones it turns out that a single place can

be restrictive for both transitions. For example for a (λ1, λ2) in the upper edge of the

cone, place p4 is restrictive for both transitions.

4.4. Critical timed-liveness 59

4.4 Critical timed-liveness

It has been seen that those λ vectors not included in ΛN do not allow a MTS system

to reach a steady state with throughput greater than zero. Although ΛN is never an

empty set (for every positive initial marking there exists λ ∈ ΛN , Proposition 4.2),

its “size” can be much smaller than desired. For example it is not desirable to use a

vector of ΛN such that a minimum change in one of its components puts the vector

out of ΛN . It would mean that a small variation in the firing speed of one transition

can kill the system. Hence, a new concept is needed to define whether a system can

be “robust enough” to bear irregularities and variations happening in the real world.

Definition 4.10. (N ,λ) is critically str. timed-live iff λ is a border point of ΛN

In some cases the net structure can reduce dramatically the dimension of ΛN . For

every coupled conflict with n transitions ΛCCS is contained in (IR+)|n|. Therefore the

maximum dimension that a given region of the ΛCCS set can have is n. Apart from

this constraint, the effective dimension of ΛCCS is also limited by the number of input

places of the coupled conflict set, since ΛCCS is generated by as many independent

variables as input places (see Proposition 4.7). Therefore, the following Proposition

holds:

Proposition 4.11. Given a coupled conflict set CCS, the maximum dimension of

any region of ΛCCS is bounded by the number of transitions in the CCS, |CCS|, and

the number of input places of the CCS, |•CCS|.

Since ΛN is the cartesian product of all the ΛCCS of the net (Theorem 4.6),

if the net has a coupled conflict set CCS with less input places than transitions

(|•CCS| < |CCS|), every region in ΛN will have a smaller dimension than the number

of transition of the net. That is, every point in ΛN will be a border point. From this

reasoning, Proposition 4.12 is derived.

Proposition 4.12. Given a net N , if there exists a CCS such that |•CCS| < |CCS|
then for every λ ∈ ΛN (N ,λ) is critically str. timed-live.

For example, the CCS composed of {t1, t2} in Figure 4.1(a) has only one input

place, p1. Hence, if λ 6∈ ΛN then for every initial marking the system will finally

deadlock, and if λ ∈ ΛN then (N ,λ) is critically str. timed-live.

The above means that in practice, all the coupled conflicts sets should have at

least as many input places as transitions, otherwise the system will die or will remain

in a critical timed-live state.

60 4. Liveness in Timed Systems

4.5 Robust timed-liveness

Going on with critical str. timed-liveness, one could ask which features should be

required to a system in order to be “robust”, i.e., arbitrary variations in λ > 0 do

not cause λ to be out of ΛN . In other words, the interest lies on those net structures

that for any λ allow a non-dead steady state.

A place p is said to be choice-free (CF) iff |p•| = 1, i.e., p has a single output

transition. It will be said that a transition owns its (input) CF places.

Theorem 4.13. Let N be a MTS net, ∀ λ > 0 〈N ,λ〉 is str. timed-live iff every

transition owns at least one CF place.

Proof.

(⇐)

Let λ ∈ (IR+)|T |. Let P ′ = {p1, . . . , pk} be a minimal set of CF places such that

(P ′)
•

= T . For every pi ∈ P ′ let ti = pi
• , and define m[pi] =

Pre[pj ,ti]·v
(1)[ti]

λ[ti]
if

pi ∈ P ′, and m[pi] = maxtj∈pi
•{Pre[pi,tj]·v

(1)[tj]
λ[tj]

} otherwise. One has that for every

ti ∈ T λ[ti] ·minpj∈ •ti
{ m[pj]

Pre[pj ,ti]
} = v(1)[ti]. Therefore m is a steady state marking.

(⇒)

Let ΛN = (IR+)|T | and assume ∃ t1 without CF places. Then ∀ p ∈ •t1 |p•| > 1.

Let {t1, . . . , tk} = (•t1)
• ⊆ CCS(t1). According to Theorem 4.6 ΛN is the

product of ΛCCS(ti), so ΛCCS(t1) = (IR+)|CCS(t1)|. Applying Proposition 4.7,

for any λ ∈ ΛCCS(t1), a certain α ∈ (IR+)|
•CCS(t1)| exists verifying λ[ti] =

v(1)[ti] · max{pj∈ •ti}{αj · Pre[pj , ti]} for every 1 ≤ i ≤ k. Therefore, λ[t1] =

v(1)[t1] · αh · Pre[ph, t1] for a certain ph ∈ •t1. Since |ph
•| > 1, another transition

tj ∈ {t2, . . . , tk} exists such that tj ∈ ph
•, and so λ[tj] ≥ v(1)[tj] · αh · Pre[ph, tj].

Hence, λ[t1]
v(1)[t1]·Pre[ph,t1]

= αh ≤ λ[tj]

v(1)[tj]·Pre[ph,tj]
≤ max{j∈{2...k}}

{
λ[tj]

v(1)[tj]·Pre[ph,tj]

}
.

Therefore, λ[t1] ≤ v(1)[t1] · Pre[ph, t1] · max{j∈{2...k}}

{
λ[tj]

v(1)[tj]·Pre[ph,tj]

}
. That is,

λ[t1] is bounded by a value that depends on λ[t2], . . . ,λ[tk]. Contradiction.

From a different point of view, Theorem 4.13 states that the transitions can be

enabled independently iff every transition owns a CF place. Observe that this condi-

tion does not guarantee that the system will always reach a non-dead steady state for

every initial marking. For example in Figure 4.3, every transition owns a CF place

(and it is not a CF net). However, with that initial marking, choosing λ = (2 1 1) the

system cannot reach a live steady state. This happens because the enabling degree of

t1 and t2 is always the same, since p1 and p3 are implicit places [RTS98], so they can

be removed without changing the possible behaviors (trajectories for the timed case)

of the system. From Theorem 4.13 it can be inferred that for those nets that have a

4.6. Coming back to structural liveness in untimed systems 61

transition without CF places there exists a λ for which the timed system deadlocks

independently of the initial marking. Transitions {t1, t2, t3} in Figure 4.6 do not own

CF places. For λ = (1 1 2 1 1 1), λ 6∈ ΛN , the system will evolve to a deadlock, no

matter which the initial marking is.

PSfrag replacements

p1 p2 p3

p4 p5 p6

t1 t2 t3

t4 t5 t6

Figure 4.6: Transitions t1, t2 and t3 do not own CF places. For λ = (1 1 2 1 1 1) no steady

state with positive throughput is possible.

4.6 Coming back to structural liveness in untimed

systems

According to Theorem 4.13, if N has a transition without CF places, a λ exists such

that 〈N ,λ〉 is not str. timed-live. Therefore N is not str. lim-live, since str. timed-

liveness is a necessary condition for str. lim-liveness.

Theorem 4.14. Let N be a MTS net. If N is str. lim-live then every transition owns

at least one CF place.

The system shown in Figure 4.6 is not lim-live according to Theorem 4.14, since

there are three transitions, t1, t2 and t3 that do not own a CF place. In this case, the

firing of a sequence that corresponds to vector σ = (0 1 0 0 1 0) leads to marking m =

(0 2 0 0 0 0), where the system lim-deadlocks. Notice that in consistent continuous

systems in which every transition can be fired at least once, there do not exist spurious

solutions of the state equation (Chapter 2), hence a sequence can be fired that reaches

marking m.

62 4. Liveness in Timed Systems

Transition t does not own a CF place iff all the input places of t are contained

in the set of input places of the rest of the transitions. Thus, Theorem 4.14 can be

rewritten as: If N is str. lim-live then for every t, •t 6⊆ •(T\{t}). Notice the similarity

of this statement to that of Corollary 3.5. In fact, Theorem 4.14 and Corollary 3.5

express exactly the same condition if all the coupled conflict sets of the net have at

most two transitions, but in general Theorem 4.14 has a greater decision power.

4.7 Conclusions

Liveness of timed systems is a very interesting property asking for positive flow

through all transitions in the steady state. Liveness of a net system depends on

its structure, the firing rates of its transitions and its initial marking. In general, all

three elements have to be considered to evaluate the liveness of a given timed system.

As in untimed systems structural lim-liveness can been defined for timed systems.

For such systems it is possible to obtain a necessary and sufficient condition for

structural timed liveness (Proposition 4.3). A new concept, critical timed-liveness,

has been introduced in this chapter. A critical timed-live system can reach a live

steady state, however any little variation in one of its firing speeds will cause the

system to deadlock. The set of firing speeds that allow the system to reach non–dead

steady states has been characterized. In contrast to critical liveness, a system is said

to be robust live iff it is structurally live for any firing speeds of its transitions. It has

been obtained that a system is robust live iff every transition t owns at least one CF

place, i.e., an input place whose only output transition is t.

The existing relationships between lim-liveness of untimed systems and liveness

of timed systems allows one to apply some results obtained for timed systems (Theo-

rem 4.13) to untimed systems (Theorem 4.14). Thus, improving some previous results

(Corollary 3.5) for untimed systems.

Chapter 5

Steady State Performance

Evaluation

Summary

A common way to measure the performance of a system is to compute its throughput.

Coarsely speaking the throughput is the number of times a given action is executed

per time unit. Thus, the greater the throughput the better the performance of the

system. It is shown that, in general, the throughput of a continuous Petri net is

not an upper bound for the throughput of the same system seen as discrete. It is

also remarkable that the throughput of a continuous net system, in general, does not

fulfill any monotonicity property. This chapter mainly focuses on the computation

of throughput bounds for mono-T-semiflow continuous Petri net systems. For that

purpose, a Branch & Bound algorithm is designed. The constraints of that algorithm

can be relaxed in order to obtain a linear programming problem. The conditions

under which the system always reaches the computed bounds are extracted. The

results related to the computation of the bounds can be directly applied to a larger

class of nets called mono-T-semiflow reducible.

63

64 5. Steady State Performance Evaluation

Introduction

Since continuization implies removing a constraint (the integrality of the firing), it

could be thought that in timed systems the throughput of the continuous system is

an upper bound of the same system seen as discrete. However, this is not always the

case [SR04]. The main goal of this chapter is to study the throughput bounds for the

subclass of mono-T-semiflow (MTS) Petri nets (PN) [RJS02, JRS04].

For the timing interpretation in transitions, a semantics of infinite servers will be

used [SR02]. Under this firing semantics the continuous Petri net system behaves as

a piecewise linear system [Son81]. The throughput bounds refer to the behaviour of

the system in the steady state, i.e., when its marking and flow through transitions

are constant. There exist some constraints that have to be verified by the marking of

the system at the steady state. These constraints are inferred from the fundamental

state equation and the definition of flow of a transition under infinite servers seman-

tics. Since the flow of a transition is proportional to its enabling degree, a minimum

operator appears in the constraints. A way to deal with such minimum operator is to

design a Branch & Bound algorithm. Unfortunately the complexity of the algorithm

in the worst case is exponential with respect to the number of places. However, the

constraints containing the minimum operator can be relaxed and substituted by a set

of inequalities. The use of these inequalities allows one to obtain a linear program-

ming problem to compute throughput bounds. Clearly, there are cases in which the

bounds computed by the linear programming problem are less accurate than those

computed by the Branch & Bound algorithm.

The computation of bounds by the linear programming problem can be seen as a

search for a bottleneck in the net system. The bottleneck is represented by the slowest

P-semiflow in the system. It is possible to establish the conditions under which the

system can reach this kind of bounds. Furthermore, if the system fulfils some given

conditions the bound will be reached for sure.

The structure of the chapter is the following: In Section 5.1 some interest-

ing/unexpected behaviours related to the throughput of continuous systems are pre-

sented. These behaviours show that the throughput of a discrete system is not neces-

sarily upper bounded by the throughput of its relaxed continuous system. Some non

monotonic behaviours of the throughput of a continuous net system are illustrated

through examples. In Section 5.2, some techniques to compute throughput bounds

are described and applied to a manufacturing example. First, an algorithm based on

a branch & bound technique is presented to compute upper throughput bounds. A

very similar algorithm can be designed to compute lower throughput bounds. Then,

it is shown how upper bounds (less tight in general) can be polynomially computed

by means of a single linear programming problem. Conditions for reachability of the

bounds computed by this last approach are given. Even if MTS systems generalize

5.1. Remarkable behaviours of timed continuous systems 65

a certain number of classical net subclasses, including conflicts and synchronizations,

Section 5.3 introduces a larger class of nets, mono-T-semiflow reducible systems, to

which previous results can be applied. The main feature of a mono-T-semiflow re-

ducible system is that its visit ratio under infinite servers semantics does not depend

on the initial marking and can be computed in polynomial time.

5.1 Remarkable behaviours of timed continuous

systems

A performance measure that is often used in discrete PN systems is the throughput

of a transition in the steady state, i.e., the number of firings per time unit. In the

continuous approximation, this corresponds to the flow of the transition.

A classical concept in queueing network theory is the “visit ratio”. In Petri net

terms, the visit ratio of transition tj with respect to ti, v(i)[tj], is the average number

of times tj is visited (fired) for each visit to (firing of) the reference transition ti.

Observe that v(i) is a “normalization” (v(i)[ti] = 1) of the flow vector in the steady

state, i.e., v(i)[tj] = limτ→∞(f [tj](τ)/f [ti](τ)). Hence, for any ti, fss = χi · v(i), with

χi the throughput of ti. The vector of visit ratios is a right annuler of the incidence

matrix C, and therefore, in MTS systems, proportional to the unique T-semiflow. For

MTS systems fss = fss(N ,λ,m0), while v(i) = vi(N), i.e., the visit ratio does not

depend neither on λ nor on m0.

In the following Subsections some at first glance unexpected behaviors of contin-

uous MTS systems are briefly shown.

5.1.1 Continuous is not an upper bound of discrete

It could be thought that, since continuisation removes some restrictions of the system,

the throughput of the continuous system should be at least that of the discrete one.

However, the throughput of a continuous PN is not in general an upper bound of

the throughput of the discrete PN. For instance, in the net system in Figure 5.1(a),

with λ = (3, 1, 1, 10), the throughput is 0.801 as discrete while it is only 0.535 as

continuous. If the continuous marking is seen as a very large discrete marking, the

reason for this “anomaly” lies in the non-monotonicity of the throughput under initial

marking scaling (from m0 to k · m0, k > 0) for discrete systems.

5.1.2 Non monotonicities

Like in discrete nets, the throughput of a continuous net system does not fulfill in

general any monotonicity property, neither with respect to the initial marking, nor

with respect to the structure of the net, nor with respect to the firing rates, λ.

66 5. Steady State Performance Evaluation

2

2PSfrag replacements

p1

p2 p3

p4

p5

t1 t2

t3 t4

2

2

PSfrag replacements

p1

p2

p3

p4p5 t1 t2

t3
t4

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

rate(t1)

Th
ro

ug
hp

ut

[10, 0, 11]

[50, 0, 55]

[100, 0 , 110]

PSfrag replacements
p1p2p3p4p5
t1
t2
t3
t4

(c)

Figure 5.1: (a) A net system whose throughput as continuous is not an upper bound

for the throughput as discrete, with λ = (3, 1, 1, 10). (b), (c) For this net system, with

λ[t2] = 1, increasing the rate of t1 does not necessarily increase the throughput. Moreover

a discontinuity appears at λ[t1] = 2.

For example, with respect to the initial marking, if in the timed net system of

Figure 5.1(a) the marking of p5 is augmented to 5, the systems deadlocks, i.e., the

throughput goes down to 0. While if m0[p5] is reduced to 3 the throughput increases

from 0.535 to 1.071. Notice that this token (i.e., resource) reduction is equivalent to

adding a place “parallel” to p5 (i.e., with an input arc from t2 and an output arc to t1),

marked with 3 tokens. Hence, with respect to the net structure, adding constraints

may increase the throughput!

5.2. Performance evaluation bounds 67

Finally, an increase in a transition rate (for example, due to a replacement by

a faster machine) may also lead to a decrease in the throughput. Moreover, a very

small change may have a large effect. For example, the solid curve in Figure 5.1(c)

represents how the throughput of the net system in Figure 5.1(b) changes if the rate

of t1 varies from 0 to 4, assuming λ[t2] = 1. Notice that even a discontinuity appears

at λ[t1] = 2. Starting from the discrete underlying net system, this effect can be

interpreted as the limit case when the number of discrete tokens goes to infinity (see

the dotted lines in Figure 5.1(c) for the throughput of the discrete system with initial

marking m0 = (10 0 11), m0 = (50 0 55) and m0 = (100 0 110)).

5.2 Performance evaluation bounds

In this section it will be shown how bounds for the throughput of a continuous MTS

system can be computed. Subsection 5.2.1 presents a non-linear programming prob-

lem that can be used to compute the tight bound of the system. It will be explained

later what tight means here. A way to solve that programming problem consists in

using a branch & bound algorithm (Subsection 5.2.2). Subsection 5.2.3 shows how

the complexity of the algorithm can be reduced by pruning some nodes. In Sub-

section 5.2.4 the computation of lower bounds is addressed. In Subsection 5.2.5 the

programming problem is relaxed leading to a linear programming problem (LPP),

although this may lead to a non tight upper bound. A sufficient condition for the

reachability of the bound computed by the obtained LPP is given in Subsection 5.2.5.

5.2.1 A non-linear programming problem for performance

bounds

Let mss be the steady state marking of a continuous net system. For every τ > 0,

the following equations have to be verified:

ṁ(τ) = C · f(τ) (5.1)

f(τ)[t] = λ[t] · min
p∈•t

{
m(τ)[p]

Pre[p, t]

}
∀ t ∈ T (5.2)

m(0) = m0 (5.3)

mss = lim
τ→∞

m(τ) (5.4)

The above equations can be relaxed as follows (µss and φss correspond to mss

and fss):

68 5. Steady State Performance Evaluation

µss = m0 + C ·σ, (5.5)

φss[t] = λ[t] · min
p∈•t

{
µss[p]

Pre[p, t]

}
∀ t ∈ T (5.6)

C · φss = 0 (5.7)

µss,σ ≥ 0 (5.8)

Equation (5.5) is obtained from (5.1) and (5.3), while (5.6) is a particularization

of (5.2). Equation (5.6) may be seen as an application of the underlying idea in the

Little’s law for queueing systems (let θ[t] = 1
λ[t]

): θ[t] ·φss[t] = minp∈•t{ µss[p]
Pre[p,t]}. For

JF nets it can be rewritten as: φss[t] · Pre[•t, t] · θ[t] = µss[
•t], i.e., average flow of

tokens by average residence time equals average number of tokens (this idea was first

used in the field of Petri nets in [CAC+93]). Since mss is a steady state, from (5.1),

C · fss = 0 is deduced, and therefore (5.7) is immediately obtained.

This relaxation replaces the condition of being a reachable marking with being

a solution of (5.5), the fundamental equation. That is, the information about the

feasibility of the transient path is lost. Observe that the system is non-linear (min

operator) and that it may have several solutions. For example, for the net system in

Figure 5.2 with λ = (2, 1, 1), any marking [10−5 ·α, 4 ·α−3, α, α], with 1 ≤ α ≤ 5/3,

verifies (5.5-5.8).

2 2

3PSfrag replacements

p1

p2

p3

p4
t1

t2

t3

Figure 5.2: A continuous Petri net system.

Maximizing the flow of a transition (any of them, since all are related by the

T-semiflow), an upper bound of the throughput in the steady state is obtained:

5.2. Performance evaluation bounds 69

max{φss[t1] | µss = m0 + C ·σ

φss[t] = λ[t] · min
p∈•t

{
µss[p]

Pre[p, t]

}
∀t ∈ T

C · φss = 0

µss,σ ≥ 0}

(5.9)

If the flow in (5.9) is minimized instead of maximized (see Subsection 5.2.4) a very

similar algorithm can be used for the computation of lower bounds.

Let us consider the following Proposition that will help to understand better the

kind of solutions obtained in (5.9).

Proposition 5.1. [STC98] If N is consistent and conservative, the following

statements are equivalent:

1. µss = m0 + C ·σ and σ ≥ 0

2. ∀ y ≥ 0 such that y · C = 0, then y · µss = y · m0

This means that relaxing the conditions on mss to being a solution of the funda-

mental equation (that is, making the system insensitive to the transient), is equiva-

lent to saying that the solution is insensitive to the initial marking distribution inside

the P-semiflows. More precisely, it only depends on the loads of the P-semiflows,

y · m = y · m0.

Notice that the solution of (5.9) is always “reachable” in the sense that with a

suitable initial distribution of the tokens inside the P-semiflows (for instance, with

the same steady state distribution), its associated throughput can be obtained. This

is why, it will be said that the solution is a tight bound.

Nevertheless, the non-linear programming problem in (5.9) is difficult to solve due

to the “min” condition coming from equation (5.6). When a transition t has a single

input place, equation (5.6) reduces to equation (5.10). When t has more than one

input place, then equation (5.6) can be relaxed (linearized) as equation (5.11).

φss[t] = λ[t] · µss[p]

Pre[p, t]
if p = •t (5.10)

φss[t] ≤ λ[t] · µss[p]

Pre[p, t]
∀ p ∈ •t otherwise (5.11)

This way, one has a single linear programming problem (LPP) (5.12) defined by

equalities (5.5), (5.7) and (5.10), and inequalities (5.8) and (5.11), that can be solved

in polynomial time.

70 5. Steady State Performance Evaluation

max{φss[t1] | µss = m0 + C ·σ

φss[t] = λ[t] · µss[p]

Pre[p, t]
if p = •t

φss[t] ≤ λ[t] · µss[p]

Pre[p, t]
∀p ∈ •t otherwise

C · φss = 0

µss,σ ≥ 0}

(5.12)

Unfortunately, this LPP provides in general a non tight bound, i.e, the solution

may be non reachable for any distribution of the tokens verifying the P-semiflow load

conditions, y · m0. This occurs when none of the input places of a transition really

restricts the flow of that transition. When this happens, the marking does not define

the steady state (the flow of that transition would be larger).

For example, for the net system in Figure 5.2 with λ = 1, the optimum of the LPP

is fss[t1] = 1.25. This value is obtained for m[p1] = 2.5, m[p2] = 3.25, m[p3] = 1.25,

and m[p4] = 2.5. Under this marking the throughput of t2 would be 2.5, while for the

rest of the transitions, it is 1.25. Since v(1) = 1, this cannot be the steady state. It

can be seen that this happens for any maximal solution of this particular LPP. Hence

the LPP in this case provides a non-reachable bound of the throughput. In fact, the

maximum throughput for this system is 0.75.

5.2.2 Towards a Branch & Bound (B & B) algorithm

One way to improve this bound is to force the equality for at least one place per

synchronization. This corresponds to a correct interpretation of the min operator

in (5.9). The problem is that there is no way to know in advance which of the

input places should restrict the flow. A B & B algorithm can be used to compute

a steady state marking that fulfills what (5.12) expresses. If the marking solution

of (5.12) does not correspond to a steady state (i.e., there is at least one transition

such that all its input places have “more than the necessary” tokens) choose one of the

synchronizations and solve the set of LPPs that appear when each one of the input

places are assumed to be defining the flow. That is, build a set of LPPs by adding an

equation that relates the marking of each input place with the flow of the transition.

These subproblems become children of the root search node. The algorithm is applied

recursively, generating a tree of subproblems. If an optimal steady state marking is

found to a subproblem, it is a feasible steady state marking, but not necessarily

globally optimal. Since it is feasible, it can be used to prune the rest of the tree: if

the solution of the LPP for a node is smaller than the best known feasible solution, no

globally optimal solution can exist in the subspace of the feasible region represented

5.2. Performance evaluation bounds 71

by the node. Therefore, the node can be removed from consideration. The search

proceeds until all nodes have been solved or pruned.

The recursive Algorithm 5.2 sketches how the B & B algorithm works. The inputs

of the algorithm are the net, the initial marking and the set of pairs (p, t) such that

the marking of p is wanted to define the flow of t in the steady state. This set of pairs

is denoted by eqs (because it represents the equalities, i.e., the constraints for the

firing of transitions) and in the first call to the algorithm will be equal to those (p, t)

such that p = •t. Successive calls to the algorithm will increase the set eqs in order to

force the flow of the rest of transitions to be defined by the marking of an input place.

The output of the algorithm is given by the global variable bound. The procedure

max LPP solves the LPP(5.12), i.e., equations (5.5), (5.7), (5.10) applied on the pairs

(p, t) in eqs, inequality (5.11) applied on every input place of the transitions that are

not in eqs, and inequality (5.8). Let us assume that max LPP returns a scalar x

corresponding to the solution of the LPP, and a set nt (non-satisfied transitions)

containing those transitions for which their flow according to x and the vector of visit

ratios is less than it should be according to the markings of their input places.

Algorithm 5.2 (Branch & Bound, upper bounds).

Global Variable: bound := 0 % Initially equal to 0

Input: (N , m0, eqs)

Output: bound

Begin

(x, nt) := max LPP (N ,m0, eqs)

If x ≤ bound or the LPP was infeasible then

% Do nothing. This node is pruned.

Else

If nt = ∅ then % The solution represents a steady state

bound := max(bound, x)

Else

take a t ∈ nt do

For every p ∈ •t do

eqs := eqs ∪ (p, t)

Branch Bound(N , m0, eqs)

End For

End If

End If

End

The system model in Figure 5.3 is a MTS system (but not a marked graph because

of the Mi Idle places). It represents a flexible manufacturing system composed of three

machines: M1, M2 and M3. Parts of type A are processed first in machine M1 and

72 5. Steady State Performance Evaluation

M3_Iddle

M1_A

M2_B

B_1A

B_1B

M2_A

M1_B

B_2A

B_2B M3_Work

B_3_Empty

10

B_3

Pallets_A

20

Pallets_B

15

Max_A
10

Max_B
10

M2_IdleM1_Idle
Out

E_M3

S_M3

E_M1_BS_M1_BE_M2_BS_M2_B

E_M2_AS_M2_AE_M1_AS_M1_A

Figure 5.3: A PN model of a flexible manufacturing system.

then in machine M2, while parts of type B are processed first in M2 and then in

M1. The intermediate products are stored in buffer B 1A and B 1B, and the final

parts in buffers B 2A and B 2B, respectively. Machine M3 takes a part A and a part

B and assembles the final product, that is stored in B 3 until its removal. In B 3

there is space at most for 10 products. There can be at most 10 parts of type A

and 10 parts of type B either in B 1A and B 1B, or being processed by M1 and M2.

Parts are moved in pallets all along the process, and there are 20 pallets of type A

and 15 pallets of type B. The firing speeds of transitions are: λ[Out] = λ[S M1 A] =

λ[S M2 A] = λ[S M1 B] = λ[S M2 B] = λ[S M3] = 1 , λ[E M3] = λ[E M2 A] = 1/4,

λ[E M1 A] = λ[E M2 B] = 1/3, λ[E M1 B] = 1/5.

The visit ratio of the system is v(1) = 1, that is, in the steady state all

the operations have to be executed at the same rate (this is imposed by the as-

sembly of one part A and one part B). A solution of the original LPP (5.12)

is fss[Out] = 0.111, m[Pallets A] = 9, m[B 2A] = m[Max A] = m[B 2B] =

m[Max B] = m[M3 Idle] = m[B 3] = m[M1 Idle] = 0.111, m[M1 A] = 0.333,

m[B 1A] = 9.111, m[Pallets B] = 4, m[M2 A] = 0.444, m[M2 B] = 0.333,

m[B 1B] = 9, m[M1 B] = 0.555, m[M2 Idle] = 0.222, m[M3 Work] = 0.888,

m[B 3 Empty] = 9.888. This solution corresponds to the root node, see Node 1

in Figure 5.4, of the tree that the B & B algorithm computes when applied to the

flexible manufacturing system.

According to the value obtained by the LPP, fss[Out] = 0.111, and the vector of

5.2. Performance evaluation bounds 73

visit ratios, the throughput of all the transitions in the steady state should be 0.111.

However, observe that if one considers the markings obtained for the input places of

transition S M2 A and E M3, the throughput is greater than 0.111 (in the first call

to the branch bound algorithm nt equals {S M2 A,E M3}). That is, the obtained

marking is not a steady state marking. If one first focuses on S M2 A, two LPPs

should be built since it has two input places, adding in each one an equation for

S M2 A. If one forces the throughput to be defined by M2 Idle (i.e., φss[S M2 A] =

λ[S M2 A] · µss[M2 Idle]
Pre[M2 Idle,S M2 A]), Node 2, the system is infeasible, while if one add

a restriction for B 1A, Node 3, the solution is the same but for m[Pallets A] = 18,

m[B 1A] = 0.111, and m[Max A] = 9.111. Now, the only problem is E M3. If

one adds an equation for B 3 Empty, Node 4, the system is infeasible. Adding an

equation for M3 Work, Node 5, modifies m[Pallets A] = 18.444, m[Pallets B] = 4.444,

m[M3 Idle] = 0.555, and m[M3 Work] = 0.444. This is a steady state marking and

the throughput associated to it is equal to the one obtained with the original LPP,

fss[Out] = 0.111. No higher throughput may exist and no more branching is needed.

5.2.3 Pruning nodes in the B & B algorithm

The branching process developed in the algorithm is based on associating transi-

tions with input places, i.e., forcing the throughput of a transition to be defined

by one of its input places. The number of nodes of the tree in the worst case is

1 +
∑

ti∈T,|•ti|>1 Πi
j=1,|•tj |>1|•tj | where the transitions are sorted according to their

number of input places (|•t1| ≥ |•t2| ≥ |•t3|...). Number 1 stands for the root node

and each element of the sum stands for one transition (one level of the tree) with

several input places. In the worst case the algorithm has to explore the complete

tree and solve a linear programming problem, whose complexity is polynomial, per

node. However, in most real cases such exhaustive exploration is not required since

some branches can be pruned according to the B & B algorithm. Moreover, some

considerations will be done in this Subsection that allow one to further reduce the

number of nodes to be explored.

Places can be seen as suppliers of fluid, i.e., clients, to their output transitions.

Transitions can be seen as stations demanding fluid to their input places. Since MTS

systems are being considered, in the steady state, the throughput of the transitions

has to be proportional to the vector of visit ratios. Clearly, in the steady state, not

all the output transitions of a given place, p, are equally fluid-demanding, i.e., one

output transition t1 may require a higher marking of p than other output transition

t2, in order to fire according to its visit ratio. In the steady state, a place p can at

most define the throughput of that output transition that is demanding the greatest

amount of fluid to p. Thus, the B & B algorithm should avoid the exploration of those

nodes that associate (the marking of) a place to (the flow of) an output transition

74 5. Steady State Performance Evaluation

Node 2

Forced equalities:

{S_M2_A := M2_Idle}

Infeasible LPP

Node 4

Forced equalities:

{S_M2_A := B_1A,

E_M3 := B_3_EMPTY}

Infeasible LPP

Node 3

Forced equalities:

 = 0.111

nt={E_M3}

{S_M2_A := B_1A}

Node 5

Forced equalities:

{S_M2_A := B_1A,

E_M3 := M3_WORK}

 = 0.111

nt={}

Potential steady state marking

 = 0.111

nt={E_M3, S_M2_A}

{}Forced equalities:

Node 1

PSfrag replacements

fss

fss

fss

Figure 5.4: Tree obtained by the B & B algorithm for the computation of upper bounds

applied on the system in Figure 5.3.

that is not its most fluid-demanding transition.

Let us reconsider Equation (5.6) in order to compute the most fluid-demanding

transition for a given place p in the steady state. A simple relaxation of (5.6) consists

in just looking if each place has enough fluid to fire all its output transitions:

µss[p] ≥ max
t∈p•

{
Pre[p, t] · φss[t]

λ[t]

}
(5.13)

The right part of Equation (5.13) can be seen as the amount of fluid demanded

to place p in the steady state by each of its output transitions. The transition giving

the maximum is the most fluid-demanding transition, and so, it is the only transition

that can be associated to place p in the B & B algorithm. See Subsection 4.3.2 for

details on how to compute the most fluid-demanding transition of a given place.

Let us consider the system in Figure 5.2 with λ = 1 to show how a node can be

5.2. Performance evaluation bounds 75

pruned by using the above reasonings. In principle, in the steady state the throughput

of transition t2 could be defined by any of its input places p2 or p4. Notice that p4

has two output transitions t1 and t2, and so in the steady state it has to supply

enough fluid for both transitions. The vector of visit ratios of this system is v(1) = 1.

Therefore, in the steady state the throughput of every transition is the same. Thus,

since λ = 1 also the enabling degree of every transition should be the same in the

steady state. Let us assume that in the steady state the enabling degree of t2 is given

by p4. This implies that the enabling degree of t1 is at most half the enabling degree

of t2 since there is an arc with weight 2 going from p4 to t2. In other words, t1 is the

most fluid-demanding transition of p4: t1 is demanding the double of fluid to p4 than

t2. Hence, there cannot exist a non dead steady state marking at which p4 is defining

the flow of t2.

Recall that for the system in Figure 5.2 the LPP (5.12) yields fss[t1] = 1.25 with

m[p1] = 2.5, m[p2] = 3.25, m[p3] = 1.25, and m[p4] = 2.5. Under this solution the

throughput of t2 would not be 1.25 and therefore it cannot represent a steady state

marking. If one tries to force the throughput of t2 to be defined by p4, an infeasible

LPP will be obtained. Therefore, the B & B algorithm must avoid the computation

of the node that associates p4 to t2. Forcing the throughput of transition t2 to be

defined by p2 the solution of the LPP is fss[t1] = 0.75 with m[p1] = 5.5, m[p2] = 0.75,

m[p3] = 0.75, and m[p4] = 1.5. That is a steady state marking, and therefore 0.75 is

an upper bound for the throughput of the system.

Taking into account the most fluid-demanding transitions of places the complexity

of the B & B algorithm presented in the previous Subsection is reduced in many cases.

Since a place will be associated only to its most fluid-demanding transition, the higher

the number of output transitions of places, the higher the reduction of the complexity

of the algorithm. Unfortunately, if all the places have a single output transition the

complexity of the algorithm is not reduced. Anyway, the computation of the most

fluid-demanding transitions requires only the structure of the timed net, and so it can

be easily added to the B & B algorithm.

5.2.4 Lower bounds and exact throughput

Lower throughput bounds can be computed in a very similar way to upper bounds

by means of a B & B algorithm. In this case, the goal function has to be minimized

instead of maximized.

Let us compute the upper and lower bounds for the MTS system in Figure 5.5

with initial marking m0 = (4 0 1) and λ = (1 2). The visit ratio for the underlying

net is v(1) = (1 1). For the upper bound, the application of the B & B algorithm

discussed in the previous section yields fss[t1] = 2.5 with m[p1] = 2.5, m[p2] = 1.5

and m[p3] = 2.5 for the initial LPP (without any branching). That is a steady state

marking, and so, a suitable upper bound has been computed.

76 5. Steady State Performance Evaluation

2

2

PSfrag replacements

p1

p2

p3

t1

t2

Figure 5.5: A PN system with different upper and lower throughput bounds.

Minimizing the throughput of that LPP, one obtains fss[t1] = 0 with m[p1] = 1.45,

m[p2] = 2.55 and m[p3] = 3.55. At this marking, neither t1 nor t2 have a throughput

of 0 as established by the solution of the LPP. This is a non surprising result since

every transition has more than one input place and so 0 is a trivial solution of the

equations in (5.12). Figure 5.6 represents the tree explored by the B & B algorithm

to compute the lower throughput bound for the system in Figure 5.5.

If the throughput of transition t1 is forced to be defined by the marking of p3,

Node 2, the LPP yields fss[t1] = 2 with m[p1] = 3, m[p2] = 1 and m[p3] = 2 which

is a steady state marking. Hence no more branching is required from this node. If

transition t1 is controlled by p1, Node 3, one obtains fss[t1] = 0 with m[p1] = 0,

m[p2] = 4 and m[p3] = 5. In this case the throughput of t2 is not defined by any

of the markings of its input places. From this node it is possible to associate t2 to

either p2 or p3. If t2 is associated to p2, Node 5, an infeasible LPP is obtained. If t2
is associated to p3, Node 4, the LPP gives fss[t1] = 2.5 with m[p1] = 2.5, m[p2] = 1.5

and m[p3] = 2.5, which is a steady state marking. At this point, the B & B algorithm

finishes and it can be concluded that fss[t1] = 2 is a suitable lower bound.

Considering again the system in Figure 5.2, the lower bound obtained after the

application of the B & B algorithm is fss[t1] = 0.75 with m[p1] = 5.5, m[p2] = 0.75,

m[p3] = 0.75, and m[p4] = 1.5. This lower bound is identical to the upper bound

obtained for this system in Subsection 5.2.3. This means that the exact throughput

of the system in the steady state has just been computed. The B & B algorithm

focuses on the initial load of the P-semiflows and not on the initial marking of each

place, therefore, it holds that for any initial distribution of the given load, the system

in Figure 5.2 will reach a steady state in which fss[t1] = 0.75.

In Subsection 5.2.2 the application of the B & B algorithm on the system in

Figure 5.3 yielded fss[Out] = 0.111 as an upper bound for the throughput. If the B &

B is applied to compute the lower bound for that system the same value is obtained.

That is, fss[Out] = 0.111 is the exact throughput of the system in the steady state.

5.2. Performance evaluation bounds 77

 = 0

nt={t1, t2}

{}Forced equalities:

Node 1

Node 2

Forced equalities:

{t1 := p3}

 = 2

nt={}

Potential steady state marking

Node 3

Forced equalities:

{t1 := p1}

 = 0

nt={t2}

Node 4

Forced equalities:

{t1 := p1, t2 := p3}

 = 2.5

nt={}

Potential steady state marking

Node 5

Forced equalities:

{t1 := p1, t2=p2}

 = 2

nt={}

Infeasible LPP

 = (1.45 2.55 3.55)

 = (3 1 2) = (0 4 5)

 = (2.5 1.5 2.5) = (3 1 2)

PSfrag replacements

fssfss

fssfss

fss

mss mss

mssmss

mss

p1

p2

p3

t1
t2

Figure 5.6: Tree obtained by the B & B algorithm for the computation of lower bounds

applied on the system in Figure 5.5.

If the system is considered as a discrete Petri net the number of reachable states is

1357486. The throughput of the discrete system computed by solving the associated

Markov chain is fss[Out] = 0.1090.

5.2.5 Branching elimination for the computation of upper

bounds

Let us consider again the problem defined by the LPP in (5.12). As it has been done

in Subsection 5.2.3, Equation (5.6) can be relaxed to (5.13). The following single LPP

can be obtained to compute an upper throughput bound:

78 5. Steady State Performance Evaluation

max{φss[t1] | µss = m0 + C ·σ

µss[p] ≥ max
t∈p•

{
Pre[p, t] · φss[t]

λ[t]

}
∀p ∈ P

C · φss = 0

σ,µss ≥ 0}

(5.14)

Since in MTS systems v(1) is completely defined, if φss = χ ·v(1), LPP (5.14) can

be written as:

max{χ | µss = m0 + C ·σ
µss ≥ χ · PD, σ,µss ≥ 0}

(5.15)

where PD[p] = max
t∈p•

{
Pre[p, t] · v(1)[t]

λ[t]

}
.

Defining α = 1/χ and σ′ = 1/χ · σ, (5.15) reduces to:

min{α | α · m0 + C ·σ′ ≥ PD, σ′ ≥ 0} (5.16)

The dual of this LPP is:

max {y · PD | y · C ≤ 0, y · m0 ≤ 1, y ≥ 0} (5.17)

One of the formulations of the alternatives theorem [Mur83] states that the fol-

lowing two statements are equivalent:

1. ∃ x > 0 such that C · x ≥ 0

2. ∀ y ≥ 0 such that y · C ≤ 0 then y · C = 0
(5.18)

Since MTS nets are consistent, the first statement of (5.18) is true, and therefore

the second one is also true. Hence the condition y · C ≤ 0,y ≥ 0 in (5.17) can

be replaced by y · C = 0,y ≥ 0. Moreover, since y · PD is being maximized, the

solution must verify y · m0 = 1 (otherwise a better result can be obtained with

β · y, β = 1/(y · m0)).

Proposition 5.3. Let γ be the solution of:

γ = max {y · PD | y · C = 0

y · m0 = 1, y ≥ 0}
(5.19)

The throughput in the steady state verifies fss ≤ 1
γ v(1)

5.2. Performance evaluation bounds 79

Intuitively, the idea of (5.19) is to find the slowest subnet among those generated

by the elementary P-semiflows. In other words, the bound is obtained by looking at

the bottleneck P-semiflow. The complexity of finding the bottleneck P-semiflow is

polynomial since it is obtained by solving a LPP. In [CS92] a similar result was ob-

tained for discrete systems in which conflicts were forbidden except among immediate

transitions.

Reachability of the bound

For each marking m, its T-coverture (T-cov(m)) is defined as the set of places that

restrict the flow of the transitions.

Definition 5.4. Given a net system, the T-coverture at a marking m, is

T-cov(m) = {p | ∃t ∈ p•such that f [t] = λ[t] · m[p]/Pre[p, t]}

The T-coverture of a system at a marking m can be also defined as the set of

places contained in PT-set(m) (see Subsection 1.3.2).

A characterization can be obtained for the solution of (5.19) being the exact

value. Given a vector v, let us denote as ‖v‖ its support, i.e., the set of its non-zero

components.

Proposition 5.5. Let 〈N ,m0〉 be a MTS continuous system.

The flow computed with (5.19) (or (5.15)) is the flow in the steady state iff the

T-coverture at the steady state, T-cov(mss), contains the support of a P-semiflow.

Moreover, the maximum of (5.19) is reached for the P-semiflow contained in the

T-coverture.

Proof. Let mss be the steady state marking, fss = χ1 ·v(1) the flow vector associated

to this state, and γ the solution of (5.19). Applying (5.19), χ1 ≤ 1/γ.

For “⇒”, assume that y0 is a P-semiflow such that the maximum of the LPP

is reached. If its support is not contained in T-cov(mss), a place p ∈ ‖y0‖ exists

such that mss[p] > max
t∈p•

{Pre[p, t] · χ1 · v(1)[t]/λ[t]} = χ1 · PD[p]. Hence, y0 · mss >

χ1 · y0 · PD, and 1/χ1 > y0 · PD = γ, contradiction.

For “⇐”, let y0 be a P-semiflow such that ‖y0‖ ⊆ T-cov(mss) and y0 · m0 = 1.

Then, for every p ∈ ‖y0‖, a transition t ∈ p• exists such that mss[p] = Pre[p, t] · χ1 ·
v(1)[t]/λ[t]. Hence, mss[p] = χ1 · max

t∈p•
{Pre[p, t] · v(1)[t]/λ[t]} = χ1 · PD[p].

Therefore γ ≥ y0 · PD = y0 · mss/χ1 = 1/χ1. Then 1/χ1 = γ.

From Prop. 5.5 the following Corollary is obtained:

Corollary 5.6. Let N be a MTS continuous net. If the P-subnet defined by any

T-coverture contains a P-semiflow, then the flow at the steady state can be computed

in polynomial time with the LPP (5.19).

80 5. Steady State Performance Evaluation

5.3 Extending the subclass of nets: MTS reducible

nets

One interesting property of MTS nets is that the vector of visit ratios only depends

on the net structure, i.e., v(1) = v(1)(N). Therefore, as it has been seen, knowing the

flow in the steady state of one transition, the flow of the rest of transitions is trivially

computed. However, the subclass of nets for which the vector of visit ratios does not

depend on the initial marking is larger than the class of MTS nets. If one considers

the net in Figure 5.7(a) with λ = (1 1 1 1), one will realize that the flow through

transitions in the steady state is always proportional to the vector (2 1 2 1), that is

the flow through transitions t2 and t4 is double than the flow through transitions t1
and t3, independently of the initial marking. The reason for this fact is that given a

continuous net (not necessarily MTS), the following is verified:

f [ti]

Pre[p, ti] · λ[ti]
=

f [tj]

Pre[p, tj] · λ[tj]
∀ ti, tj in CEQ relation, ∀ p ∈ •ti (5.20)

Where CEQ stands for continuous equal conflict (see Section 1.2). In this section,

the results obtained in Section 5.2 will be extended to a larger class of nets, the class

of mono-T-semiflow reducible nets (MTSR), for which v(1) = v (1)(N ,λ), i.e., v(1)

does not depend on the initial marking.

Definition 5.7. Let N be a consistent and conservative PN and λ a speeds vector. It

will be said that 〈N ,λ〉 is mono T-semiflow reducible (MTSR) if the following system

has a unique solution:

C · v(1) = 0

v(1)[ti]

Pre[p, ti] · λ[ti]
=

v(1)[tj]

Pre[p, tj] · λ[tj]
∀ ti, tj in CEQ relation, ∀ p ∈ •ti

v(1)[t1] = 1

(5.21)

Every continuous MTSR net can be reduced to an “equivalent” MTS net with

identical behavior. The reduction rule consists in merging those transitions in CEQ

relation into only one flow-equivalent transition. The arcs and the firing speed, λ,

of the equivalent transition have to be such that they preserve the evolution of their

input and output places. This can be achieved with simple arithmetic operations on

the weights of the input/output arcs and the firing speeds of the original transitions.

Figure 5.8 sketches how two transitions in CEQ relation can be merged to a single

one. It can be checked that the evolution of the input places is preserved and so is the

flow associated to the output arcs. An iterative merger on every couple of transitions

5.3. Extending the subclass of nets: MTS reducible nets 81

in CEQ relation leads to a net without CEQ’s and to a MTS if the original net was

MTSR. Notice that the arc weights of the resulting net may not be natural numbers.

Nevertheless, this is not a problem for any of the properties being considered.

2
4

2

2 24

PSfrag replacements

p1 p2

p3 p4

t1 t2

t3 t4

λ1 = 2

λ2 = 1

λ3 = 1

(a)

2 24

2

0.5 0.25

PSfrag replacements

p1 p2

p3 p4

t1

t2 t3

t4

λ1 = 2

λ2 = 1

λ3 = 1

(b)

2

PSfrag replacements

p1

p2 p3

p4

t1 t2

t3

t4
λ1 = 2

λ2 = 1

λ3 = 1

(c)

Figure 5.7: (a) A MTSR (but not MTS net) for every λ > 0. (b) Equivalent MTS net

given λ = 1. (c) A MTS net that belongs to MTSR iff λ1 = λ2.

Observe that if the input and output arc weights of a transition are multiplied by

a constant, the evolution of the input and output places is the same. However, the

flow through the transition varies in an inverse proportion to the constant. Therefore,

by varying that constant, it is possible to reduce a MTSR net to an infinite number

of equivalent MTS nets.

The net in Figure 5.7(a) is MTSR (for λ = 1 its equivalent MTS net is depicted

in Figure 5.7(b)) but not MTS since it has two T-semiflows. The net in Figure 5.7(c)

with λ = (1 1 1) belongs to both MTS and MTSR. Nevertheless, it should be noticed

that the class MTSR does not include the class MTS: The net in Figure 5.7(c) with

λ = (1 2 1) belongs to MTS but not to MTSR. However, disregarding those nets

that belong only to MTS does not imply a loss of generality since their steady state

throughput is zero, that is, they are not structurally timed-live. Therefore, it has no

sense computing throughput bounds for systems like the one in Figure 5.7(c) with

λ = (1 2 1), because it is null. The diagram in Figure 5.9 shows the relationship

between the classes MTS and MTSR.

Extending the results of Section 5.2 to MTSR is almost immediate. For MTSR,

the relaxation of the “min” condition in the non linear programming problem (5.9)

yields (5.10), (5.11) and (5.20). This last equation is necessary to fulfill the flow

proportions between transitions in CEQ. Once equation (5.20) is added, the B & B

algorithm of subsection 5.2.2 can be applied directly to MTSR systems.

82 5. Steady State Performance Evaluation

PSfrag replacements

p1 p2

t1
t2

p q

s t

k

k · p
k · q

λ1 λ2

λ1 + λ2
λ1

λ1+λ2
· sp

λ2

λ1+λ2
· t
q

(a)

PSfrag replacements

p1 p2

t1
t2
p

q

s

t

k
k · p
k · q
λ1

λ2 λ1 + λ2

λ1

λ1+λ2
· sp λ2

λ1+λ2
· t
q

(b)

Figure 5.8: Two transitions in CEQ relation and an equivalent one.

X

Y

Z
Non structurally timed live MTS

MTS

MTSR

Structurally timed−live MTS

Multi−T−Semiflow reducible to structurally timed−live MTS

Figure 5.9: Relationship between MTS and MTSR nets. MTSR only does not include the

non str. timed-live MTS nets.

In the same way, equation (5.20) must also be added to the programming prob-

lem (5.14) for MTSR systems. And with identical reasoning of subsection 5.2.5, same

equations (5.15), (5.16), (5.17) and (5.19) are obtained. Every reasoning and result

of subsection 5.2.5 is also directly applicable on MTSR systems.

It is interesting to remark that the class of MTSR nets offer a significant modelling

power from a practical point of view. Focusing on live and bounded systems, the

class of MTSR nets includes the class of equal conflict (EQ) nets [TS96], which is

a superset of the classes of free-choice (FC), choice-free (CF) [TCS97], weighted T-

systems (WTS) and marked graphs (MG) nets [CHEP71](being MG a generalization

of PERT charts). Figure 5.10 shows the inclusion relationships among the mentioned

classes.

With respect to the reachability of the upper bound computed by the LPP in (5.19)

for MTSR systems (Corollary 5.6) it has to be noticed that it suffices to prove that

5.4. Conclusions 83

Free Choice

Marked Graphs Choice Free

Mono−T−Semiflow reducible

Equal Conflict

Weighted t−systems

Mono−T−Semiflow

Figure 5.10: Live and bounded net classes included in the class of MTSR nets.

the minimal T-covertures contain the support of a P-semiflow. This condition is in

general difficult to solve since the number of minimal T-covertures may be very large.

Nevertheless, Corollary 5.6 holds for instance for str. lim-live and str. bounded EQ nets

(or equivalently [STC98] EQ nets that are consistent, conservative and the rank of

the token flow matrix is upper bounded by the number of conflicts). More general

classes exist for which this result holds too. For instance, it holds for the net system

in Figure 5.3.

5.4 Conclusions

This chapter presents a study of the throughput bounds (upper, lower and reachable

bounds) in the steady state of continuous Petri net systems under infinite servers

semantics. The continuized system does not always faithfully represent the original

discrete system: It may happen that the performance of the discrete model is better

than the performance of the continuous one. Even for the MTS subclass of net models

some unexpected results may happen.

In MTS systems the vector of visit ratios does only depend on the structure of the

net. Therefore, once the steady state flow of one transition is known, it is immediate

to compute the flow for the rest of transitions. Upper and lower bounds for the

throughput of the system in the steady state can be computed by B & B algorithms.

Relaxing some conditions an upper bound can be computed by a single LPP (5.19).

This LPP is based on a search for the slowest P-semiflow of the system and it is the

continuous version of the one in [CS92]. It has been shown that the bound computed

by the LPP will be reached iff the set of places that are determining the flow of the

system in the steady state (T-coverture) contains a P-semiflow.

84 5. Steady State Performance Evaluation

The class of mono T-semiflow reducible (MTSR) nets considers those continuous

nets whose visit ratio does only depend on the structure and the internal speeds of

the transitions (not on the initial marking), i.e., v(1) = v(1)(N ,λ). For this class of

nets the obtained results concerning the computation and reachability of the bounds

for timed MTS systems are directly applicable.

Chapter 6

Observability

Summary

Observability and design of observers are topics of major importance in systems the-

ory. This chapter shows that the conditions that characterize observability in continu-

ous Petri nets are much less restrictive than those for general piecewise linear systems.

The concept of structural observability, regarding to the possibility of estimating the

marking of places independently of the speed of the transitions, is introduced and

studied for the subclass of Join Free nets. For general nets, the observability problem

is faced by computing an estimate per structural PT-set of the net and filtering those

estimates that are not suitable. The design of observers is also addressed for general

nets. The observer that is proposed is a piecewise linear system itself that assures the

continuity of the estimate when a switch (change in the PT-set of the net) occurs. By

means of the system simulation, the resulting observer allows one to estimate even

the unobservable space of the net system during a given time period.

85

86 6. Observability

Introduction

Analysis and synthesis are two major issues of study regarding continuous Petri nets.

Focusing on synthesis, a crucial topic of research is the design of control laws that

drive the evolution of the system in a desired way. In order to control a dynamic

system, frequently it is necessary to know its current state. To gather this information,

sensors can be placed on several locations of the plant being modelled. However, it

may happen that some state variables of the system cannot be directly measured by

sensors. It can also happen that the cost of the sensors required to measure every

state variable is prohibitive.

In a general dynamic system, under some conditions, some of the variables

that cannot be directly measured can be estimated. This estimate constitutes the

observation. The observability problem, i.e., the characterization of which state

variables are observable and its observation, has been studied in detail in the

framework of linear systems (see for example [Oga95, BF87]). Observability prob-

lems have also been studied in the discrete event systems setting (see for exam-

ple [RTRRLM03, GS02, CGSJ03, GSJar]). For continuous linear systems, the ob-

servable subspace can be characterized algebraically. A system state estimation based

on such algebraic equation can be theoretically obtained from the computation of the

derivatives of the output signal. The estimate loses its reliability when “high” fre-

quency noise appears in the output signal. In order to overcome this problem, linear

observers came up [Lue71]. A linear observer is a linear system whose state converges

asymptotically to the state of the system being observed.

This chapter is devoted to the study of observability and the design of observers

for timed continuous Petri nets under infinite servers semantics [JJRS04c, JJRS04b].

It will be noticed that a great parallelism exists between the results obtained from

the analysis of observability and from the observers synthesis. With regard to ob-

servability, the attention is first focused on the study of net systems without syn-

chronizations, named Join Free (JF) systems. For this class of net systems a single

differential equation system controls the behavior of the system, thus classical results

on observability of linear systems apply here. The results on structural observability

for JF systems that are presented in this chapter can be extended to other linear

systems. Afterwards, general systems including synchronizations will be considered.

Some particular features of continuous Petri nets allow one to extract less restrictive

observability conditions than the ones known for regular piecewise linear systems.

A Luenberger’s observer will be taken into account for each possible differential

equation system (PT-set). Again, the intrinsic features of continuous Petri nets will

allow one to filter non-feasible observer’s estimates, and to describe the conditions

that permit one to design a switching observer that will converge to the state system.

The structure of the chapter is the following: In Section 6.1 the observability

6.1. Observability: Problem Statement 87

problem for continuous Petri nets is stated in a similar way to the observability

problem for linear systems. Section 6.2 concentrates on JF systems. For this type of

systems, structural conditions of observability are obtained from the output of a fix

point algorithm. Section 6.3 is devoted to the study of the problem for general (not

only JF) Petri net systems. Section 6.4 shows how a set of linear observers can be

created for a net system and the different classes of non-suitable observers’ estimates

that can appear. Section 6.5 proposes an observer that uses a filter for the estimates

and the simulation of the system.

6.1 Observability: Problem Statement

Let us consider first linear time invariant systems, for which observability has been

thoroughly studied [Lue71, Oga95, BF87]. An unforced linear system (i.e., without

inputs) is usually expressed by equations ẋ = A · x,y = S · x where x is the state of

the system and y is the output, i.e., the set of measured variables. The state space is

denoted as X. Knowing the matrices A and S and being able to watch the evolution

of y, a linear system is said to be observable iff it is possible to compute its initial

state, x(t0) (in fact, since the system is deterministic, knowing the state at the initial

time is equivalent to knowing the state at any time).

In Systems Theory a well-known observability criterion exists that allows one

to decide whether a continuous (deterministic) time linear system is observable or

not [Oga95, BF87]. Besides, several approaches exist to compute the initial state of

continuous time linear system that is observable. Nevertheless, in order to simplify

the presentation of the results and make them more intuitive, the evolution of the

systems will be expressed in discrete time (continuous time will be used only when

dealing with structural observability, in Section 6.2) .

Given a linear system of dimension n expressed in discrete time, x(k+1) = F·x(k),

y(k) = S · x(k) the output of the system in the first n − 1 periods is:

y(0)

y(1)

y(2)

..

y(n − 1)

=

S

S · F
S · F2

..

S · Fn−1

· x0 = ϑ · x0 (6.1)

The matrix ϑ is called observability matrix [Lue71, Oga95, BF87]. The linear system is

observable iff ϑ has full rank. For a non observable system it is possible to decompose

the state space X into two subspaces: the observable subspace, Xo, and the non

observable subspace, Xno. It can be verified that Xno is the kernel of ϑ, i.e., ϑ·Xno = 0,

because it does not have any influence on the vector of outputs.

88 6. Observability

Let us now consider timed continuous Petri net systems. As it has been seen, the

evolution of a Petri net system is ruled by a set of switching linear systems, each one

associated to a PT-set (see Subsection 1.3.2), where the state vector is the marking of

the net, m. Every linear system Σi : ṁ = Ai · m associated to a PT-set of the Petri

net can be discretized in time. The associated discrete time system can be written as

Σd
i : m(k + 1) = Fi · m(k), with Fi = eAi·δ where δ is the time period. The output

of the net system is given by y = S · m. Here it will be assumed that each place is

either measured or unmeasured. It will be said that a place pi is measured iff there

exists a row j in S such that S(j, i) 6= 0 and S(j, k) = 0 for every k 6= i.

Let us define the concept of observability for a continuous Petri net system:

Definition 6.1. Let N be a continuous Petri net system, λ the internal speeds of

the transitions, and D the set of measured places.

• A place p ∈ P is observable from D iff it is possible to compute its initial marking

m0[p] = m(τ0)[p] by measuring the marking evolution of the places in D.

• N is observable from D iff every place p ∈ P is observable.

Applying [Oga95, BF87] an observability criterion is immediately deduced:

Property 6.2. Given a Petri net system and Σd
i : m(k+1) = Fi ·m(k) the linear sys-

tem associated to PT-set i. The PT-set i is observable iff its associated observability

matrix ϑi has full rank.

Clearly, when the net system is ruled by an observable PT-set the marking of all

the places can be computed through Equation 6.1.

For a general PT-set, the places not in the PT-set can be considered as timed-

implicit and do not play any role in the dynamics of the system. Consequently,

no information about the marking of the timed-implicit places can be inferred from

the marking of the places in the PT-set. Therefore, if a PT-set is wanted to be

observable, the only way to compute the marking of the timed-implicit places is to

take them directly in the output matrix S.

Notice that every Fi is an exponential matrix and therefore it can be inverted.

Hence continuous Petri net systems can be simulated backwards if the actual marking

is known. Observe that the PT-set changes can be detected also from the backwards

simulation. This implies that if the marking of the system at a given instant is known

then the marking of the system at any previous instant can be computed.

6.2 Observability in Join Free Systems

As already pointed out, in continuous JF systems the evolution of the marking can be

modelled as ṁ = A ·m (or m(k +1) = F ·m(k) if time is discrete or discretized). As

6.2. Observability in Join Free Systems 89

in Property 6.2, the existing observability criterion for linear systems can be directly

applied. In this section, an effort is made to extract an observability criterion that is

independent of the internal speeds of the transitions, i.e., vector λ.

6.2.1 Structural Observability

Definition 6.3. Let N be a continuous Petri net and D the set of measured places

of the system:

• Place p is structurally observable from D iff it is observable from D for any

λ > 0.

• N is structurally observable from D iff every place p is structurally observable.

In other words, structural observability looks for observability for any λ, like

structural boundedness looks for boundedness for any m0. As an example, let us

suppose that the only measured place of the system in Figure 6.1 is p3 and that the

vector λ is known. The variation, i.e., the derivative, of the marking of a place is

given by the difference between its input and output flows. For p3, one has ṁ[p3] =

f2 − f3 where: f2 = λ[t2] · m[p2] and f3 = λ[t3] · m[p3], and so m[p2] = (ṁ[p3] +

λ[t3] · m[p3])/λ[t2]. Therefore, from the evolution of m[p3], m[p2] can be computed.

Furthermore, it holds ṁ[p2] = f1 − f2 and f1 = λ[t2] · m[p1]. Thus, being m[p2]

computable, m[p1] can also be computed. This procedure can be carried out whatever

the value of λ is, i.e. this net is structurally observable.

PSfrag replacements

p1 p2 p3t1 t2 t3

Figure 6.1: A JF net system whose marking can be computed from the observation of p3.

This result can be easily generalized:

Proposition 6.4. Let N be a continuous JF Petri net and D the set of measured

places. Let p be a place such that a path from p to D exists in which all the places

have only one input transition (i.e., it is attribution free). Then, p is structurally

observable.

Proof. In a JF system, the output flow of a place p is proportional to its marking,

fout[p] =
∑

t∈p• Pre[p, t] · λ[t] · enab(t,m) =
∑

t∈p• λ[t] · m[p]. From ṁ[p] = fin[p] −
fout[p], if m[p], and ṁ[p] are known, the total input flow of p can be obtained. If place

p has only one input transition it is easy to obtain the marking of the input place of

that transition, fin[p]/Post[p, •p] = λ[•p] · m[•(•p)]/Pre[•(•p), •p].

90 6. Observability

2

PSfrag replacements

p1 p2

p3

t1 t2

t3

Figure 6.2: A JF net system whose marking cannot be computed from the observation of

p3 if λ[t1] = λ[t2], because t1 and t2 make an attribution to p3.

However, for the system in Figure 6.2, if p3 is measured, it is not possible to observe

p1 or p2 if λ[t1] = λ[t2] (it can be seen that the observability matrix does not have full

rank if this condition holds). Intuitively, if the flow of both transitions comes with

“the same speed” it cannot be decided how much comes from each source. Hence,

this net is not structurally observable. However, it is observable when λ[t1] 6= λ[t2].

On the contrary, from the knowledge of the marking of place p it is not possible

to compute the marking of the place(s) (p•)
•
: Let p′ ∈ (p•)

•
, and assume to simplify

that p• = •p′ = t. To compute the marking of p′ it would be necessary to solve

ṁ[p′] = fout[p] ·Post[p′, t]/Pre[p, t]− fout[p
′]. If the initial marking of p′ is not known

that equation cannot be solved whatever the value of Pre,Post and λ are. This

means that from the measured places at most the marking of the supplying places

can be inferred.

Moreover, it can be proved that the set of places whose marking can be computed

does not depend on the “output” of the measured places.

Proposition 6.5. Let N be a continuous JF Petri net and D the set of measured

places. The observable subspace (and so the set of structurally observable places)

neither depends on the output arc weights of the measured places, Pre[p, T] ∀p ∈ D,

nor on the firing speeds of their output transitions, λ[t] ∀ t ∈ D•, nor on the output

arc weights of their output transitions, Post[p, T] ∀ p ∈ (D•)
•
.

Applying Proposition 6.5 to the system in Figure 6.3(a) with p4 as the only mea-

sured place, the observable subspace of the system does not depend on the values

of r, s, t, q,λ[t4]. Even after removing the input/output arcs of transition t4 as in

Figure 6.3(b) (this is equivalent to λ[t4] = 0), the obtained system is identical to the

6.2. Observability in Join Free Systems 91

original one in terms of observability.

a b

q

fed

s t

c

r

PSfrag replacements

p1 p2 p3

p4

t1 t2 t3

t4

(a)

a b

fed

c

PSfrag replacements p1 p2 p3

p4

t1 t2 t3

t4

(b)

Figure 6.3: Two net systems with identical observable subspaces if the only measured place

is p4.

According to Proposition 6.5 the output transitions of the measured places can be

removed (by setting their λ to zero) without affecting the observable subspace of the

system. Therefore:

Corollary 6.6. Let N be a continuous Petri net and D the set of measured places.

If a place p is structurally observable then a forward path from p to D exists.

As an example, let us consider that the only measured place in Figure 6.1 is place

p2. Using the derivative of the marking of p2 the marking of p1 can be computed.

However, there exists no forward path going from p3 to p2 and therefore, according to

Corollary 6.6, p3 is not structurally observable. Intuitively, the marking of p3 cannot

be deduced from its input flow.

6.2.2 Computation Algorithm

A similar approach to the one taken to observe p1 and p2 in the system in Figure 6.1

can be used to observe p1 and p2 in the system in Figure 6.4, where the measured

places are p3, p4 and p5. Let us consider a matrix Postu ∈ IR|P |×|T | containing

only the output arc weights of the transitions whose flow is, “in principle”, unknown,

i.e., the marking of their input places is not known. More formally, for the iterative

algorithm that will be proposed, Postu[i, j] = 0 if the marking of the place •tj is

92 6. Observability

measured or has been computed in previous iterations, and Postu[i, j] = Post[i, j]

otherwise.

q r s

a
b c d e

f

PSfrag replacements p1 p2 p3

p4 p5

t1 t2 t3

Figure 6.4: A JF system whose marking is computable from the evolution of p3, p4 and p5.

Here, the first three rows (that correspond to places p1, p2 and p3) of Postu are

zeros and the forth and fifth rows (that correspond to places p4 and p5) are (a c 0) and

(b d 0), respectively. The marking evolution of places p4 and p5 is known (because

they are measured) and here it is equal to their input flow. Subtracting the flow

coming from p3, fp3

i4 and fp3

i5 , the flow coming from the unknown places p1 and p2 will

be obtained:

(
ṁ[p4] − fp3

i4

ṁ[p5] − fp3

i5

)
=

(
a c

b d

)
·

λ[t1] ·
m[p1]

q

λ[t2] ·
m[p2]

r

Hence, if the matrix (a c; b d) has full rank it will be possible to compute the

markings of p1 and p2 independently of the λ of the transitions.

The procedure developed for the above examples can be generalized leading to

a fix point algorithm. The goal of the algorithm is, given a set of measured places,

D, to deduce which places of the net system can be observed for whatever value of

λ. The basis of such iterative algorithm is to look for sets of places whose marking

has been computed in previous iterations and such that the matrix composed of their

input arcs weights has full rank. If such a set exists, then it is possible to compute

the marking of the supplying places.

Given a set of places H, Postu
H denotes a matrix composed by the rows of Postu

corresponding to the places in H, and whose null columns have been removed. The

input data of the algorithm are the net structure, N , and the set of measured places,

D. The output of the algorithm is the set of places, Q, that are observable for every

λ. At a given iteration, Q stores the set of places whose markings are known to be

computed till that instant.

6.2. Observability in Join Free Systems 93

Algorithm 6.7 (Algorithm for structural observability).

Input: (N , D)

Output: Q % places that can be observed ∀ λ > 0

Begin

Q := D
Compute Postu

While ∃ H ⊆ Q, such that •(•H) 6⊂ Q and Postu
H has full rank do

Q := Q∪ •(•H)

Compute Postu according to Q
End While

End

The following statements establish sufficient conditions for structural observabil-

ity:

Proposition 6.8. Let N be a JF net, D the set of measured places and Q the output

of the Algorithm 6.7 applied on (N , D):

• Every place p ∈ Q is structurally observable.

• If Q = P (the set of places of N) then the net is structurally observable.

2

2

3

PSfrag replacements

p1

p2

p3

p4

p5 p6

t1

t2

t3

t4

t5 t6

Figure 6.5: A JF net system that is structurally observable.

If the measured places of the system in Figure 6.5 are p4 and p6, the first iteration

of Algorithm 6.7 on this system includes p5 in the set of observable places. The second

iteration includes p3 and the third and last iteration includes p1 and p2. Therefore,

it can be concluded that the whole net is structurally observable.

94 6. Observability

PSfrag replacements

p1 p2

p3

t1 t2

Figure 6.6: A JF system for which Algorithm 6.7 does not conclude that it is structurally

observable.

Unfortunately, the conditions given in Proposition 6.8 are only sufficient for struc-

tural observability. The execution of Algorithm 6.7 on the system in Figure 6.6, whose

only measured place is p3, yields Q = p3, i.e., Proposition 6.8 cannot decide whether

the system is structurally observable or not. Nevertheless, the observability matrix,

ϑ, for that system is ϑ = (0 0 1;λ[t1] λ[t2] 0;−λ[t1]
2 0 0) which has full rank for

every λ > 0. Therefore the system is structurally observable.

Although a formal proof is missing, after testing a wide variety of examples, it

seems reasonable to think that the condition on Proposition 6.8 is necessary and

sufficient for those JF systems that are conservative.

6.3 Observability in General Net Systems

The goal of this Section is the study of the conditions under which the initial PT-set

as well as the initial marking can be unequivocally determined.

A way to face this problem consists of computing an estimate for every structural

PT-set of the net. For simplicity, let the estimates be obtained by means of Equa-

tion 6.1 defined for n− 1 consecutive periods. Theoretically and assuming that there

is no noise, time discretization (δ) can be done as small as desired. It can be assumed

that, for a small enough δ, no switch between PT-sets takes place in the first n − 1

periods. The computed estimates can be used to filter those PT-sets that for sure are

not ruling the evolution of the system. If only one PT-set remains, then the system

evolves according to it.

The sorts of non suitable estimates that allow one to filter a PT-set are:

• Infeasible estimates: No solution of Equation 6.1

• Incoherent estimates: The PT-set of the estimate is not the one for which it

was computed

6.3. Observability in General Net Systems 95

• Suspicious estimates: The estimate belongs simultaneously to several PT-sets.

6.3.1 Infeasible and Suspicious Estimates

Let us show through an example how infeasible and suspicious estimates can be used

to filter PT-sets.

4 2
PSfrag replacements

p1 p2

t1

Figure 6.7: A simple synchronization with two input places.

Consider a system composed of a single synchronization with two input places p1

and p2 (see Figure 6.7). The net has two structural PT-sets, either W1 = {(p1, t1)}
or W2 = {(p2, t1)}. If the time period is one time unit, the evolution of the system

according to PT-set W1 is ruled by the matrix F1 = (e−1 0; e−1 − 1 1). The system

matrix for PT-set W2 is F2 = (1 e−1−1; 0 e−1). Considering that the initial marking

is m0 = (4; 2), the initial PT-set for the system is W2, and after one time unit the

marking will be m(τ = 1) = (2 · e−1 + 2; 2 · e−1).

As external agents of the system 4 cases will be considered (see Figure 6.8): The

output of the system, i.e., measured place, can be either p1 or p2; the PT-set that is

assumed to be ruling the net system can be either W1 or W2.

In the first two cases m[p1] is the output of the system (y = (4; 2 · e−1 + 2)):

Case 1: W2 is assumed to be the PT-set. For this case ϑ = (1 0; 1 e−1 − 1) whose

rank is 2. Using Equation 6.1 the initial marking m0 = (4; 2) is obtained.

Case 2: W1 is assumed to be the PT-set. The observability matrix is ϑ =

(1 0; e−1 0). Equation 6.1 has no solution.

In this way, by means of an “infeasible” estimate (case 2), it has been detected that

the PT-set of the system is W2.

If p2 is measured, (y = (2; 2 · e−1)), the two cases are:

Case 3: W2 is assumed to be the PT-set. ϑ = (0 1; 0 e−1), which is not a full rank

matrix. The observable subspace is in this case m[p2], i.e., only the marking of

p2 is known. The application of Equation 6.1 yields m0[p2] = 2.

Case 4: W1 is assumed to be the PT-set. The observability matrix is ϑ = (0 1; e−1−
1 1) which has full rank. The solution for Equation 6.1 is m0 = (2 2), different

from the real initial marking of the system.

96 6. Observability

 PT−set
Estimate

output
System

W2

W1
Infeasible estimation

case 1

Right estimation

(m1 = m2)
Suspicious estimation

case 4case 2

case 3

Right estimation
of m2of m1 and m2

p1 p2

S=(0 1)S=(1 0)

Figure 6.8: The four possible cases for an estimate for the system in Figure 6.7.

The at first glance surprising result yielded in Case 4 will be obtained for any

initial marking of p1 greater than or equal to 2. The reason for this phenomenon is

that the output of the system, m[p2], is evolving according to the flow of the transition

t1 that depends only on m[p2]. The estimator “thinks” that the flow of the transition

is ruled by p1 (W1 is assumed), so the only way in which p2 can evolve according to

the output y is assigning the same initial marking to both places.

An initial marking m0 = (2 2) would mean that at the beginning the system is in

both PT-sets, W1 and W2. If it is assumed that the initial marking was really (2 2)

both PT-sets (case 3 and case 4) would correctly estimate here the marking of p2.

The PT-set W1 can also estimate the marking of p1, but it is not possible to know

whether this estimate is correct since the same estimate would have been obtained

for any m0[p1] ≥ 2. Therefore, it seems safer to stick to the PT-set W2, even if it

might mean losing some information. Those estimates that belong to several PT-sets

will be considered “suspicious estimates”. Notice that the only non desirable effect

that may happen after filtering suspicious estimates is that some information (in case

4 the estimate of p1) is lost if the system was really in several PT-sets. However, for

sure the estimate that is not filtered (case 3) is correct.

6.3.2 Incoherent Estimates

Another rule to filter a PT-set is that the estimates should be coherent with the PT-

set for which they are computed. In other words, it does not make sense to consider

an estimate that assigns a greater marking to p1 than to p2, if the PT-set for which

it is computed happens when m[p1] ≤ m[p2].

6.3. Observability in General Net Systems 97

By means of Equation 6.1, it is possible to compute the set of estimates for a

given PT-set. If the matrix ϑ has full rank, then only one estimate is possible for

the PT-set. Otherwise, a set of possible estimates appears. In order to avoid those

estimates that are not coherent with the PT-set, a set of inequalities may be added

to Equation 6.1.

2PSfrag replacements

p1 p2

p3

t1

t2

t3

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

System evolution

m[p1]
m[p2]
m[p3]

Σ Σ Σ2 2 1

commutation

PSfrag replacements

p1

p2

p3

t1
t2
t3

(b)

Figure 6.9: Marking evolution of a system with two PT-sets.

As an example, suppose that one is interested in computing an estimate for the

system in Figure 6.9(a). That net has two structural PT-sets: it will be said that

the system is in PT-set W1 if m[p1] ≤ m[p2] and the system is in PT-set W2 if

m[p1] ≥ m[p2]. In the case that m[p1] = m[p2], the system is considered to be in

both PT-sets simultaneously. Two estimates will be computed for this system, one

per PT-set. The estimate corresponding to PT-set W1, m̂
(1)
0 , (W2, m̂

(2)
0) has to be

solution of Equation 6.1 with ϑ computed for the linear system associated to the PT-

set and m̂
(1)
0 (m̂

(2)
0) has to fulfill m̂

(1)
0 [p1] < m̂

(1)
0 [p2] (m̂

(2)
0 [p1] > m̂

(2)
0 [p2]). The use

of strict inequalities allows one to filter also suspicious estimates like the one shown

in Subsection 6.3.1. If there were no solution with strict inequalities, equalities would

have to be added taking care of the suspicious cases.

6.3.3 Deciding on Observability

Let us observe the output of the system in Figure 6.9(a) during three time periods

in order to have enough output information to use Equation 6.1. Let us assume

98 6. Observability

that no change of PT-set has taken place during these three time periods. After the

observation, two equation systems, E1 and E2, can be defined to compute an estimate

for the initial marking. The system E1 (resp. E2) contains Equation 6.1 with ϑ1 (resp.

ϑ2) and the set of inequalities that defines the PT-set W1, i.e., m̂
(1)
0 [p1] < m̂

(1)
0 [p2]

(resp. W2, m̂
(2)
0 [p1] > m̂

(2)
0 [p2]). If only one of those equation systems has solution,

that equation system corresponds to the initial PT-set of the net system. If both

equation systems, E1 and E2 have solution, it is not possible to decide the initial

PT-set of the system. The case in which none of the equation systems has solution

happens when the initial marking of the system is in both PT-sets at the same time,

i.e., m0[p1] = m0[p2]. In this case, the inequalities in E1 and E2 must be substituted

by m̂
(1)
0 [p1] = m̂

(1)
0 [p2]. Any solution of E1 or E2 is a suitable estimate for the initial

marking.

For a general Petri net system with k structural PT-sets, a set of equation systems,

E1 . . . Ek, can be defined. Each Ei contains Equation 6.1 with ϑi and the set of

inequalities that defines the PT-set.

Proposition 6.9. Let 〈N ,λ,m0〉 be a continuous system, whose initial marking,

m0, is unknown but belongs to only one PT-set. Let S be the output matrix of the

system and Ei the set of equations associated to the i-th PT-set.

Then the PT-set of m0 can be determined before a switch to another PT-set

happens iff only one system Ei, 1 ≤ i ≤ k has solution.

Proof.

(⇒) Let us assume that more than one system, Ei and Ej , have solution. This would

imply that at least two estimates for the initial marking exist, one for Ei and one

for Ej . Taking those estimates as initial marking, the constraints for the PT-sets

that Ei and Ej represent are verified, and the system output evolves according to

the dynamics of Ei and Ej . This means, that both estimates are feasible, and so the

initial PT-set of the system cannot be determined.

(⇐) If only one system Ei has solution, it means that from the initial marking the

output of the system can only evolve according to the equations in Ei.

In relation to general piecewise linear systems, determining the PT-set of a con-

tinuous Petri net is equivalent to determining the linear system that at a certain

moment rules the evolution of the piecewise linear system. However, the condition

that establishes whether it is possible to determine the linear system is much harder

in general piecewise linear systems: in contrast to the condition in Proposition 6.9,

it is required that the joint observability matrix of every couple of linear systems has

full rank [VCS02, VCSS03]. This difference is due to the fact that in Petri nets the

PT-set depends only on the marking (and the net structure).

For a system 〈N ,λ,m0〉, the verification of the condition in Proposition 6.9 implies

that the initial PT-set can be determined. However, it does not imply that the initial

6.4. Observers and estimates 99

marking can be obtained. This happens when there exists only one system Ei that has

solution, but the solution is not unique, i.e., there exists a non observable subspace.

Assume that 〈N ,λ,m0〉 switches to a PT-set that corresponds to an observable linear

system. By using Equation 6.1 during the evolution of the system in this new PT-set,

the complete marking can be computed. Once the complete marking of the system

is known, the system can be “simulated” backwards, see Section 6.1. Since timing is

deterministic, a backwards simulation till the initial time yields the initial marking,

i.e., the system is observable.

Proposition 6.10. Let 〈N ,λ,m0〉 be a continuous system and S the output matrix.

If the evolution of the marking of 〈N ,λ,m0〉 passes through an observable PT-set

then the system is observable.

In other words, Proposition 6.10 implies that having a period in the evolution

of the system during which the PT-set allows one to compute the complete current

marking is enough to determine the initial marking.

6.4 Observers and estimates

The previous section shows how an estimate can be computed by using Equation 6.1.

The main drawback of that method is that it is very sensitive to the noise that may

appear in the output y. In order to overcome the problem of noise, observers are

introduced. Basically, an observer is a dynamical system whose input is the output

of the system to be observed. The state of an observer is the estimate for the system

to be observed. It will be shown that a great parallelism exists between algebraically

computed estimates and observers’ estimates. A well designed observer should con-

verge asymptotically to the real state of the observed system. For linear systems,

Luenberger’s observers [Lue71, Oga95] are widely used. A Luenberger observer for a

Petri net with a single PT-set can be expressed as: ˙̃m = A ·m̃+K · (y−S · m̃) where

m̃ is the marking estimate, A and S (see Section 6.1) are the matrices defining the

evolution of the system marking and its output in continuous time, y is the output of

the system and K is a design matrix of parameters. The eigenvalues of the observer

can be chosen arbitrarily, by means of K, iff the system to be observed is observable.

If the eigenvalues of the observer are appropriately chosen then the estimate will con-

verge asymptotically to the marking of the system. In the case that the system is not

observable, an observer to estimate the observable subspace, Xo, can be designed.

The reliability of an estimate can be measured by means of a residual [BBDSV02].

Let us define a norm ||·|| as ||x|| = |x1|+. . .+|xn|. The residual at a given instant, r(τ),

is the distance between the output of the system and the output that the observer’s

estimate, m̃(τ), yields, i.e., r = ||S · m̃(τ) − y(τ)||.

100 6. Observability

6.4.1 Filtering estimates

One (Luenberger) linear observer will be designed per PT-set of the Petri net system.

The designed observers will be launched simultaneously, and each one of them will

yield an estimate. Some estimates may not be suitable for the PT-sets for which they

are computed. Such estimates cannot represent the marking of the system and must

be filtered. Three conditions will be presented that the estimates of the observers have

to fulfill in order to be suitable: 1) the residual must tend to zero; 2) the estimates

of places in synchronization have to be coherent with the PT-set for which they are

computed; 3) the estimate must not be suspicious, i.e., it must not belong to several

PT-sets at the same time.

PSfrag replacements
p1

p2

p3

t1
t2

Figure 6.10: A simple general Petri net system with two PT-sets.

Let us consider the system in Figure 6.10 with λ = (1 1) to show the behavior

of the observers and their estimates under different conditions. The net has two PT-

sets: W1 = {(p1, t1), (p3, t2)} and W2 = {(p2, t1), (p3, t2)}. The system has a single

T-semiflow, (1 1). Hence, in the steady state the flow of both transitions is the same.

Since the net has two PT-sets, two linear observers can be designed.

Residuals

Let us consider the observer designed for PT-set W1. Such observer assumes

that m[p1] ≤ m[p2] and so the system matrix in continuous time is A =

(−1 0 1;−1 0 1; 1 0 − 1). Let us assume that the output of the system is the

marking of places p1 and p3, i.e., S = (1 0 0; 0 0 1). Under this conditions the ob-

servable subspace, Xo, corresponds just to the marking of places p1 and p3. That

is, p2 is timed-implicit, i.e., its marking is not giving the minimum in the expression

for the enabling degree, and cannot be observed (in this case it is also implicit and

could have been removed). Therefore, the observer sees the evolution of a dynamical

system ruled by matrix A′ = (−1 1; 1 − 1) for places p1 and p3.

If the real PT-set of the system is W1 the system will evolve to a steady state

marking, m, at which m[p1] = m[p3] < m[p2]. An observer with appropriate eigen-

6.4. Observers and estimates 101

values will asymptotically converge to an estimate marking m̃[p1] = m̃[p3] and the

residual will go to 0 as time increases. If the real PT-set of the system is p2, p3, then

in the steady state m[p2] = m[p3] < m[p1]. It can be checked, that the observer will

not reach a steady state estimate in which m̃[p2] = m̃[p3] and therefore the residual

will not tend to 0. In this case, the information given by the residual allows one

to decide that W1 is not the PT-set of the net system. In general, every observer’s

estimate whose residual is not converging to 0 has to be filtered.

Coherent Estimates

It will be said that an estimate is coherent with the PT-set for which it was computed

if it belongs to that PT-set. Let us consider again the observer designed for PT-set

W1 of the system in Figure 6.10 and let now the output matrix be S = (1 0 0; 0 1 0).

In this case the observable subspace is complete, i.e., X = Xo and the marking of

every place can be estimated. For the observer, p2 has no influence on the dynamics

of the system since it is not in W1. In the steady state it verifies m̃[p2] = m[p2]. The

observer thinks (assuming that PT-set W1 is the real PT-set) that in the steady state

m[p1] has to equal m[p3] so that the flow of t1 is equal to the flow of t2. Therefore,

the system estimate converges to m̃[p1] = m̃[p3] = m[p1]. In this way, the residual,

r = |m̃[p1] − m[p1]| + |m̃[p2] − m[p2]|, is always equal to 0 in the steady state,

independently of the real PT-set of the system.

The same phenomenon appears in the observer for PT-set W2. The estimate

converges to m̃[p1] = m[p1] and m̃[p2] = m̃[p3] = m[p2], independently of the real

PT-set of the system. So, the residual always converges to 0.

Therefore, residuals are not helping to decide which PT-set of the system is the

correct one. In principle, both observers are equally good since both residuals tend to

0. However, in order to choose the correct one it is enough to consider the marking

of the places in the synchronization. Since, in this case both places are output of

the system, it can be directly decided in which of the PT-sets the system is. In a

general case, the estimate of an observer that is not coherent with its PT-set has to

be filtered.

Suspicious Estimates

Let us consider the system in Figure 6.10 with output matrix S = (1 0 0; 0 0 1). The

observable subspace of the observer for PT-set W2 = {(p2, t1), (p3, t2)} is complete.

For this observer, the marking of place p1 does not play any role in the evolution of

the system. The estimate of place p1 will always converge to the real marking of p1,

m̃[p1] = m[p1]. In the steady state, the observer will equal its estimates of p2 and

p3 in order to fire transitions t1 and t2 in the same amount. Since m[p3] is taken as

output, the estimate will converge to m̃[p2] = m̃[p3] = m[p3].

102 6. Observability

Let us assume that the real PT-set of the system is PT-set W2. Then, in the steady

state m[p1] > m[p2] = m[p3] and according to the above reasonings the observer’s

estimate will correctly converge to the real marking of the system. If the real PT-

set is PT-set W1, the marking reached in the steady state fulfills m[p2] > m[p1] =

m[p3], and therefore the observer will converge to an estimate marking, m̃, such that

m̃[p1] = m̃[p2] = m̃[p3]. This estimate is considered suspicious because it assigns

exactly the same markings to two places in synchronization for any initial marking

m0 of the system such that m0[p2] ≥ m0[p1].

6.4.2 Observers’ steady state

Some conditions to detect non-suitable observers’ estimates have just been presented.

A very tight relationship can be established between these conditions and those de-

scribed in Section 6.3 for the estimates computed using Equation 6.1: for example,

Equation 6.1 has no solution for a given PT-set iff the observer’s estimate for that

PT-set has a non null residual in the steady state. In the same way, suspicious or

non-coherent estimates appear according to Equation 6.1 when there exists an ob-

server whose estimate in the steady state is suspicious or non-coherent. Unlike the

estimates computed in Section 6.3, the estimate yielded by an observer becomes more

reliable as time increases.

When the system enters the steady state, its marking can be considered to remain

constant and observers stabilize. At this point, those estimates that generate a non

null residual or are not coherent must be filtered. Suspicious estimates must also be

filtered if there exists at least another estimate that is not suspicious. If there is only

one observer’s estimate that has not been filtered, it is associated to the real PT-set

of the system in the steady state. Assuming that in the steady state the system is not

in more than one PT-set, the necessary and sufficient condition that has to be verified

in order to filter every but one estimate, is equivalent to that of Proposition 6.9.

Proposition 6.11. Let us assume that the steady state marking of a system belongs

only to one PT-set. In the steady state only one observer’s estimate is not filtered,

i.e., it generates a null residual, it is coherent with its PT-set and it is not suspicious

iff only one equation system Ei, 1 ≤ i ≤ n as defined in Section 6.3.3 associated to

PT-set i has solution.

During the transient state, the estimates given by the observers may not be very

reliable since there has not been enough time to get stabilized. At a given instant in

the transient, the number of observer’s estimates that are coherent with their PT-set

may differ from the number of Ei systems that have solution. When this happens, a

way to choose an estimate consists of choosing the one with minimum residual.

6.5. Design of a switching observer 103

6.5 Design of a switching observer

This Section shows the design of an observer based on the filter of non-suitable esti-

mates and the simulation of the system.

6.5.1 Filter based observer

Let us consider the continuous Petri net system in Figure 6.9(a). Let the output

of the system be the marking of place p1, that is, S = (1 0 0). The net has two

PT-sets: let one of the PT-sets be Z1 = {(p1, t1), (p1, t2), (p3, t3)} and the other

be Z2 = {(p1, t1), (p2, t2), (p3, t3)}. The observable subspace of the PT-set Z1 is the

marking of places p1 and p3, while the observable subspace of PT-set Z2 is the marking

of all the places. Let the internal speeds of the transitions be λ = (0.9 1 1) and the

initial marking be m0 = (3 0 0). The marking evolution of this system is depicted in

Figure 6.9(b).

One observer per PT-set will be designed: observer 1 for PT-set Z1 and observer

2 for PT-set Z2. Let the initial state of observer 1 be e01 = (1 2) and its eigenvalues

be (−12 + 2 ·
√

3 · i, −12 − 2 ·
√

3 · i). Since observer 1 can only estimate p1 and p3,

the first component of its state vector corresponds to the estimate for m[p1], and its

second component to the estimate for m[p3]. For observer 2, let the initial state be

e02 = (1 0 2) and its eigenvalues be (−15, −12 + 2 ·
√

3 · i, −12 − 2 ·
√

3 · i). The

evolutions of the estimates of the observers are depicted in Figures 6.11 and 6.12.

The estimate of observer 1 gets quite close to the real marking of the system when

it is in PT-set Z1. At time τ = 3.7 the system switches to PT-set Z2 and the estimate

for the marking of place p3 moves away from the real marking. Similarly, the estimate

of observer 2 gets very close to the marking of the system before it switches to PT-set

Z1 at time τ = 1.1. As soon as the system switches, the observer loses the goodness of

the estimate. When the system switches back to PT-set Z2, the estimate approaches

back quickly to the marking of the system.

After launching the observers for the PT-sets, a criterion must be adopted to decide

which the best observer’s estimate is. First, let us just filter the observer’s estimate

that has the greatest residual, see Figure 6.13. Before the first switch, observer 2 is

chosen. After the switch, some time elapses till the residual of observer 2 becomes

greater than the residual of observer 1. When this happens, the estimate of observer 2

is filtered. A similar phenomenon can be seen when the system switches from PT-set

Z1 to PT-set Z2: after a little time the estimate of observer 2 becomes smaller than

the estimate of observer 1.

Notice that from the first system switch till the switch of observers, observer 2 has

the minimum residual. However, it is not coherent with the PT-set for which it was

designed, since m̃[p1] < m̃[p2]. Let us improve the estimate given by the observers

104 6. Observability

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Observer 1

m[p1]
m[p2]
m[p3]
e11
e13

e11

e13

e13

Figure 6.11: Evolution of observer 1, (e11, e13) is the estimate for (m[p1], m[p3]).

by filtering those estimates that are not coherent with their PT-sets, see Figure 6.14.

In this way, the first switch is immediately detected.

6.5.2 Improving the observer’s estimate

The filter described in the previous Subsection allows one to eliminate non-suitable

estimates, i.e., infeasible, non-coherent and suspicious estimates. However, the result-

ing estimate can still be improved by taking into account some considerations. Let

us have a look at Figure 6.14. When the first system switch happens, the estimate

of observer 2 is very close to the marking of the system. By switching from observer

2 to observer 1, the estimate became discontinuous and, what it is more undesirable,

the estimate for the marking of p3 becomes worse. A similar effect happens when the

second system switch occurs. Another undesirable phenomenon is that the estimate

of the marking of p2 just disappears (since m[p2] in unobservable for observer 1) when

the estimate of observer 2 is filtered.

One way to avoid discontinuities in the resulting estimate, is to use the estimate

of the observer that is going to be filtered to update the estimate of the observer that

is not going to be filtered. This estimate update must be done when a system switch

6.5. Design of a switching observer 105

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Observer 2

m[p1]
m[p2]
m[p3]
e21
e22
e23

e21

e22

e23

Figure 6.12: Evolution of observer 2, (e21, e22, e23) is the estimate for

(m[p1], m[p2], m[p3]).

is detected. In order not to lose the estimate of the marking of a place when it was

almost perfectly estimated (recall the case of p2 when the first switch happened) a

simulation of the system can be launched. The initial marking of this simulation is

the estimate of the system just before the observability of the place is lost (in the

case of the example, the estimate of observer 2 when the first switch took place).

Such simulation can be seen as an estimate for those places that are not observable

by the observer being considered. The simulation can only be carried out when an

estimate for all the places exists and the residual is quite small. Figure 6.15 shows the

evolution of the estimate of the system taking into account the following: when the

first switch is detected (observer 2 becomes non-coherent) the estimate of observer 1

is initialized with the estimate of observer 2. At that point a simulation is launched

to estimate the marking of p2. When the second switch is detected (the estimate

of m[p2] becomes smaller than the estimate of m[p1]) the estimate of observer 2 is

initialized with the estimate of observer 1. Notice that once the estimate is close to

the system marking, it does not move away from it, even if a switch happens. Based

on these ideas, Algorithm 6.12 sketches how an estimate, est, can be computed as the

system evolves.

106 6. Observability

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Observer with minimum residual

m[p1]
m[p2]
m[p3]
ominr1
ominr2
ominr3

ominr1

ominr2

omnir3

ominr2

Figure 6.13: Minimum residual observer, (ominr1, ominr2, ominr3) is the estimate for

(m[p1], m[p2], m[p3]).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Coherent observer with minimum residual

m[p1]
m[p2]
m[p3]
omcr1
omcr2
omcr3

omcr1

omcr3

omcr2

omcr2
omcr3

Figure 6.14: Minimum residual and coherent observer, (omcr1, omcr2, omcr3) is the

estimate for (m[p1], m[p2], m[p3]).

6.6. Conclusions 107

Algorithm 6.12 (Observer’s algorithm).

Input: (N , λ, D) % Timed net and set of measured places

Output: est % Estimate

Begin

Launch simultaneously one observer per PT-set

Repeat

est0 := suitable observer’s estimate with minimum residual

If est0 6= ∅ then % There exists a suitable estimate

If est0 does not estimate every place and there exists a

simulation that is coherent with est0 then

est := est0 plus the values of the simulation that are not in est0
Else

est := est0
End If

If a system switch is detected then

Update the estimates of the observers with est

If est estimates every place with small residual then

Create/substitute a simulation taking est as the initial marking

End If

End If

Else % No estimate is suitable

Take any observer’s estimate

End If

End Repeat

The resulting observer can be seen as a set of switching linear observers. One of

the main advantages is that the residual does not increase sharply when the PT-set

of the system changes. Another interesting feature is that the use of a simulation

allows one to estimate the marking of places that in some PT-sets are in principle not

observable: in Figure 6.15 it can be seen that the marking of p2 can be estimated,

even when it is unobservable due to PT-set Z1 being active.

6.6 Conclusions

Structural observability has been introduced, and studied for net systems without

synchronizations (JF systems). The main advantage of considering structural ob-

servability is that it is independent of the internal speeds of transitions, λ, i.e., a

structurally observable system can be observed for any λ. A fix point algorithm to

compute the set of places that are structurally observable, has been presented. It is

based on the net graph of the system, and some elementary algebraic properties.

108 6. Observability

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Combine observer and Simulation

m[p1]
m[p2]
m[p3]
obss1
obss2
obss3

obss1

obss2

obss3

Figure 6.15: Resulting observer’s estimate that makes use of a simulation,

(obss1, obss2, obss3) is the estimate for (m[p1], m[p2], m[p3]).

A general (with synchronizations) timed continuous Petri net can be analyzed as

a specific kind of piecewise linear system in which switches are triggered by internal

events. By making use of some concepts of the theory for linear systems, a marking

estimate can be computed for each structural PT-set. This leads to a large number

of estimates. Several cases have been shown in which the estimate for a given PT-

set cannot be giving a right marking estimate: The estimate is either infeasible or

non-coherent. Such estimates must be “filtered” (suspicious estimates should also be

filtered if a feasible, coherent and non-suspicious estimate exists). The PT-set ruling

the evolution of the system can be identified iff only one estimate is not filtered. Given

that a (deterministic) continuous Petri net system can be simulated backwards, it is

enough that the system passes through an observable period in order to be able to

estimate the initial marking. Thus, the conditions for observability in continuous

Petri nets that have been obtained, are much less restrictive than those for general

piecewise linear systems [VCS02].

With respect to the design of an observer for a timed continuous Petri net, the

possibility of designing one linear (Luenberger) observer per structural PT-set has

been considered. As it happens when dealing with estimates computed algebraically,

the estimate yielded by a given observer may be not feasible for the linear system

6.6. Conclusions 109

for which it was designed: either the estimate generates a non null residual or it

is non-coherent or suspicious. Based on the idea of choosing the feasible estimate

with the smallest residual, a switching observer has been proposed. An interesting

feature is that it launches a simulation of the system when the marking estimate is

good enough. The use of such simulation allows one to improve the estimate in two

ways: The estimate does not change sharply when the net PT-set switches; there is

a chance of estimating the unobservable space of the PT-set driving the evolution of

the system.

110 6. Observability

Chapter 7

Controllability

Summary

Optimally controlling a hybrid system is a challenging problem for which mainly

continuous-time and discrete-time methods have been suggested. This chapter ad-

dresses the problem of optimal control in the framework of timed continuous Petri

nets under finite servers semantics. The proposed approach consists of transforming

the continuous Petri net into an equivalent hybrid system whose evolution is described

by means of discrete-event steps. In particular, each step coincides with the occur-

rence of an event in the continuous Petri net. Thus, the number of steps required

to know the behavior of the Petri net is minimum, while the accuracy is completely

preserved. It is shown how to design a Mixed Integer Linear Programming problem

in order to compute the optimal control solution for different performance criteria.

111

112 7. Controllability

Introduction

Observability and controllability are dual concepts in dynamical systems theory. With

respect to observability, the system is considered “untouchable” by an external agent

and the goal is to extract as much information about it as possible. On the other

hand, controllability is a property that applies to those systems whose state can be

completely controlled by an external agent by means of input actions that explicitly

modify the system behaviour. There exists a wide variety of problems related to the

control of dynamical systems. The issue of optimal control is recently attracting the

attention of many researches in the field of hybrid systems.

The different approaches taken to face the problem of optimal control can be

roughly divided into two groups: those using continuous-time hybrid models and

those using discrete-time hybrid models. Regarding continuous-time hybrid models,

the main considered issues are the study of necessary trajectories to be optimal and the

computation of optimal control laws by means of Hamilton-Jacobi-Bellman equations

or the maximum principle. With respect to discrete-time hybrid models, a solution

to optimal control problems was proposed in [BM99]. Time discretization has two

important drawbacks: 1) The length of the sampling period is not easy to define.

There exists a tradeoff between accuracy (short sampling period) and computational

speed (long sampling period). In fact, the complexity typically grows exponentially

with the number of switching variables, and these, for a given time interval, are

inversely proportional to the length of the sampling period. 2) It is assumed that

events can occur only at time instants that are multiple of the sampling period.

Ideally, one would like to deal with a model that requires a minimum number of

steps (samples) without loss of accuracy. Consider for instance the following hybrid

system expressed in continuous-time:

{
ẋ = 2 + 2 · u with u ∈ [−1, 1] if x < 8

ẋ = 1 + 1 · u with u ∈ [−1, 2] if x ≥ 8
(7.1)

and discretize it with a sampling period of one time unit:

{
x(k + 1) = x(k) + 2 + 2 · u(k) with u(k) ∈ [−1, 1] if x(k) < 8

x(k + 1) = x(k) + 1 + 1 · u(k) with u(k) ∈ [−1, 2] if x(k) ≥ 8
(7.2)

Let us consider the time optimal control problem of driving the system from the

origin, x(0) = 0, to the target state x = 14 in minimum time. An optimal control

for this problem is: u(0) = 1 (x(1) = 4), u(1) = 1 (x(2) = 8), u(2) = 2 (x(3) = 11),

u(3) = 2 (x(4) = 14). Now suppose that the system has not been discretized with

respect to time, but that the end of each sampling period of the model coincides with

the occurrence of an event, i.e., a switch in the dynamics of the system. The time

7.1. Controlled Petri net systems 113

elapsed between events is now a real variable q. Such a model may be classified as

event-driven. If that model could be created the time optimal control to reach x = 14

would be: u(0) = 1 during q(0) = 2 time units (x(1) = 8), u(1) = 2 during q(1) = 2

time units (x(2) = 14). That is, only two steps are necessary. In fact, given the

linearity of the system, its whole evolution can be derived from the state at the event

instants, and therefore steps 1 and 3 of the discrete-time model could be avoided.

The idea of optimal control via event-driven models is a relatively novel approach

for controlling hybrid systems (see for example [SvdB01]). In this chapter, such an ap-

proach is presented and applied to the model of continuous Petri nets (PN) [JBRS04].

The rest of the chapter is organized as follows: In Section 7.1 it will be shown

how control actions can be introduced into a timed continuous Petri net model in

order to control it. Section 7.2 is concerned with the transformation of a continuous

Petri net into a novel event-based Mixed Logical Dynamical System (eMLD) [BM99],

a class of hybrid models that is very suitable for optimization purposes. The most

important feature of this transformation is that the obtained eMLD system switches

its continuous-time dynamics if and only if an event occurs in the original continuous

Petri net. Section 7.3 shows how optimal control problems can be solved by using

Mixed Integer Linear Programming techniques.

7.1 Controlled Petri net systems

Control actions can be introduced into the model in order to modify the autonomous

timed evolution of the system. In continuous PNs these actions are applied to the

transitions of the net. A transition t is controllable when its flow can be slowed down

in a quantity that depends on the input, u[t], applied to it. The value u[t] is positive

and upper limited by λ[t]. An action u[t] on the transition t can be seen as if the valve

associated to t was closed in an amount u[t]. The way of computing f is analogous

to the one shown in Subsection 1.3.1, being now the maximum flow allowed by t,

λ[t] − u[t]. Hence, if transition t is strongly enabled then f [t] = λ[t] − u[t]. If t is

weakly enabled f [t] will be computed considering λ[t] − u[t] the upper bound for the

flow of t. If t is neither strongly nor weakly enabled f [t] = 0.

To show how input actions modify the evolution of a system, let us apply the

input action u[t1] = 0.5 to the system in Figure 7.1(a). Since, transition t1 is initially

strongly enabled, its flow will be f [t1] = λ[t1] − u[t1] = 1.5. After two time units p1

becomes empty. Hence, the maximum flow allowed by t1 is the input flow coming

to p1, that is 1. Now, every input action on t1 ranging from 0 to 1 has no effect on

the system evolution. However, if u[t1] is greater that 1, the flow of t1 will be slowed

down. For example, if u[t1] = 1.5, the flow of t1 will be f [t1] = 0.5, and consequently

p1 will start to fill. The analytic expression for f [t1] with arbitrary λ[t1] and λ[t2]

when p1 is empty is f [t1] = min(λ[t1] − u[t1],λ[t2] − u[t2]).

114 7. Controllability

PSfrag replacements

t1

t2

t3

p1

λ[t1] = 2

λ[t2] = 1

λ[t1] = 1

λ[t2] = 3

λ[t3] = 3

(a)

PSfrag replacements

t1 t2

t3

p1λ[t1] = 2

λ[t2] = 1

λ[t1] = 1 λ[t2] = 3

λ[t3] = 3

(b)

Figure 7.1: The input actions applied to the transitions determine their flow.

Similarly, for the system in Figure 7.1(b), if m[p1] > 0 then f [t1] = λ[t1] − u[t1]

and f [t2] = λ[t2] − u[t2]. If m[p1] = 0 then

f [t1] = min((λ[t3]−u[t3])/2+max(0, (λ[t3]−u[t3])/2− (λ[t2]−u[t2])),λ[t1]−u[t1])

and

f [t2] = min((λ[t3]−u[t3])/2+max(0, (λ[t3]−u[t3])/2−(λ[t1]−u[t1])),λ[t2]−u[t2]).

7.2 Modelling continuous Petri nets as event-driven

MLD systems

7.2.1 Mixed Logical Dynamical systems

Mixed logical dynamical (MLD) systems [BM99] are computationally oriented repre-

sentations of hybrid systems. They consist of a set of linear equalities and inequalities

involving both real and Boolean (0, 1) variables. An MLD system is described by the

following relations:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) + B5 (7.3)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) + D5 (7.4)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (7.5)

where x ∈ IRnr × {0, 1}nb is a vector of continuous and binary states, u ∈
IRmr × {0, 1}mb are the inputs, y ∈ IRpr × {0, 1}pb are the outputs, δ ∈ {0, 1}rb ,

7.2. Modelling continuous Petri nets as event-driven MLD systems 115

z ∈ IRrr represent auxiliary binary and continuous variables, respectively, and

A,B1, B2, B3, C,D1, D2, D3, E1, E2, E3, E4, E5 are matrices of suitable dimensions.

Given the current state x(k) and input u(k), the evolution of (7.3)-(7.5) is deter-

mined by solving δ(k) and z(k) from (7.5) and then updating x(k + 1) and y(k)

from (7.3) and (7.4). It is assumed that the system (7.3)-(7.5) is completely well-

posed [BM99], which means that for all x(k), u(k) within a given bounded set the

variables δ(k), z(k) are defined by (7.5) in a unique way.

Several conversion laws exist that allow one to transform logic relations into mixed-

integer inequalities. For example the threshold condition

[δ = 1] ↔ [a · x + b · u + c ≥ 0] (7.6)

where δ ∈ {0, 1}, a, b, c, x, u ∈ IR can be equivalently expressed as:

{
a · x + b · u + c < M · δ
a · x + b · u + c ≥ m · (1 − δ)

(7.7)

where M , m are upper and lower bounds, respectively, on a ·x+ b ·u+ c. In a similar

way, the semantics of the common relation

IF δ THEN z = a1 · x + b1 · u + c1 ELSE z = a2 · x + b2 · u + c2 (7.8)

which links Boolean to continuous variables, can be expressed with the following set

of inequalities:

(m2 − M1) · δ + z ≤ a2 · x + b2 · u + c2

(m1 − M2) · δ − z ≤ −a2 · x − b2 · u − c2

(m1 − M2) · (1 − δ) + z ≤ a1 · x + b1 · u + c1

(m2 − M1) · (1 − δ) − z ≤ −a1 · x − b1 · u − c1

(7.9)

where δ ∈ {0, 1}, a1, b1, c1, a2, b2, c2, x, u, z ∈ IR and Mi, mi are upper and lower

bounds on ai · x + bi · u + ci, i = 1, 2. Further details on these and other conversions

can be seen for example in [Mig02]. These transformations allow MLD systems to

model a great variety of hybrid systems.

Usually, in an MLD system k represents a time-step counter, and the length of

the time step is constant. It is common that the shorter the time step the greater

the accuracy of the model. Clearly, the main drawback of having a very short time

step is that many steps may be required to study the evolution of the system during

a given time interval. Assuring good accuracy while minimizing the number of steps

is a good criterion to choose the length of the time step.

116 7. Controllability

7.2.2 Continuous Petri nets as event-driven MLD systems

It will be shown how to use the MLD transformation machinery (see e.g. [TB04]) in

order to describe the behavior of a non-controlled continuous PN. In a non-controlled

system no input actions are considered, and therefore, the value of f is constant

between events and depends only on the IB - state of the net. By treating each step

k as the occurrence of an event in the continuous PN rather than the elapse of a

sampling period, the continuous PN will be transformed into an event-based mixed

logical dynamical (eMLD) system, i.e., an MLD such that after each step a place

becomes empty. Observe that this approach has two interesting advantages:

• Event-discretization does not imply loss of accuracy: The marking evolution of

a continuous PN is linear between events, and so it can be determined from the

marking of the net at the event instants.

• The number of steps is minimized: A step happens only when it is really required

(an event happens).

Clearly, this implies that the length of the period cannot be constant but depends

on the event instants, therefore making the eMLD system one is dealing with a truly

event-driven system, rather than a time-drive one. The time period will be a real

variable of the eMLD system expressing the length of the interval between two events.

The steps to convert a continuous PN into the aforementioned eMLD system are

the following:

1. Identify the potential IB - states of the continuous PN. That is, the potential

dynamics that may rule the evolution of the system. For example, the system in

Figure 7.4 has four potential IB - states: a) m[p1] > 0, m[p2] > 0, b) m[p1] > 0,

m[p2] = 0 c) m[p1] = 0, m[p2] > 0 d) m[p1] = 0, m[p2] = 0.

2. Describe the behavior of the PN under each IB - state. This is equivalent to

define the flow of the transitions under each IB - state.

3. Define the evolution of the marking. As seen in Subsection 1.3.1, the derivative

of the marking is given by the incidence matrix multiplied by the flows of the

transitions. This has to be included in the set of equations of the eMLD system.

For the system in Figure 7.1(b), the equation defining the evolution of the

marking is: m(k + 1) = m(k) + q · (f [t3] − f [t1] − f [t2]), where q is the real

variable storing the time elapsed between events k and k + 1.

4. Force that at least one place becomes empty at the occurrence of the next event.

To achieve this, a Boolean variable per place can be defined. The Boolean

variable becomes true iff the place at event k is marked and becomes empty

7.3. Optimal control using Mixed Integer Linear Programming 117

after q time units. By means of equation (7.5) it is easy to force that the sum

of these Boolean variables is positive, i.e., at least one place becomes empty.

The task of transforming an event-driven model describing a continuous PN into

an eMLD system in the form of (7.3) is greatly eased by HYSDEL [TB04] (HYbrid

System DEscription Language). Basically, HYSDEL allows one to describe a hybrid

system in textual form and generates the matrices of the equivalent MLD form.

Let us consider the system in Figure 7.2(a) with λ = (1.5 1 2) and m0 = (0 0 3).

The system is transformed into eMLD form following the tasks described above. Only

two steps are necessary to reach the steady state marking. The length of the first

two intervals is respectively q(1) = 3 and q(2) = 9. The evolution of the system is

depicted in Figure 7.2(b). After the second step, i.e., event, p1 and p3 become empty

and the system dies, that is, the flow of every transition is zero in the steady state.

2

PSfrag replacements

t1

t2

t3

p1 p2

p3

(a)

0 5 10 15
−1

0

1

2

3

4

5

6

7
m1
m2
m3

PSfrag replacements

t1
t2
t3
p1

p2

p3

(b)

Figure 7.2: (a) A continuous PN system. (b) The associated eMLD requires two steps to

reach the steady state.

7.3 Optimal control using Mixed Integer Linear

Programming

7.3.1 Obtaining a Mixed Integer Linear Programming

The eMLD system obtained in the previous section must be slightly modified in order

to take into account the effect of the control actions in the marking evolution. As

118 7. Controllability

explained in Subsection 7.1, when a transition t is controllable its flow, f [t], depends

on the input action u[t] applied to it. Let us assume that the control actions are

constant between events. Notice that this constraint is not very strong since the

effect of a non constant u[t] is equivalent to the effect of a constant u[t] with the same

integral.

Let us consider again the system in Figure 7.1(a) with m0[p1] = 1. Suppose

that transition t1 is controllable. Now, the flow of t1 is f [t1] = λ[t1] − u[t1] and the

marking evolution of p1 from event k to k +1 is m(k +1) = m(k)+ q · (f [t2]− f [t1]) =

m(k) + q · (λ[t2] − (λ[t1] − u[t1])). Thus, the equation defining m(k + 1) becomes

nonlinear since both q and u[t1] are real variables. Such an equation cannot be

included directly in an eMLD system. A way of overcoming this situation is to define

a new real variable h[t1] as follows: h[t1] = q · u[t1]. Hence, f [t1] · q = q · λ[t1]− h[t1]

and no product of real variables is required to compute m(k +1). That is, there does

not exist an explicit input variable but two real variables q and h[t1] from which the

value of u[t1] can be obtained.

The input action on a controllable transition, u[t], must be bounded by 0 and λ[t].

Equation (7.5) can be used to express these bounds. For example, for the system in

Figure 7.1(a) the equation 0 ≤ h[t1] ≤ q · λ[t1] must be added.

The following step after introducing the input actions into the eMLD system is

to define the function to be optimized. Let us focus on linear optimization functions.

The optimization variables that can be included in that function are: q, h, m or

any other Boolean or real variable that can be linearly originated from these ones.

Furthermore, if desired, the eMLD formalism allows one to add constraints on the

mentioned variables by means of Equation (7.5). This all leads to a multivariable

optimal control problem that can be expressed as:

min f · [m(0), .,m(N),h(0), .,h(N), z(0), ., z(N), δ(0), ., δ(N)]

s.t.

{
m(k + 1) = Am(k) + B1h(k) + B2δ(k) + B3z(k) + B5

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

(7.10)

Note that the duration of each period is stored in the real variable q, that is part of

the vector of real auxiliary variables z. This control problem is defined for a horizon

of N steps. It can be seen as a Mixed Integer Linear Programming (MILP) problem

where the integer variables can only be 0 or 1. See [Flo95] for a review of methods to

solve MILP problems. The solution of the programming problem contains the input

actions that have to be applied to the continuous PN in order to optimally control it.

Figure 7.3 shows the steps that have been followed to obtain an MILP problem

from the initial continuous PN. In contrast to the eMLDs described in Subsection 7.2.2

the eMLDs in this Section do not represent the free evolution of the system but

its controlled evolution. The controlled system will evolve in such a way that the

7.3. Optimal control using Mixed Integer Linear Programming 119

Mixed Integer

Linear Programming

problem

(MILP)

Mixed Logical

Dynamical model

(MLD)

Description

language

(HYSDEL)

Continuous

Petri net

PROBLEM

OPTIMAL CONTROL

Horizon

Optimization function

MODEL

Figure 7.3: Obtaining an MILP problem from a continuous PN.

optimization function is minimized/maximized. Events will happen without being

forced so that the system behaves optimally. Therefore it is not necessary to force

the occurrence of events when writing the eMLDs, i.e., step 4 in Subsection 7.2.2 can

be skipped.

7.3.2 Optimality Criteria

The optimization examples of this Subsection show how different kinds of optimal

control problems are solved by means of the explained event-driven approach. The

control problems have to do with reaching a target marking in minimum time, i.e.,

time optimal control, maximizing the steady state throughput and maximizing an

optimization function in which several different parameters are involved.

Time optimal control

Consider the system in Figure 7.4 where m0 = (4 2), λ = (2 4 3 2) and the controllable

transitions are t1 and t2. Let us consider the optimal control problem of reaching the

target marking m = (0 5) in minimum time. Hence the function to minimize in (7.10)

is
∑N

i=0 q(i). It is obtained u[t1](0) = 0, u[t2](0) = 2.4286 and the duration of the

step is q(0) = 7. The target marking is reached in one step. If it is desired to know the

steady state control at the target marking, it is only necessary to force the marking

in the last period to be constant. The steady state control obtained is u[t1] = 1,

u[t2] = 2.

The inclusion of auxiliary Boolean variables in (7.10) allows one to define more

elaborated optimization functions that may be useful in real situations. For example,

for the system in Figure 7.4, a Boolean variable per place can be defined in the

following way: The Boolean variable associated to p1 (respectively p2) is true iff the

target marking of p1 (respectively p2) has been reached. By using these Boolean

variables, it is possible to assign different priorities to different places, e.g., to favor

a certain place. Assume that a penalty of 3 (respectively 1) units is obtained per

120 7. Controllability

time unit elapsed without reaching m[p1] = 0 (respectively m[p2] = 5). An optimal

control problem that minimizes the sum of penalties yields the following control:

u[t1](0) = 0, u[t2](0) = 1 during the first step of q(0) = 2 units reaching m(1) = (0 0)

and u[t1](1) = 0, u[t2](1) = 3 during the second step of q(1) = 5 units reaching

m(2) = (0 5).

PSfrag replacements

t1 t2

t3 t4

p1 p2

Figure 7.4: A continuous PN with controllable transitions t1 and t2.

Consider the system in Figure 7.2(a) with λ = (1.5 1 2), m0 = (6 0 0) with

t1 and t3 as controllable transitions. Let us give a penalty of 1 unit per time unit

per place whose target marking has not been reached. The optimal control to reach

m = (0 4 1) that minimizes the penalty is: u[t1](0) = 0, u[t3](0) = 2 during the first

step of q(0) = 1 units reaching m(1) = (3.5 0.5 1) and u[t1](1) = 0, u[t3](1) = 1

during the second step of q(1) = 7 units reaching m(2) = (0 4 1).

Maximization of the steady state throughput

If no control is applied to the system in Figure 7.2(a) with λ = (1.5 1 2), it reaches a

steady state with null throughput, i.e., flow, for any initial marking. An interesting

control problem for such non live systems and for many manufacturing systems is to

maximize the throughput in the steady state. Consider that system with m0 = (6 0 0)

and t3 as the only controllable transition. Let us define an optimal control problem

that maximizes the throughput of t1 in the last period. The duration of the last

period is required to be 10 time units. During the last period the marking must

be kept constant, i.e., it is a steady state marking. Notice that the system has a

unique T-semiflow (repetitive sequence) and therefore maximizing the throughput

of t1 in the steady state is equivalent to maximizing the throughput of any of the

three transitions. The obtained control is: u[t3](0) = 2 during q(0) = 2.4 reaching

m(1) = (0 1.2 2.4) and u[t3](1) = 1 for the steady state (q(1) = 10). At that marking

the flow of the transitions is 1.

7.3. Optimal control using Mixed Integer Linear Programming 121

Optimization based on several parameters

The PN in Figure 7.5 represents a simple manufacturing system with two lines, (t1, t3)

and (t2, t4), and a shared resource p5. Let t1 and t4 be the controllable transitions,

m0 = (4 3 1 1 2) and λ = (2 3 5 2). Suppose that one is interested in reaching a

steady state marking in which m[p1] + m[p4] is maximum. Besides, a steady state

in which the flow of the transitions is as high as possible is desirable. To do this, an

optimization function including markings and flows can be defined. Weights can be

assigned to the markings and flows to highlight the importance of each parameter in

the optimization function. For example, an optimization function that gives the same

weight to the marking and the flows is: m[p1](N) + m[p4](N) + f [t1](N) + f [t2](N).

Due to the existing T-semiflows, in the steady state t3 (t4) will have the same flow

than t1 (t2). Therefore, in the optimization function it is not necessary to include

neither f [t3] nor f [t4].

2

2

2

PSfrag replacements

t1 t2

t3 t4

p1 p2

p3 p4

p5

Figure 7.5: A small manufacturing system.

Furthermore, it would be nice to reach the steady state marking as soon as possible.

For this control problem, an adequate optimization function to be maximized is k ·
(m[p1](N) + m[p4](N)) + k′ · (f [t1](N) + f [t2](N)) −∑N

i=0 q(i) with k, k′ big enough

to ensure that the marking of places and flows have priority (in this case it is enough

k, k′ ≥ 10). The obtained control with k = k′ = 10 is: u[t1](0) = 2, u[t4](0) = 2

with q(0) = 0.2 reaching m(1) = (5 2.4 0 1.6 2.4), u[t1](1) = 0, u[t4](1) = 2 with

q(1) = 0.8 reaching m(2) = (5 0 0 4 0) that is a steady state marking with the inputs

u[t1](2) = 0, u[t4](2) = 0.5.

The main drawback of solving an MILP to obtain an optimal control law is that

the time complexity is exponential with respect to the number of boolean variables.

This way, even the solution for not very large systems requires a substantial amount

of time. The control problems presented in this Section were solved by a PC Pentium

IV 2.6 Ghz using the GLPK (GNU Linear Programming Kit) package solver running

122 7. Controllability

under Matlab 6.5. The optimal solutions were always found in less than 3 minutes.

7.4 Conclusions

This chapter has studied the problem of optimally controlling a continuous Petri

net. Input actions have been explicitly introduced into the model and their effect

in the evolution of the system has been defined. The main concern is to overcome

the drawbacks that appear when considering discrete-time models. That is, loss of

accuracy when using a too long period and high computational load when using a too

short period.

The main contribution is to obtain a hybrid model with an event-based discretiza-

tion. That is, each step of the system coincides with the occurrence of an event.

Given that the evolution of continuous Petri nets is linear between events, the whole

trajectory of the system can be reconstructed from the marking at event instants.

This way, the number of required steps is minimized and the accuracy preserved. To

obtain such a hybrid model, continuous Petri nets are transformed into event-based

mixed logical dynamical models with some particular features. The use of the latter

models and a linear optimization function allows one to find the input actions that

optimally control the original continuous Petri net by solving a mixed integer linear

programming problem.

Chapter 8

Cases of Study

Summary

Three cases of study are reported in this chapter. First, a manufacturing system

representing a table factory is considered. The second case refers to an assembly line

with kanban strategy. For these systems, even for small initial markings, the size of

the reachability set is very large if the Petri net is considered as discrete. In this

thesis two servers semantics have been studied: Finite servers and infinite servers

semantics. For these two first cases, infinite servers semantics is considered; The first

case also deals with finite servers semantics. Many of the results obtained in this

thesis are used to study the properties of those systems as continuous. The main goal

of the third case is to model a car traffic system. This case, introducing the idea

of “realism”, provides a third time interpretation as a “variant” of infinite servers

semantics. This indicates that servers semantics is still a topic that requires much

research effort, being the case now that for this “new” time interpretation essentially

simulation can be used. The addition of discrete elements (traffic lights) to the model

results in a hybrid Petri net.

123

124 8. Cases of Study

8.1 A Manufacturing System

The Petri net system in Figure 8.1 represents a manufacturing system that produces

tables [Ter94, RS00]. The choice of such a simple case study is deliberate, the simplic-

ity of the model allows a clear presentation of the analysis techniques without getting

confused in non relevant details. The techniques presented here can be directly applied

on more complex manufacturing systems.

The system is composed of the following items: Two different machines (t1 and

t2) to make table-legs, a new fast one (t1) which produces two legs at a time, and

the old one (t2), which makes legs one by one; A machine (t3) to produce table

boards; A machine (t5) to assemble a four legs and a board; And a big painting line

(t6) which paints two tables at once. The painting line has more capacity than the

other machines, so more unpainted tables are brought (t4) from a different factory.

The different products are stored in buffers: Table-legs are stored in p5, boards are

stored in p6, and p7 is devoted to the storage of unpainted tables. The rest of the

places contains work orders: Whenever the painting line finishes a couple of tables, it

delivers work orders to the leg-makers, the board-maker, and the other factory. Due

to some commercial considerations, it is desired 50% of the tables to be assembled in

the factory and 50% to be brought from the other factory (this order is represented

by equal weights of the arcs going from t6 to p3 and p4). It is also required that 75%

of the legs are produced by the new machine and 25% by the old one (this is modelled

by the arc weights going from t6 to p1 and p2).

2

2
2

3

4

PSfrag replacements

t1

t2

t3

t4

t5 t6

p1

p2

p3

p4

p5

p6

p7

Figure 8.1: Petri net modelling a table factory.

The size of the reachability set if the system in Figure 8.1 is considered as discrete

8.1. A Manufacturing System 125

is 54. If the initial marking is scaled the size of the reachability set increases exponen-

tially (see Figure 1.1). Even for this small manufacturing example, analysis techniques

based on an exhaustive exploration of the state space are computationally prohibitive

if a large initial marking is considered. The remainder of this section studies the flu-

idified model of the manufacturing system, aiming to establish a connection between

the properties of the continuous model and those of a highly populated discrete one.

General considerations

The Petri net that models the manufacturing system is conservative and consistent,

i.e., every place is covered by a P-semiflow and every transition is covered by a T-

semiflow. The minimal P-semiflows of the net are (1 1 0 4 1 0 4) and (0 0 1 1 0 1 1).

There exists only one minimal T-semiflow, (3 2 2 2 2 2), thus, the net is mono-T-

semiflow (Subsection 1.1.2). Therefore, the firing proportions of the transitions after

any infinitely long firing sequence are determined by the T-semiflow. Furthermore, if

time is introduced to the model, in the steady state the flow through transitions under

any time interpretation has to be proportional to the T-semiflow. The firing rates

of the transitions, both for infinite and finite servers semantics, are λ[t1] = λ[t2] =

λ[t3] = λ[t4] = λ[t5] = λ[t6] = 1.

The system has one synchronization at transition t5 (machine assembling boards

and legs) involving places p5 and p6. Hence, according to Subsection 1.3.2, if infi-

nite servers semantics is considered the system has two structural PT-sets: W1 =

{(p1, t1), (p1, t2), (p3, t3), (p4, t4), (p5, t5), (p7, t6)} that will be active if m[p5]/4 ≤
m[p6] and W2 = {(p1, t1), (p1, t2), (p3, t3), (p4, t4), (p6, t5), (p7, t6)} that will be ac-

tive if m[p6] ≤ m[p5]/4. If W1 is active then the system marking evolves according

to:

Σ1 : ṁ =

−1 0 0 0 0 0 1.5

0 −1 0 0 0 0 0.5

0 0 −1 0 0 0 0.5

0 0 0 −1 0 0 0.5

1 1 0 0 −1 0 0

0 0 1 0 −0.25 0 0

0 0 0 1 0.25 0 −1

· m (8.1)

Otherwise, if W2 is active then the evolution of the marking is driven by:

126 8. Cases of Study

Σ2 : ṁ =

−1 0 0 0 0 0 1.5

0 −1 0 0 0 0 0.5

0 0 −1 0 0 0 0.5

0 0 0 −1 0 0 0.5

1 1 0 0 0 −4 0

0 0 1 0 0 −1 0

0 0 0 1 0 1 −1

· m (8.2)

If m[p6] = m[p5]/4 any of the equations can be taken since both yield the same

value. Notice that if W1 is active, place p6 is time implicit and does not play any

role in the system evolution (the sixth column of the matrix in Σ1 is null). The same

happens to p5 if W2 is active.

Figure 8.2 depicts the marking evolution under infinite servers semantics. Initially,

the PT-set W1 is active. At time τ = 1.61 a commutation occurs (m[p6] becomes less

than m[p5]/4) and W2 becomes active.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
m1
m2
m3
m4
m5
m6
m7

W W
1 2

Figure 8.2: Evolution of the manufacturing system under infinite servers semantics.

8.1. A Manufacturing System 127

Reachability

The net is consistent and every transition can be fired, thus, by Corollary 2.18 it holds

lim-RS(N ,m0) = δ-RS(N ,m0) = LRS(N ,m0), i.e., there are no spurious solutions

of the state equation if lim-reachability or δ-reachability are considered.

The set of reachable markings with a finite firing sequence is however not equal

to the linearized reachability set. The net system has several traps that are initially

marked and cannot be emptied with a finite firing sequence. For example, the traps

Θ1 = {p4, p7} and Θ2 = {p2, p5, p7} cannot be emptied with a finite firing sequence,

nevertheless they can be emptied with infinite firing sequences whose firing count

vectors are σ1 = (0 0 0 2 0 1) and σ2 = (0.5 3 0 1 1 1). Given that the system is

consistent, every transition is fireable and every trap is initially marked, the conditions

in Theorem 2.12 for a marking to be reached reduce to being a solution of the state

equation that does not contain empty traps. This result is obtained by reasoning

similarly as in Corollary 2.16. In other words, the set of reachable markings with a

finite firing sequence is equal to the linearized reachability set minus those markings

that contain empty traps.

Liveness

Since the net is mono-T-semiflow deadlock-freeness is equivalent to liveness. The only

markings at which no transition can be fired, i.e., deadlock markings, take place either

if m[p1] = m[p2] = m[p3] = m[p4] = m[p5] = m[p7] = 0 or m[p1] = m[p2] = m[p3] =

m[p4] = m[p6] = m[p7] = 0. Both situations would imply that a P-semiflow has

become empty, thus, those deadlock markings are not solution of the state equation

(Proposition 5.1) and cannot be reached under any reachability concept. The untimed

system is therefore live, lim-live and δ-live as continuous (hence, it is also structurally

live as discrete [Rec98]).

Since liveness of the untimed system is a sufficient condition for liveness of the

timed system (Section 4.2), it can be asserted that the timed system is live under any

time interpretation. Obviously, it verifies the condition stated in Theorem 4.13 for

robust-liveness.

Performance Evaluation

In the steady state, the set of places constraining the firing of the transitions (T-

coverture) is either {p1, p2, p3, p4, p5, p7} or {p1, p2, p3, p4, p6, p7}. Both T-covertures

contain a P-semiflow. Thus, according to Corollary 5.6 the exact throughput of the

system under infinite servers semantics can be computed in polynomial time with the

LPP (5.19). The solution of that LPP yields f [t6] = 0.4, the bottleneck P-semiflow

associated to the solution is (0 0 1 1 0 1 1).

128 8. Cases of Study

In order to check whether the fluidified model faithfully represents the discrete

one with large populations, it would be interesting to compare the throughput of the

system seen as discrete and as continuous. Table 8.1 shows how the throughput of

the markovian discrete system changes as the initial marking is scaled by increas-

ing quantities (k). The last column reports on the relative error of the normalized

throughput of the discrete system with respect to the throughput of the continuous

system f [t6] = 0.4. Notice how this relative error decreases as the scale constant is

increased.

k Reachable markings χ[t6] χ[t6]/k Relative error

1 54 0.2522 0.2522 36.95%

2 1685 0.6493 0.3246 18.85%

3 10354 1.0567 0.3522 11.95%

4 37722 1.4623 0.3656 8.60%

5 103914 1.8671 0.3734 6.65%

Table 8.1: Throughput of the discrete system as the initial marking is scaled, normalized

throughput and relative error with respect to the throughput of the continuous system.

Observability

Let us assume that the places p1, p3, p4 and p7 of the system cannot be measured, but

there are sensors that allow one to know the marking of places p2, p5 and p6. Following

the notation in Section 6.1 the matrix S is (0 1 0 0 0 0 0; 0 0 0 0 1 0 0; 0 0 0 0 0 1 0).

Equation 6.1 can be used to compute one estimate for the PT-set W1 and another

estimate for the PT-set W2. The observability matrix, ϑ, has full rank for both PT-sets

W1 and W2. Thus, the non observable subspace is empty for both PT-sets. Assuming

that the system is not initially at a steady state marking in which m[p6] = m[p5]/4

(both PT-sets coincide), only one of the estimates is feasible and coherent. Hence

(Proposition 6.9), the initial marking can be computed.

The use of more sensors in the system does not always result in an enlargement

of the observable subspace. For instance, if p1, p4, p5 and p7 are measured instead

of p2, p5 and p6 the observability matrix for W2 has full rank but its rank is only

5 for W1. More precisely, the marking of places p3 and p6 cannot be computed if

W1 is active. This way, it turns out to be more important to choose an appropriate

location for the sensors than to increase its number without a good criterion. In this

case, the initial PT-set is W1 and therefore the marking of places p3 and p6 cannot

in principle be computed. Fortunately the system marking evolves to W2 at which it

8.1. A Manufacturing System 129

can be completely observed. Once the complete marking at a given time instant is

obtained, a backward simulation of the system makes possible to compute the initial

marking of the system (Proposition 6.10).

Control

The transformation of the net system into an event-based Mixed Logical Dynamical

System (eMLD), see Subsection 7.2.2, allows one to quickly simulate the manufactur-

ing system under finite servers semantics. Only two steps of the eMLD are required to

obtain the evolution of the system marking (see Figure 8.3). At the first step (τ = 8)

place p4 becomes empty, at the second step (τ = 12) place p2 becomes empty too and

the steady state is reached.

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

m1
m2
m3
m4
m5
m6
m7

Figure 8.3: Evolution of the manufacturing system under finite servers semantics.

The ideas presented in Chapter 7 can be directly applied to the table factory

to control its behaviour. Let us assume, for instance, that it is requested to maxi-

mize the throughput at the steady state. For that purpose a Mixed Integer Linear

Programming (MILP) problem that forces the marking in the last two steps to be

the same and maximizes the flow of a transition can be designed. Since the net is

mono-T-semiflow, in the steady state the flow of the transitions will be proportional

to the T-semiflow. Hence, in the objective function any transition can be taken to

maximize the throughput. The solution of the MILP gives the following control for

time τ = 0: u[t1](0) = 0, u[t2](0) = u[t3](0) = u[t4](0) = u[t5](0) = u[t6](0) = 1/3.

For that control law, the flow through transitions is f [t1](0) = 1, f [t2](0) = f [t3](0) =

f [t4](0) = f [t5](0) = f [t6](0) = 2/3 that is proportional to the T-semiflow. In other

130 8. Cases of Study

words, if the control is maintained the marking will remain constant indefinitely, i.e.,

in the steady state.

Let us now consider the time optimal control problem of reaching a marking in

which m[p3] = 0.4 and m[p4] = 0.75 in minimum time, being transitions t3 and t4
the only controllable transitions. A boolean variable will be introduced in the MILP

that will be true iff a target marking (m[p3] = 0.4 and m[p4] = 0.75) is reached. The

MILP must explicitly specify that the boolean variable has to be true in the last step.

The value to be minimized is the time elapsed till the boolean variable becomes true.

The control law yielded by the MILP is u[t1](0) = u[t2](0) = u[t4](0) = u[t5](0) =

u[t6](0) = 0, u[t3](0) = 0.325 during q(0) = 2 units of time. After that period

of time the target marking is reached. Notice that with a greater u[t3] a marking

with m[p3] = 0.4 can be reached in less time than 2 time units. Nevertheless, the

minimum time for place p4 to reach 0.75 (once its output transition is completely

opened, u[t4](0) = 0) is 2 time units.

8.2 An Assembly Line

The Petri net system in Figure 8.4 represents an assembly line with kanban strategy

(see [ZRS01]). The system has two stages that are connected by transition t14. The

first stage is composed of three lines (starting from p2, p3 and p4 respectively) and

three machines (p23, p24 and p25). Places p26, p27 and p28 are buffers at the end of

the lines. The second stage has two lines that require the same machine/resource p18.

The number of kanban cards is given by the marking of places p2, p3 and p4 for the

first stage, and by the marking of p32 for the second stage. The system demand is

given by the marking of p1.

General considerations

The net has 12 minimal P-semiflows that cover every place, i.e., it is conservative.

It also has one T-semiflow that is minimal and covers every transition, i.e., it is

consistent. Thus, the net is mono-T-semiflow (Subsection 1.1.2). The net has eight

transitions with two input places each (|•t| = 2), two transitions with three input

places each (|•t| = 3) and one transition with four input places (|•t| = 4). This way,

the number of structural PT-sets is 28 · 32 · 4 = 9 · 210. It is therefore remarkable

that a continuous Petri net can represent such a large number of “embedded” linear

systems in such a compact way. The other side of the coin is that a great effort is

required if every linear system has to be studied separately, for example, to compute

marking estimates (Section 6.3).

8.2. An Assembly Line 131

PSfrag replacements

t 1

t 2 t 3

t 4

t 5 t 6

t 7

t 8 t 9 t 1
0

t 1
1

t 1
2

t 1
3

t 1
4

t 1
5

t 1
6

t 1
7

t 1
8

t 1
9

t 2
0

t 2
1

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9 p

1
0

p
1
1

p
1
2

p
1
3

p
1
4

p
1
5

p
1
6

p
1
7

p
1
8

p
1
9

p
2
0

p
2
1

p
2
2

p
2
3

p
2
4

p
2
5

p
2
6

p
2
7

p
2
8

p
2
9

p
3
0

p
3
1

p
3
2

Figure 8.4: An assembly line with kanban strategy.

Reachability

Let the initial marking of the system be m0[p1] = m0[p18] = m0[p23] = m0[p24] =

m0[p25] = m0[p29] = m0[p32] = 1, m0[p26] = m0[p27] = m0[p28] = 3 and the

132 8. Cases of Study

marking of the rest of places be equal to zero. Every trap of the net is initially

marked. Moreover, every trap contains a minimal P-semiflow, hence, emptying a

trap implies emptying a P-semiflow. Since the net is consistent and conservative by

Proposition 5.1 no solution of the state equation can yield a marking in which a P-

semiflow (and therefore a trap) is empty. This way, the last condition in Theorem 2.12

for a marking to be reached can be dropped. Furthermore, the second condition can

also be overlooked because the system is consistent and every transition is fireable

(reasoning in a similar way to Corollary 2.16). Hence, the set of reachable markings

with a finite firing sequence RS(N ,m0) is equal to the set of solutions of the state

equation, RS(N ,m0) = LRS(N ,m0). By Corollary 2.18 it holds RS(N ,m0) =

lim-RS(N ,m0) = δ-RS(N ,m0) = LRS(N ,m0), i.e., there are no spurious solutions

of the state equation under any reachability concept.

Liveness

The net is mono-T-semiflow, thus, deadlock-freeness and liveness are equivalent. Let

us assume that the system can reach a deadlock marking m, i.e., the flow of every

transition at m is zero. The PT-set associated to m must fulfill that the marking of

all its places is zero. Nevertheless, it can be checked that each of the 9 · 210 structural

PT-sets contains at least one P-semiflow. Since all P-semiflows are initially marked,

there is no marking solution of the state equation at which there is an empty P-

semiflow (Proposition 5.1). Therefore, the system is live both as untimed (under any

reachability concept) and as timed (under any time interpretation). This implies that

the system is also structurally live as discrete [Rec98]. The condition of Theorem 4.13

for robust-liveness necessarily holds.

Performance Evaluation

The only T-semiflow is a vector of ones. This implies that in the steady state the

throughput of all the transitions will be the same. Let us assume that the firing

rates of the transitions are λ[t2] = λ[t3] = λ[t4] = λ[t8] = λ[t9] = λ[t10] = λ[t14] =

λ[t15] = λ[t17] = λ[t19] = λ[t20] = 10, λ[t1] = λ[t5] = λ[t6] = λ[t7] = λ[t11] =

λ[t12] = λ[t13] = λ[t16] = λ[t18] = λ[t21] = 1. Let us first consider the system as

discrete with markovian infinite servers timing at transitions. Let the initial marking

be m0[p1] = m0[p18] = m0[p23] = m0[p24] = m0[p25] = m0[p29] = m0[p32] = 1,

m0[p26] = m0[p27] = m0[p28] = 3 and the marking of the rest of places be equal

to zero. The size of the reachability set is 209704. The solution of the associated

Markov chains yields a throughput of 0.2241 for every transition. The throughput

bound for the fluidified system under infinite servers semantics (computed according

to LPP (5.19)) is 0.3030, being {p14, p17, p20, p22, p30, p32} the bottleneck P-semiflow.

It can be checked that every T-coverture of the system contains a P-semiflow. Thus,

8.2. An Assembly Line 133

by Corollary 5.6, the throughput (0.3030) obtained with LPP (5.19) is the exact

throughput of the continuous system in the steady state. Table 8.2 compares the

throughput of the discrete system with the throughput of the fluidified one for two

initial markings of p32.

m0[p32] Reachable markings χ[t1] discrete fss[t1] continuous Relative error

1 209704 0.2241 0.3030 26.04%

2 953200 0.2888 0.3226 10.73%

Table 8.2: Throughput of the discrete system, throughput of the continuous system and

relative error.

The size of the reachability set of the discrete system is very sensitive to changes

in the initial marking of m[p32]. In fact, if the initial marking of p32 is 2 instead of

1 the size of the reachability set is 953200, and if m0[p32] = 3 the the number of

reachable markings becomes 2859600. Such large reachability sets pose serious com-

putational problems if one desires to compute the throughput of the discrete system.

However, the throughput in the steady state of the fluidified system can be obtained

in polynomial time thanks to LPP (5.19), since the condition in Corollary 5.6 veri-

fies. The throughput of the continuous system can be considered as an “estimate”

for the throughput of the discrete system (it is not necessarily un upper bound for

the throughput of the discrete system, see Subsection 5.1.1). The throughput of the

continuous system in the steady state with m0[p32] = 2 is 0.3226 (in comparison

with a throughput of 0.28883 if the Markov chain of the discrete system is solved).

The bottleneck P-semiflow for the continuous system is {p5, p12, p13, p24}. The same

throughput (with the same bottleneck P-semiflow) of the continuous system is ob-

tained if m0[p32] = 3.

Observability

Let us assume that the system is required to be fully observable whatever the PT-set

ruling its evolution is. To achieve this requirement every potential timed-implicit

place (Subsection 1.3.2) must be measured; if a place is timed-implicit the system

dynamics does not depend on it and its marking cannot be computed unless it is

directly measured (Section 6.1). Every place p in a synchronization (p has an output

transition t such that |•t| > 1) can be timed-implicit if its marking does not constrain

its output transitions. Thus, in order to have a fully observable system at least every

place in a synchronization must be measured.

In the assembly line system, the places that are in a synchronization are p2, p3,

p4, p8, p9, p10, p14, p15, p16, p18, p20, p21, p23, p24, p25, p26, p27, p28, p30, p31 and

134 8. Cases of Study

p32. It turns out that if all these places are measured then the system becomes fully

observable not only for any initial marking (m0) but also for any vector of firing rates

(λ). This is similar to the structural observability for Join Free systems described

in Subsection 6.2.1. This full observability is easy to check if one focuses on the non

measured places and tries to compute their markings separately (following the same

reasoning as in Subsection 6.2.1). Let us, for example, focus on the non measured

place p22. Since places p30 and p31 are measured, the flow of transition t1 is easy to

obtain. Notice that the derivative of the marking of p30 is equal to flow of t21 minus

the flow of t1. Given that the flow of t1 can be obtained and the marking of p30 is

measured, one can compute the flow of t21. Since the only input place of t21 is p22,

the flow of t21 is proportional to the marking of p22 (f [t21] = λ[t21] ·m[p22]) and m[p22

can be immediately computed. The same reasoning can be applied to the rest of non

measured places.

8.3 A Car Traffic System

The main concern of this section is to model a car traffic system with continuous Petri

nets. The model should be able of representing the various modes of operation of a

traffic system: Free flow traffic, saturated/congested traffic, traffic jams, stop-and-go

waves, etc. The use of traffic models gives one the chance of analyzing, predicting

and controlling the behaviour of traffic systems. This section introduces a new time

interpretation that is useful to obtain “realistic” and yet compact models for traffic

systems [JB05].

Traffic systems are discrete systems that are typically heavily populated. In-

stead of discrete models, continuous models can be used to macroscopically model

the behaviour of traffic systems. In the scope of traffic systems, macroscopic models

(see [HB01, KPD+02, Hel97]) disregard individual cars and consider mainly three

real valued variables: density, speed and flow. The road network to be modelled is

subdivided into sections. Each road section is modelled separately by a continuous

Petri net. The model for the whole network is obtained by joining the nets for the

sections: The flow of cars from one section to the next section is represented by

the flow of the transition interconnecting both sections. This way, the model becomes

highly compositional. Combining these continuous PN models with discrete PN mod-

els of traffic lights leads to a hybrid Petri net model. In order to distinguish between

continuous and discrete net elements, a discrete place/transition will be represented

as a circle/line, and a continuous place/transition will be represented as a double

circle/white box.

The following subsections establish some necessary concepts to model a a traffic

system with continuous Petri nets. In the last subsection, these concepts are used to

model and simulate the behaviour of an intersection regulated by traffic lights.

8.3. A Car Traffic System 135

Some modelling considerations

Infinite servers semantics is used in system models in which the processing speed, i.e.,

flow of transitions, is proportional to the number of customers in the upstream place,

i.e., enabling degree. The following examples show how the flow of transitions and

the rate of change of the marking of places can be affected by the arc weights.

Consider transition t1 (see Figure 8.5(a)) that has one input place p1. Its flow is

f [t1] = λ[t1] · m[p1]/z where z > 0 is the weight of the arc. As shown above under

infinite servers semantics the marking changes according to ṁ[p1] = −z · f [t1] =

−λ[t1] · m[p1]. Thus, the evolution of the marking of p1 does not depend on z, i.e.,

the weight of the arc.

z
PSfrag replacements

t1

t2

p1

p2

(a)

q−a

qPSfrag replacements

t1

t2

p1

p2

(b)

Figure 8.5: Two modelling options.

By slightly manipulating the system in Figure 8.5(a) it is possible to obtain a

system in which the evolution of p1 depends on the weight of its input (output) arc.

Consider the system in Figure 8.5(b) with q > 0 and q−a > 0 since arc weights must

be positive. The flow of the transition is f [t2] = λ[t2] ·m[p2]/q and the marking of p2

evolves according to ṁ[p2] = (q − a− q) · f [t2] = −a/qλ[t2] ·m[p2], depending on the

parameter values q and a. If a > 0 the marking of p2 decreases (due to the constraint

q − a > 0 the maximum rate of decrease is bounded by ṁ[p2] = −λ[t2] · m[p2]). If

a = 0 then m[p2] is constant and so is the flow of t2. If a < 0 then m[p2] increases.

Following these ideas the flow of a transition can be modelled as a piecewise linear

function of the marking of a given place. For example, the system in Figure 8.6(a)

uses four loops of arcs to model the flow of t1 with respect to the marking of p1. The

thick line in Figure 8.6(b) shows the piecewise linear dependance of f [t1] on m[p1]

(λ is the firing rate of t1). The existence of P-semiflows greatly helps to obtain this

modelling capability.

136 8. Cases of Study

k+l

h

r

s

q

q−1

s+1

r−1

PSfrag replacements

t1

p1

p2

p3

p4

f [t1]

λ · h
λ · l

s
k+l
1+ s

q

k

k + l
λ
q · k+l

1+ s
q

λ/q

λ/s

m[p1]

(a)

PSfrag replacements

t1
p1

p2

p3

p4

f [t1]

λ · h

λ · l
s

k+l
1+ s

q

k k + l

λ
q · k+l

1+ s
q

λ/q λ/s m[p1]

(b)

Figure 8.6: The flow of transition t1 is a piecewise linear function of the marking of p1.

Discrete time model

The system in Figure 8.7 represents a machine, t1, working at constant speed, f [t1] =

λ[t1] · m[p1], that places its production in a conveyor, p2. One can imagine that

machine t1 places pieces of finished material at uniformly distributed locations on

the conveyor belt p2, that moves those pieces to the second machine t2. Machine t2
processes its input material and stores it in the warehouse p3. The initial marking of

the system is m0 = (1 0 0), i.e., the conveyor and the warehouse are initially empty.PSfrag replacements

t1 t2p1 p2 p3

Figure 8.7: A continuous Petri net modelling a conveyor.

According to the usual continuous time model the initial flow of t1 is f [t1](τ =

0) = λ[t1]. This is implies that material is placed in the conveyor p2 from the initial

instant τ = 0 (m[p2](τ) > 0 for every τ > 0). This entails f [t2](τ) > 0 for every τ > 0.

This behaviour cannot be a faithful representation of the real system behaviour since

it implies that the material has spent zero units of time to reach t2, i.e., the conveyor

is infinitely fast (or infinitely short).

One way of avoiding an infinitely fast movement of material going from one tran-

sition to the next one is using a discrete time model. According to this model, time

is discretized in steps (intervals) of length ∆ > 0. At the beginning of each step

the flow of the transitions is computed with the usual expression for infinite servers

8.3. A Car Traffic System 137

semantics: f [t](k) = λ[t] · minp∈•t{m[p](k)/Pre[p, t]} for the kth step. The marking

at the next step is defined by m(k + 1) = m(k) + C · f(k) · ∆. This way, the flow of

a transition during ∆ units of time depends only on the marking of its input places

at the beginning of the interval. The interval ∆ can be seen as the travelling time

(delay) of the material between two transitions. In Figure 8.7, ∆ is the time the

conveyor takes to arrive from t1 to t2. Notice that the flow of t2 is zero during the

first interval (f [t2](τ = 0..∆) = 0 if the system is discrete time, f [t2](τ) > 0 for every

τ > 0 if it is continuous time).

This discrete time continuous PN model makes it possible to represent delays;

moreover the fact that the flow of the system is constant during each interval allows

fast simulations.

In the discrete time model ∆ is a design parameter. The larger ∆ is the longer the

delays one can model easily. However taking ∆ too large can lead to negative markings

since the marking may be linearly decreasing during an interval. Fortunately, it is

possible to compute an upper bound for ∆ in order to ensure the nonnegativeness of

the marking. Such upper bound depends only on the structure of the net (not on

the marking). In order to compute this upper bound, each place will be considered

separately. It will be assumed that no input flow is coming into the place and it will

be computed how fast it can become empty. The interval required to empty the place

that takes the shortest time to become empty is the upper bound.

Let us compute how fast the place p1 of the system in Figure 8.8(a) can become

empty. Clearly, the marking of p1 decreases iff r > s, hence only this case is considered.

Let us first compute how long it takes to empty p1 if m[p1]/r ≤ m[p2]/q, i.e., m[p1]

defines the enabling degree of t1. In that case f [t1](k) = λ[t1] · m[p1](k)/r and

m[p1](k+1) = m[p1](k)+(s−r) ·λ[t1] ·m[p1](k)/r ·δ. It follows that m[p1](k+1) = 0

when δ = r/(λ[t1] · (r − s)). Notice that in the case that m[p1]/r > m[p2]/q (m[p2]

defines the enabling degree) the flow through t1 would be less than in the previous

case and therefore it would take longer to empty p1. For the system in Figure 8.8(a),

the shortest time to empty p1 is r/(λ[t1]·(r−s)). Any ∆ smaller than r/(λ[t1]·(r−s))

prevents p1 from becoming negative.

A similar approach can be taken to compute a bound for ∆ for a system having

places with several output transitions (see Figure 8.8(b)). As in the previous example,

in order to compute the fastest emptying time of p1 only the output transitions that

decrease the marking are considered, i.e., t1 (t2) is considered iff r > s (u > v).

The shortest emptying time occurs when p1 is determining the flow of both output

transitions. For a general system with several places, in order to avoid negative

markings the value of ∆ has to be at most:

min

p,∃t∈ p•,Pre[p,t]>Post[p,t]

{
1

∑
t∈ p•, Pre[p,t]>Post[p,t]

λ[t] · (Pre[p, t] − Post[p, t])

Pre[p, t]

}

138 8. Cases of Study

rs q

PSfrag replacements

t1

t2

p1 p2

p3

(a)

s v
r u

PSfrag replacements

t1 t2

p1p2 p3

(b)

Figure 8.8: The value of ∆ is upper bounded.

Notice that this expression depends only on the structure of the net and not on

the initial marking.

Emptying places in finite time

Let us consider the discrete time evolution of the system in Figure 8.9. Let ∆ be

the length of the time interval of the discrete time model (according to the previous

Subsection, ∆ is upper bounded by min{1/λ[t1], 1/λ[t2]}). After the first interval, the

marking of p1 is m[p1](1) = m[p1](0)+C·f [t1](0)·∆ = m[p1](0)−λ[t1]·m[p1](0)·∆ =

(1−λ[t1]·∆)·m[p1](0). After the second interval m[p1](2) = (1−λ[t1]·∆)·m[p1](1) =

(1−λ[t1]·∆)2 ·m[p1](0) and after the kth interval m[p1](k) = (1−λ[t1]·∆)k ·m[p1](0).

This way, if ∆ = 1/λ[t1], p1 becomes empty after the first step and remains empty

indefinitely. However, if ∆ < 1/λ[t1] the evolution of m[p1] follows a geometric

progression and never gets completely empty.

PSfrag replacements
t1 t2p1 p2

Figure 8.9: p1 is emptied in finite time iff ∆ = 1/λ[t1].

From a modelling point of view a geometrical emptying of a place can be useful,

for example, to model how a capacitor discharges exponentially. Nevertheless, for

other modelling purposes this feature is not desired. Suppose that the marking of p1

is the number of customers waiting to be served by t1, and t1 is a server that starts

working at a speed that is proportional to the length of the queue. If there are no

new customers coming into the queue the speed of t1 should remain constant until

8.3. A Car Traffic System 139

the queue empties. It makes no sense that the speed of t1 decreases as the queue gets

shorter.

By slightly modifying the described firing semantics it is possible to avoid falling

in a geometric progression when emptying a place: For a given transition t and at a

given step k it will be checked whether its input place determining the enabling degree

had input flow (new customers) during the previous step k− 1. If there was no input

flow to that place the flow of t is kept the same, f [t](k) = f [t](k − 1), otherwise the

usual firing semantics is applied, f [t](k) = λ[t] · enab(t,m, k). Keeping the same flow

of a transition allows one to empty a place in finite time. Anyway, one should be aware

that this modification in the model leads to non pure discrete time infinite servers

semantics and could cause negative markings even if the bound for ∆ is considered.

In order to avoid negative markings, the flow of the transitions will be forced to be

the minimum between the value just described and the flow that would empty one

of the input places at the end of the time interval. This way, places become empty

exactly at the end of time intervals.

The reader should observe that many properties that make Petri nets so useful for

modelling remain valid after the modifications introduced in this section. For example

our discrete time PNs will satisfy place and transition invariants, markings are still

states for the dynamic evolution, structural analysis is applicable, etc.

Modelling a road section

The traffic model to be presented requires a spatial discretization of the road to be

modelled, i.e., the road is divided into several sections. In this subsection, a continuous

PN model of one single road section is presented. Subsequently, this model will be

used as a building block for representing large networks.

The state of a section of a road network is described by three macroscopic variables:

Density of cars, average speed and flow. The marking m of a place will represent the

number of cars in the section, these cars being uniformly distributed along the length

of the section, and having average speed v. Note that m is proportional to the density

d of cars along the section. The flow f of cars leaving the section is then f = d · v.

In a traffic system the cars in a section with low density travel at a given free

speed, free flow traffic. Hence, the flow out of the section increases proportionally to

the density. When the density of the section is higher, the average speed decreases

and the flow out of the section keeps ideally constant. If the density is much higher,

the traffic becomes heavy and the flow out of the section decreases. This (bell shape)

relationship between the flow and the density is known as the fundamental traffic

diagram. First, a net that models free flow traffic and constant flow traffic is presented.

Later on, it will be shown how the decreasing of the flow is modelled when the density

is high.

140 8. Cases of Study

The number of cars in road section i will be represented by the marking of a

place, pi
1 in Figure 8.10(a), and the flow of cars leaving the section will be the flow

of a transition, ti. If pi
3 is ignored, the use of infinite servers semantics establishes

f [ti] = λ[ti] ·m[pi
1], i.e., the outflow is proportional to the density. Hence, the subnet

pi
1, ti with an appropriate λ[ti] models free flow traffic. Notice that this relationship

between the flow and the marking, f [ti] = λ[ti] ·m[pi
1], cannot be modelled with finite

servers semantics in which the flow of a transition is independent of the marking of

its positively marked input places.

Constant flow traffic can be modelled by adding pi
3. The marking of pi

3 is

always constant and imposes an upper bound on the flow of ti, f [ti] = λ[ti] ·
min{m[pi

1],m[pi
3]}. Therefore, when m[pi

1] > m[pi
3] the flow of ti is constant,

f [ti] = λ[ti] · m[pi
3] = λ[ti] · hi.

PSfrag replacements

ti

pi
1

pi
2

pi
3

ki

hi

(a)

PSfrag replacements

ti

pi
1

pi
2

pi
3

ki

hi

(b)

Figure 8.10: Modelling a section.

Obviously, the number of cars that can be in a road section is finite. This means

that the model of a section must impose an upper bound on the marking of the place

representing the number of cars. This can be easily achieved by adding a new place to

the section model, see pi
2 in Figure 8.10(b). At any time it holds m[pi

1] + m[pi
2] = ki

where ki represents the capacity of the section and m[pi
2] the number of free gaps.

Joining sections

In a Petri net model with several sections, two adjacent sections, i, j, share a transi-

tion, ti, whose flow represents the number of cars passing from section i to section j

per time unit. Hence, a given transition ti of the net model has three input places: pi
1

representing the number of cars in section i, pi
3 with constant marking bounding the

flow of ti and pj
2 representing the number of gaps in section j. Therefore, the flow of

8.3. A Car Traffic System 141

cars from section i to section j also depends on the number of gaps in the downstream

section j, f [ti] = λ[ti] · min{m[pi
1],m[pi

3],m[pj
2]}. This fact is very realistic, if one

considers for example, how a traffic jam (decreasing of the flow when the density is

high) propagates from downstream to upstream sections. The flow of ti is the mini-

mum between the number of cars desiring to leave the section (sending function) and

the number of cars allowed to enter the next section (receiving function) [Dag95].

The outflow from a low dense section i (free flow) is proportional to the number

of cars (f [ti] = λ[ti] · min{m[pi
1]}) being λ[ti] the proportionality constant. If the

downstream section becomes full, the outflow is proportional to the number of gaps

of the downstream section (f [ti] = λ[ti] · min{m[pj
2]}) with λ[ti] as the proportion-

ality constant. That is, the proportionality constant, λ[ti], is the same under both

situations. One way to avoid this fact is to use the arc loops presented in Figure 8.5.

The use of such arc loops allows one to have different proportionality constants for

the density of cars and the number of gaps. Notice that the constant flow traffic is

modelled thanks to a place, pi
3, with a constant marking that does not represent any

real amount. Hence, for any λ[ti] its marking can be chosen to correctly upper bound

the flow of ti without introducing weights in its input/output arcs. Figure 8.11 shows

a traffic model consisting of three sections and arc loops to control the proportionality

constants. With an appropriate λ, that system can be reduced to an equivalent one

with only one arc loop on each transition (λ[ti] is already the proportionality constant

either for the density or for the number of gaps).

q2

q2−1

q1 q3

q3−1
r2 r3

q1−1

r1−1

r1

r3−1r2−1

PSfrag replacements

t1 t2 t3

p1
1

p1
2

p1
3

k1

h1

p2
1

p2
2

p2
3

k2

h2

p3
1

p3
2

p3
3

k3

h3

Figure 8.11: Traffic system with three sections.

Notice that the special features of the model described previously are useful for

traffic modelling. By using a discrete time model it is possible to represent the delay of

the cars coming from the input transition of one section to the output transition. The

time interval, ∆, can be seen as the time required for a car to travel from the beginning

of a section to the beginning of the next one. A continuous time model could be

possible, but then it would require an infinite dimensional state space, corresponding

to infinitely short sections (a partial differential equation is obtained by letting ∆ go

142 8. Cases of Study

to 0). Besides, the extensions presented allow sections to become empty in finite time

by keeping the outflow constant as long as no inflow exists. This extensions represent

more faithfully the behaviour of a real traffic system than the original continuous

Petri net formalism and will be used in the sequel.

Simulating traffic behaviour in an intersection

The most usual way to control real traffic systems is through traffic lights. Traffic

lights can be seen as a discrete event system whose state can be either red, amber or

green. In our model traffic lights are modelled as a discrete Petri net, see Figure 8.12

for traffic lights ruling an intersection with two crossing lanes L1 and L2.

L2

L1

(a)

rrg rgg

gggrrr

ggrgrr

(b)

Figure 8.12: A discrete Petri net modelling traffic lights in an intersection.

The system that models traffic lights has six phases represented by each of the

places of the net. A given phase is active when its corresponding place is marked.

Since only one phase can be active at a given instant, the number of tokes in the net

is 1. The meaning of the phases is: ggg : cars of L1 crossing, ggr : stopping traffic of

L1, grr : cars of L2 start crossing, rrr : cars of L2 crossing, rrg : stopping traffic of

L2, rgg : cars of L1 start crossing. The use of the phases ggr, grr, rrg, rgg allows one

a more realistic modelling of the system since they model how the flow of cars softly

becomes either zero or positive.

Figure 8.13 models four sections and an intersection in which the traffic is regulated

by a traffic lights system like the one in Figure 8.12. It is a hybrid Petri net since

it includes discrete and continuous places and transitions. When the traffic lights

system is at ggg the flow of t1 depends on the marking of its input places and the

flow of t2 is 0. Similarly, at phase rrr t1 is blocked and the flow of t2 depends on

the marking of its input places. For the rest of the phases, ggr, grr, rrg, rgg, the flow

8.3. A Car Traffic System 143

S4

S2

S1S3

q4

r2−1

r2

q2

q2−1

q4−1

Traffic light

q3 q1

r1

q3−1

r1−1

q1−1

inflow

inflow

PSfrag replacements

t1

t2

t3

t4

p1
1

p1
2

p1
3

k1

h1

p2
1p2

2

p2
3

k2

h2

p3
1

p3
3 h3

p4
1

p4
3

h4

Figure 8.13: A Petri net modelling an intersection.

of the transitions involved in the intersection, t1 and t2, is defined to model how the

flow of cars speeds up and slows down when the traffic lights system switches: If it

switches to green (rgg for section 1) the flow of t1 increases linearly from zero to the

flow computed with the usual infinite firing semantics; if it switches to red (ggr for

section 1) the flow of t1 decreases linearly to zero. These behaviours can be easily

simulated by computing a constant flow that produces the marking that would be

obtained if the flow increased/decreased linearly.

Consider the system in Figure 8.13. Let the capacity of the sections be 80 cars

(m[pi
1] + m[pi

2] = 80 for i = 1 . . . 4), λ[ti] = 4 for i = 1 . . . 4, qi = 100 for i = 1 . . . 4,

144 8. Cases of Study

ri = 80 for i = 1, 2, hi = 0.5 for i = 1 . . . 4, the initial load of the sections m[p1
1] = 50,

m[p2
1] = 30, m[p3

1] = 35, m[p4
1] = 60 and the time step ∆ = 8 seconds. Let us assume

that the traffic lights system is initially red for section 1 and that there exist constant

input flows of 0.8 cars per second entering section 3 and 0.5 cars per second entering

section 4. Once all these initial conditions are established, the traffic model can be

easily simulated to predict the traffic behaviour in the intersection.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80
System evolution during three cycles

time

m11
m12
m13
m14
redS1

Figure 8.14: Evolution of the system in Figure 8.13.

Figure 8.14 depicts one possible evolution the traffic system. The plot covers three

traffic lights cycles of length 120 seconds each. In the figure, stars at a level of 10

mean red light for section 1. Obviously, the evolution of the system strongly depends

on the switching times of the traffic lights.

Traffic models can be useful for different purposes. As shown in this section they

can provide a prediction of a given traffic system scenario. Predicting the behaviour

of a traffic system through a model can be useful to ease the decision making process

that intends to alleviate potential traffic jams: Traffic lights should be controlled in

such a way that the total delay of the vehicles in the system is minimized. Other

possible control strategies are to minimize the total fuel consumption, maximize the

throughput of a given road section, etc. In this framework, continuous Petri nets turn

out to be a very suitable choice to cope with the task of modelling traffic systems:

The model can be built in a highly compositional and intuitive way and simulations

can be carried out very fast.

Concluding Remarks

Fluidification is a relaxation technique aiming to avoid the state explosion problem of

large discrete systems. Roughly, fluidifying a discrete system means that the discrete

variables of the system are converted into real variables. Such a relaxation offers

the possibility of using linear instead of integer techniques to check some system

properties. This usually implies that the complexity of verification tasks is reduced,

even to polynomial time. Unfortunately, the properties of the original discrete system

are not always preserved by its fluidified version, i.e., there can exist a “significant”

gap between the behaviour of the discrete system and the behaviour of the fluidified

one. This fact motivates the study of fluidified systems in order to establish which

their properties are and which discrete systems are suitable to be fluidified.

The fluidification of Petri nets results in continuous Petri nets. In a continuous

Petri net the amount in which a transition is fired is not restricted to the natural

numbers but to the positive real numbers. Such transition firings produce a continuous

net marking that is represented by a vector of non negative real numbers.

This work has dealt with both untimed and timed continuous Petri nets. In

untimed nets there exists no a priori policy for the firing of the transitions, i.e.,

there exists a nondeterminism in the evolution of the system. On the contrary, a

time interpretation is adopted for timed net systems. The time interpretation of a

net system completely determines its marking evolution along time. Two different

time interpretations have been considered for the firing of transitions in continuous

nets: Infinite servers semantics and finite servers semantics. Under both semantics the

marking evolution can be seen as the evolution of a piecewise linear system. Moreover,

a third time interpretation has been introduced in Section 8.3 in order to model in a

“realistic” way a car traffic system.

Some unexpected results regarding the fluidification of untimed and timed Petri

nets have been shown along this work: Liveness of the discrete system is not a nec-

essary nor a sufficient condition for liveness of the continuous system, this already

known result for untimed systems [RTS99] also applies to timed systems. Although

fluidifying means “removing firing constraints”, the performance of the continuous

system is not necessarily better than the performance of the discrete one.

145

146 Concluding Remarks

Since in continuous Petri nets the transitions are fired in real amounts, the set

of reachable markings is a region in the continuous space. However, the concept

of reachability is not as straightforward as in discrete nets. Chapter 2 deals with

three different concepts of reachability for untimed continuous nets: reachability, lim-

reachability, δ-reachability, the third one being a contribution of this work. These

concepts differ in the length of the firing sequence, finite vs. infinite, and in the way

a marking is reached, a marking is effectively reached vs. the system gets as close to

the marking as desired. Reachability stands for those markings that are effectively

reached with a finite firing sequence. The concept of lim-reachability applies to those

markings that are effectively reached with a finite or infinite firing sequence. Clearly,

the set of reachable markings is contained in the set of lim-reachable markings. A

marking is said to be δ-reachable if the system can get as close as desired to it with

a finite firing sequence. The set of lim-reachable markings is contained in the set of

δ-reachable markings. It could be thought that a fourth reachability concept should

exist: According to that fourth concept a marking would be reachable if the system

could get as close as desired to it with a finite or infinite firing sequence. This fourth

concept is, however, equivalent to δ-reachability : Converging with an infinite sequence

to a marking m′ that is as close as desired to a target marking m is equivalent to

reaching with a finite sequence a marking m′′ that is as close as desired to marking

m.

The reachability sets according to all three reachability concepts have been fully

characterized. The fundamental state equation turns out to be an essential instrument

for that characterization. The more relaxed the reachability concept is the easier its

characterization is obtained. This way, the set of reachable markings is the hardest

to be characterized and the set of δ-reachable the easiest. To characterize the set

of reachable markings, traps, fireability of the firing sequence and the state equation

have to be considered. For lim-reachability, traps do not have to be considered. For

δ-reachability only the state equation is necessary. Thus, there exist no spurious

solutions of the state equation under δ-reachability. Furthermore, the differences (if

any) among the three reachability sets lay only in the border points of the set of

δ-reachable markings.

Liveness has been studied for untimed and timed mono-T-semiflow Petri nets.

Since a mono-T-semiflow net has only one T-semiflow every potentially live infinite

behaviour is constrained to that T-semiflow, i.e., in an infinite horizon the transitions

have to be fired in the proportions specified by the T-semiflow. Hence, if the structure

of the net does not force the fact that the transitions are fired according to the T-

semiflow the system will deadlock. With respect to untimed net systems (Chapter 3),

if the set of input places of a transition t is contained in the set of another transition

t′ then the system is not live. This is an easy to check structural condition that does

not depend on the weight of the arcs, it is actually a topological condition. This

Concluding Remarks 147

derives from the fact that in continuous net systems the weight of an arc determines

the maximum amount in which a transition can be fired but never prevents it from

firing.

In timed net systems liveness refers to the behaviour of the system at the steady

state: A system is live iff the vector of flows is strictly greater than zero at the steady

state. The temporization of a net system is given by the vector of firing rates assigned

to the transitions (λ). The addition of time with an appropriate λ may cause a non

live untimed system to reach a live steady state. In Chapter 4 the set of λ that

allows the net to be structurally live is characterized for mono-T-semiflow nets under

infinite servers semantics. The shape of such a set highly depends on the conflicts

of the net. If the dimension of the set is less than the number of transitions, any

variation of the vector λ may cause the new λ’ to be out of the set, thus, entailing

the impossibility of reaching a live steady state. From this idea the concept of critical

liveness is derived. On the opposite side to critical liveness, robust liveness applies to

those systems for which a live steady state can be reached for any vector λ. A strong

topological condition establishes which systems are robust live: Every transition t

must have an input place whose only output transition is t. If this condition holds

the system is structurally live for any λ, otherwise there exists at least a λ such that

the system deadlocks for any initial marking.

The marking evolution of a timed net system is always contained in the set of

reachable markings of the system seen as untimed. This becomes clear if one thinks

that the trajectory of the timed system (under any time interpretation) can be imi-

tated by the untimed system by appropriately firing its transitions. This way, if the

timed system can reach a deadlock marking, the untimed system can reach as well

the same deadlock marking. In other words, liveness of the timed system is a neces-

sary condition for liveness of the untimed system. This relationship between untimed

and timed systems allows one to improve the liveness conditions for untimed systems

obtained previously. More specifically, the results on robust liveness for timed sys-

tems yield a strong necessary topological condition for liveness of untimed systems

(Theorem 4.14).

The performance of a timed net system can be measured as the throughput of

the transitions in the steady state. In a mono-T-semiflow system, the throughput of

the transitions in the steady state is proportional to the only T-semiflow of the net.

Hence, once the throughput of one transition is known, the throughput of the rest of

transitions can be immediately computed. Under infinite servers semantics the flow

of one transition is proportional to the marking of one of its input places. In order to

determine which of the input places can define the flow of a transition in the steady

state a Branch & Bound algorithm has been developed in Chapter 5. The width,

and therefore the number of nodes, of the tree strongly depends on the number of

input places of the transitions. The mentioned algorithm can be used both for the

148 Concluding Remarks

computation of upper and lower throughput bounds. Clearly, if both bounds are the

same, the algorithm is yielding the exact throughput of the system in the steady state.

A detailed a priori study of the mono-T-semiflow net structure usually helps to

reduce considerably the size of the tree in the Branch & Bound algorithm: By only

considering the structure, it is possible to establish which of the input places of a given

transition can really define the flow of the transition in the steady state. Furthermore,

by removing some constraints, the Branch & Bound algorithm can be relaxed into a

linear programming problem to compute upper throughput bounds. The goal of such

programming problem is searching for the bottleneck P-semiflow of the net. Although,

the upper bound yielded by the linear programming problem is in general less tight

than the one of the Branch & Bound algorithm, it has the advantage that it can be

computed in polynomial time.

Controllability and observability are dual concepts in systems theory. On the one

hand, controllability applies to those systems whose state can be driven anywhere

in the state space by the input actions of an external system. On the other hand,

observability stands for those systems whose state can be completely estimated by an

external observer. Both properties have been thoroughly studied in the literature in

the framework of time invariant linear systems. Some of those results can be applied

and improved if focusing on timed continuous Petri nets.

With respect to observability, the concept of structural observability has been

defined and developed in Chapter 6. A place is said to be structurally observable if

its marking can be estimated for any vector of firing rates of the transitions. In order

to compute the set of structurally observable places a fix point algorithm has been

designed. The observability matrix of linear systems can also be used for continuous

Petri nets: One observability matrix can be computed per linear system (PT-set) of

the Petri net. Each observability matrix is associated to an equation that yields an

estimate for the net marking. Fortunately, some rules have been developed to filter

those observability matrices that with certainty are not yielding a right estimate for

the net marking. Such estimates have been classified in three groups: infeasible, non-

coherent and suspicious estimates. Observers have been designed by considering one

Luemberger observer per linear system of the Petri net. The estimates of the observers

present many similarities to the estimates computed algebraically. Non appropriate

estimates of the observers are identified and filtered. The resulting observer is an

algorithm that combines the non filtered estimates and a simulation of the system.

The estimate given by this observer does not change sharply when the PT-set of

the system commutes. Under some conditions, the use of the simulation offers the

possibility of estimating the non observable subspace of the system during a given

time period.

The study of controllability in hybrid systems is nowadays an issue of increasing

interest. The non linear evolution of hybrid systems poses serious problems when

Concluding Remarks 149

trying to establish simple to check controllability conditions and easy to design con-

trollers. Regarding to discrete time systems, two important parameters that have to

be carefully considered are accuracy and computational time to obtain a control law.

Usually, there exists a tradeoff between these two parameters. In order to increase

the accuracy, the length of the sampling period is usually taken short. This makes

that the number of steps required for a given time horizon is high. A large number

of steps often involves a high computational load to obtain the control law. A con-

trol method has been presented in Chapter 7 for timed continuous nets under finite

servers semantics. The method allows one to get rid of the tradeoff between accuracy

and computational time, transforming a given timed net system into an event-based

Mixed Logical Dynamical System (eMLD). The main feature of the obtained eMLD is

that the occurrence of an event exactly coincides with the change of the linear system

driving the evolution of the Petri net (a place becomes empty). By using eMLDs,

optimal control problems over a given horizon can be solved as mixed integer linear

programming problems.

This research work still presents many open directions to be considered and in-

vestigated. Chapter 8 shows how to take profit of the developed concepts and results

through examples modelled with finite and infinite servers semantics. It also makes

clear the interest of introducing new time interpretations for “realistic” modelling.

Such new interpretations need the development of a theory that analyzes them.

150 Concluding Remarks

Bibliography

[AD98a] H. Alla and R. David. Continuous and hybrid Petri nets. Journal of

Circuits, Systems, and Computers, 8(1):159–188, 1998.

[AD98b] H. Alla and R. David. A modeling and analysis tool for discrete event

systems: Continuous Petri net. Performance Evaluation, 33:175–199,

1998.

[BBDSV02] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. L. Sangiovanni-

Vincentelli. Design of observers for hybrid systems. In Claire J. Tomlin

and Mark R. Greenstreet, editors, Hybrid Systems: Computation and

Control, volume 2289 of Lecture Notes in Computer Science, pages

76–89. Springer-Verlag, Berlin Heidelberg New York, 2002.

[BF87] An Introduction to State-Space Methods B. Friedland. Control system

design. McGraw-Hill, 1987.

[BGM00] F. Balduzzi, A. Giua, and G. Menga. First-order hybrid Petri nets:

a model for optimization and control. IEEE Trans. on Robotics and

Automation, 16(4):382–399, 2000.

[BM99] A. Bemporad and M. Morari. Control of systems integrating logic,

dynamics, and constraints. Automatica, 35(3):407–427, March 1999.

[Bra83] G. W. Brams. Réseaux de Petri: Théorie et Pratique. Masson, 1983.

[CAC+93] G. Chiola, C. Anglano, J. Campos, J. M. Colom, and M. Silva. Opera-

tional analysis of timed Petri nets and application to the computation

of performance bounds. In Proceedings of the 5th International Work-

shop on Petri Nets and Performance Models, pages 128–137, Toulouse,

France, October 1993. IEEE-Computer Society Press.

[CCS91] J. Campos, G. Chiola, and M. Silva. Ergodicity and throughput bounds

of Petri net with unique consistent firing count vector. IEEE Trans.

on Software Engineering, 17(2):117–125, 1991.

151

152 Bibliography

[CGSJ03] D. Corona, A. Giua, C. Seatzu, and J. Júlvez. Observers for nonde-

terministic λ-free labelled Petri nets. In Proceedings of the 9th IEEE

International Conference on Emerging Technologies and Factory Au-

tomation (ETFA), pages –, Lisbon, Portugal, September 2003.

[CHEP71] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed

graphs. Journal on Computer Systems Science, 5:72–79, 1971.

[CNT99] G. Ciardo, D. Nicol, and K. S. Trivedi. Discrete-event simulation

of fluid stochastic Petri nets. IEEE Trans. on Software Engineering,

25(2):207–217, 1999.

[CS92] J. Campos and M. Silva. Structural techniques and performance

bounds of stochastic Petri net models. In G. Rozenberg, editor, Ad-

vances in Petri Nets 1992, volume 609 of Lecture Notes in Computer

Science, pages 352–391. Springer, 1992.

[DA87] R. David and H. Alla. Continuous Petri nets. In Proc. of the 8th

European Workshop on Application and Theory of Petri Nets, pages

275–294, Zaragoza, Spain, 1987.

[Dag95] C. Daganzo. A finite difference approximation of the kinematic wave

model of traffic flow. Transportation Research B, 29B(4):261–276, 1995.

[DHP+93] F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat.

Practice of Petri Nets in Manufacturing. Chapman & Hall, 1993.

[ECS93] J. Ezpeleta, J. M. Couvreur, and M. Silva. A new technique for finding

a generating family of siphons, traps and ST-components. application

to coloured Petri nets. In G. Rozenberg, editor, Advances in Petri

Nets 1993, volume 674 of Lecture Notes in Computer Science, pages

126–147. Springer, 1993.

[Flo95] C. A. Floudas. Nonlinear and Mixed-Integer Optimization. Oxford

University Press, 1995.

[GMD03] Jorge M. Goncalves, Alexandre Megretski, and Munther A. Dahleh.

Global analysis of piecewise linear systems using impact maps and

surface lyapunov functions. IEEE Trans. on Automatic Control,

48(12):2089–2106, 2003.

[GS02] A. Giua and C. Seatzu. Observability of place/transition nets. IEEE

Transactions on Automatic Control, 47(9):1424–1437, September 2002.

Bibliography 153

[GSJar] A. Giua, C. Seatzu, and J. Júlvez. Marking estimation of Petri nets

with pairs of nondeterministic transitions. Asian Journal of Control,

special issue on ”Control of Discrete Event Systems”, To appear.

[Hac72] M. H. T. Hack. Analysis of production schemata by Petri nets. Master’s

thesis, M.I.T., Cambridge, MA, USA, 1972. (Corrections in Computa-

tion Structures Note 17, 1974).

[HB01] S. Hoogendoorn and P. Bovy. State-of-the-art of vehicular traffic flow

modelling. Special Issue on Road Traffic Modelling and Control of the

Journal of Systems and Control Eng. Proc. of the IME I, 2001.

[Hel97] D. Helbing. Traffic data and their implications for consistent traffic

flow modelling. In M. Papageorgiou and A. Pouliezos, editors, Trans-

portation Systems (IFAC, Chania, Greece), volume 2, pages 809–814,

1997.

[JB05] J. Júlvez and R. Boel. Modelling and controlling traffic behaviour

with continuous Petri nets. In Proceedings of the 16th triennial world

congress of the International Federation of Automatic Control (IFAC

2005), 2005. Submitted.

[JBRS04] J. Júlvez, A. Bemporad, L. Recalde, and M. Silva. Event-driven op-

timal control of continuous Petri nets. In 43rd IEEE Conference on

Decision and Control (CDC), Paradise Island. Bahamas, 2004.

[JJRS04a] E. Jiménez, J. Júlvez, L. Recalde, and M. Silva. Relaxed continuous

views of discrete event systems: Petri nets, Forrester diagrams and

ODES. In IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC),

The Hague, The Netherlands, October 2004.

[JJRS04b] J. Júlvez, E. Jiménez, L. Recalde, and M. Silva. Design of observers

for timed continuous Petri net systems. In IEEE International Con-

ference on Systems, Man and Cybernetics (SMC), The Hague, The

Netherlands, 2004.

[JJRS04c] J. Júlvez, E. Jiménez, L. Recalde, and M. Silva. On observability in

timed continuous Petri net systems. In First International Conference

on the Quantitative Evaluation of Systems (QEST). IEEE Computer

Society., Enschede, The Netherlands., 2004.

[Joh99] M. Johansson. Piecewise Linear Control Systems. PhD thesis, Lund

Institute of Technology, 1999.

154 Bibliography

[JRS] J. Júlvez, L. Recalde, and M. Silva. Deadlock-freeness analysis of con-

tinuous mono-T-semiflow Petri nets. IEEE Transactions on Automatic

Control. Submitted.

[JRS02] J. Júlvez, L. Recalde, and M. Silva. On deadlock-freeness analysis

of autonomous and timed continuous mono-T-semiflow nets. In Pro-

ceedings of the 41st IEEE Conference on Decission and Control (CDC

2002), pages 781–786, Las Vegas, USA, December 2002.

[JRS03] J. Júlvez, L. Recalde, and M. Silva. On reachability in autonomous

continuous Petri net systems. In W. van der Aalst and E. Best, editors,

24th International Conference on Application and Theory of Petri Nets

(ICATPN 2003), volume 2679 of Lecture Notes in Computer Science,

pages 221–240. Springer, Eindhoven, The Netherlands, June 2003.

[JRS04] J. Júlvez, L. Recalde, and M. Silva. Steady state performance eval-

uation of continuous mono-T-semiflow Petri nets. Automatica, 2004.

Accepted for publication.

[KPD+02] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavis, and F. Middel-

ham. Traffic flow modelling of large-scale motorway using the macro-

scopic modeling tool metanet. IEEE Transactions on Intelligent Trans-

portation Systems, 3(4):282–292, 2002.

[Lue71] D.G. Luenberger. An introduction to observers. IEEE Transactions

on Automatic Control, 16(6):596–602, December 1971.

[Mig02] D. Mignone. Control and Estimation of Hybrid Systems with Math-

ematical Optimization. PhD thesis, Automatic Control Laboratory-

ETH, Zurich, 2002.

[Mur83] K. G. Murty. Linear Programming. Wiley and Sons, 1983.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceed-

ings of the IEEE, 77(4):541–580, 1989.

[Oga95] K. Ogata. Discrete-Time Control Systems, 2nd. ed. Prentice Hall,

1995.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems.

Prentice-Hall, 1981.

[Rec98] L. Recalde. Structural Methods for the Design and Analysis of Concur-

rent Systems Modeled with Place/Transition Nets. PhD thesis, DIIS.

Univ. Zaragoza, July 1998.

Bibliography 155

[RJS02] L. Recalde, J. Júlvez, and M. Silva. Steady state performance evalua-

tion for some continuous Petri nets. In Proceedings of the 15th triennial

world congress of the International Federation of Automatic Control

(IFAC 2002), page N 479, Barcelona, Spain, July 2002.

[RS00] L. Recalde and M. Silva. PN fluidification revisited: Semantics and

steady state. In J. Zaytoon S. Engell, S. Kowalewski, editor, ADPM

2000: 4th Int. Conf. on Automation of Mixed Processes: Hybrid Dy-

namic Systems, pages 279–286, 2000.

[RS01] L. Recalde and M. Silva. Petri Nets fluidification revisited: Semantics

and steady state. APII-JESA, 35(4):435–449, 2001.

[RTRRLM03] A. Ramirez-Trevino, I. Rivera-Rangel, and E. Lopez-Mellado. Observ-

ability of discrete event systems modeled by interpreted Petri nets.

IEEE Trans. on Robotics and Automation, 19(4):557–565, 2003.

[RTS98] L. Recalde, E. Teruel, and M. Silva. On linear algebraic techniques for

liveness analysis of P/T systems. Journal of Circuits, Systems, and

Computers, 8(1):223–265, 1998.

[RTS99] L. Recalde, E. Teruel, and M. Silva. Autonomous continuous P/T

systems. In J. Kleijn S. Donatelli, editor, Application and Theory of

Petri Nets 1999, volume 1639 of Lecture Notes in Computer Science,

pages 107–126. Springer, 1999.

[SC88] M. Silva and J. M. Colom. On the computation of structural synchronic

invariants in P/T nets. In G. Rozenberg, editor, Advances in Petri

Nets 1988, volume 340 of Lecture Notes in Computer Science, pages

387–417. Springer, 1988.

[SC95] M. Silva and J. Campos. Structural performance analysis of stochastic

Petri nets. In IEEE IPDS ’95, pages 61–70. IEEE Computer Society

Press, 1995.

[SGL02] Z. Sun, S.S. Ge, and T.H. Lee. Controllability and reachability criteria

for switched linear systems. Automatica, 38:775–786, 2002.

[Sif78] J. Sifakis. Structural properties of Petri nets. In J. Winkowski, editor,

Mathematical Foundations of Computer Science 1978, pages 474–483.

Springer, 1978.

[Sil85] M. Silva. Las Redes de Petri: en la Automática y la Informática. AC,

1985.

156 Bibliography

[Sil93] M. Silva. Introducing Petri nets. In Practice of Petri Nets in Manu-

facturing [DHP+93], pages 1–62.

[Son81] E. D. Sontag. Nonlinear regulation: The piecewise linear approach.

IEEE Transactions on Automatic Control, 26(2):346–358, April 1981.

[SR02] M. Silva and L. Recalde. Petri nets and integrality relaxations: A view

of continuous Petri net models. IEEE Trans. on Systems, Man, and

Cybernetics, 32(4):314–327, 2002.

[SR04] M. Silva and L. Recalde. On fluidification of Petri net models: from

discrete to hybrid and continuous models. Annual Reviews in Control,

2004. To appear.

[STC98] M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear pro-

gramming techniques for the analysis of net systems. In G. Rozenberg

and W. Reisig, editors, Lectures in Petri Nets. I: Basic Models, volume

1491 of Lecture Notes in Computer Science, pages 309–373. Springer,

1998.

[SvdB01] B. De Schutter and T. van den Boom. Model predictive control for

max-plus-linear discrete event systems. Automatica, 37(7):1049–1056,

July 2001.

[TB04] F.D. Torrisi and A. Bemporad. HYSDEL — A tool for generating

computational hybrid models. IEEE Trans. Contr. Systems Technol-

ogy, 12(2), March 2004. http://control.ethz.ch/~hybrid/hysdel.

[TCS97] E. Teruel, J. M. Colom, and M. Silva. Choice-free Petri nets: A model

for deterministic concurrent systems with bulk services and arrivals.

IEEE Trans. on Systems, Man, and Cybernetics, 27(1):73–83, 1997.

[Ter94] E. Teruel. Structure Theory of Weighted Place/Transition Net Systems:

The Equal Conflict Hiatus. PhD thesis, DIEI. Univ. Zaragoza, June

1994.

[TK93] K. Trivedi and V. G. Kulkarni. FSPNs: Fluid stochastic Petri nets.

In M. Ajmone Marsan, editor, Application and Theory of Petri Nets

1993, volume 691 of Lecture Notes in Computer Science, pages 24–31.

Springer, 1993.

[TS96] E. Teruel and M. Silva. Structure theory of equal conflict systems.

Theoretical Computer Science, 153(1-2):271–300, 1996.

http://control.ethz.ch/~hybrid/hysdel

Bibliography 157

[VCS02] R. Vidal, A. Chiuso, and S. Soatto. Observability and identifiability

of jump linear systems. In Proceedings of the 41st IEEE Conference

on Decission and Control (CDC 2002), pages 3614–3619, Las Vegas,

USA, December 2002.

[VCSS03] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear

hybrid systems. In Hybrid Systems: Computation and Control, volume

2623 of Lecture Notes in Computer Science, pages 526–539. Springer-

Verlag, 2003.

[ZRS01] A. Zimmermann, D. Rodŕıguez, and M. Silva. A two phase optimisa-

tion method for Petri net models of manufacturing systems. Journal

of Intelligent Manufacturing, 12(5):421–432, October 2001.

	Introduction
	Continuous Petri Nets
	Discrete Petri nets and systems. State explosion problem
	Some basic concepts
	Petri net subclasses

	Untimed continuous Petri net systems
	Timed continuous Petri net systems
	Finite servers semantics
	Infinite servers semantics

	Discrepancies with the discrete case
	Conclusions

	Reachability
	Definitions and Preview
	RS(N,m0)
	Reachability characterization
	Deciding reachability

	lim-RS(N,m0)
	-RS(N,m0)
	Conclusions

	Liveness in Untimed Systems
	No liveness preservation in untimed systems
	lim-liveness in untimed systems
	Deadlock-freeness and lim-liveness definition
	Conditions for lim-liveness for MTS nets

	Reversibility and -liveness
	Conclusions

	Liveness in Timed Systems
	No liveness preservation in timed systems
	Deadlock-freeness and liveness in timed systems
	Structural timed-liveness
	Characterization of the N set
	Restrictive places

	Critical timed-liveness
	Robust timed-liveness
	Coming back to structural liveness in untimed systems
	Conclusions

	Steady State Performance Evaluation
	Remarkable behaviours of timed continuous systems
	Continuous is not an upper bound of discrete
	Non monotonicities

	Performance evaluation bounds
	A non-linear programming problem for performance bounds
	Towards a Branch & Bound (B & B) algorithm
	Pruning nodes in the B & B algorithm
	Lower bounds and exact throughput
	Branching elimination for the computation of upper bounds

	Extending the subclass of nets: MTS reducible nets
	Conclusions

	Observability
	Observability: Problem Statement
	Observability in Join Free Systems
	Structural Observability
	Computation Algorithm

	Observability in General Net Systems
	Infeasible and Suspicious Estimates
	Incoherent Estimates
	Deciding on Observability

	Observers and estimates
	Filtering estimates
	Observers' steady state

	Design of a switching observer
	Filter based observer
	Improving the observer's estimate

	Conclusions

	Controllability
	Controlled Petri net systems
	Modelling continuous Petri nets as event-driven MLD systems
	Mixed Logical Dynamical systems
	Continuous Petri nets as event-driven MLD systems

	Optimal control using Mixed Integer Linear Programming
	Obtaining a Mixed Integer Linear Programming
	Optimality Criteria

	Conclusions

	Cases of Study
	A Manufacturing System
	An Assembly Line
	A Car Traffic System

	Concluding Remarks
	Bibliography

