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Abstract. Alzheimer’s disease is expected to reach a prevalence of 152
million people worldwide caused by the aggregation of amyloid β-proteins
leading to apoptosis of neurons and loss of cognitive function. Although
there is no effective treatment for this disease, molecules such as scyllo-
inositol have been shown to be promising. Bacillus subtilis has been
proposed as a suitable organism for the production of scyllo-inositol.
Metabolic computational models have proven useful in the prediction of
the production of a metabolite. However, most genome-scale metabolic
models lack detailed parameters and tend to overestimate the production
of a metabolite with respect to the consumption of medium resources.
In order to reduce the solution space and, hence, obtain a more realistic
model, additional constraints from experimental data can be added to
the model. This work exploits the modeling capabilities of Flexible Nets
to model the production of scyllo-inositol in a genome-scale metabolic
model of Bacillus subtilis that has been previously enriched with pro-
teomic and enzymatic data. We assess how these constraints limit the
scyllo-inositol production to more realistic levels. Moreover, the integra-
tion of different types of constraints allowed us to uncover which one of
them limits the production of scyllo-inositol for a given growth rate.

Keywords: Metabolic modeling · Flexible Nets · genome-scale models ·
scyllo-inositol · proteomic constraints · enzymatic constraints.

1 Introduction

Genome-scale metabolic models (GEMs) are mathematical representations of the
metabolism of an organism that account for the stoichiometry and flux bounds of
the metabolic reactions (Gu et al. [2019]). GEMs have various practical applica-
tions such as strain development for producing bio-based chemicals and materials
(Senger [2010], designing bio-processes Gotsmy et al. [2023], Lázaro et al. [2022]),
drug targeting pathogens (Kim et al. [2010]), predicting enzyme functions (Orth
et al. [2011]), modeling interactions among multiple cells or organisms (Zorrilla



et al. [2021]), and understanding human diseases (O’brien et al. [2013]). The
most widely-used method for analyzing GEMs is Flux Balance Analysis (FBA)
(Orth et al. [2010]), which consists of solving a linear programming problem.

Although GEMs have proven useful in many cases, they are still far from
reliably predicting growth rates or product efficiency because they are exclusively
based on stoichiometric and mass balance constraints. Consequently, the FBA
optimal solution still tends to be relatively large and usually fails to correctly
approximate reality (Durot et al. [2008], Shaw and Cheung [2021], Mao et al.
[2015]). The implementation of additional constraints to GEMs is gaining more
and more attention, since they can reduce the solution space and, hence, result
in a more realistic prediction of the metabolic fluxes. It must be noticed that,
in general, the bottleneck that limits the rate at which a reaction occurs is the
enzyme abundance and its kinetic parameters (Massaiu et al. [2019]).

This work focuses on the implementation of enzymatic and proteomic con-
straints. The metabolic flux of each reaction strongly depends on the availability
of the enzyme that catalyzes that reaction. These properties can be integrated
into the GEM in the form of parameters such as protein abundance and catalytic
constants. Here, we show how to exploit the modeling formalism of Flexible Nets,
an extension of Petri nets, to integrate enzymatic constraints into a GEM of
Bacillus subtilis.

B. subtilis, which is a model organism for Gram-positive bacteria, stands
out for its extensively mapped genome and remarkable adaptability to diverse
environments and substrates. B. subtilis efficiently secretes products without
genetic engineering. In particular, its ability to grow in minimal medium and
produce scyllo-inositol, a promising therapeutic for Alzheimer’s disease which
inhibits β-amyloid aggregation, has been well-characterized. Recently, a method
was devised by Michon et al. [2020] to synthesize scyllo-inositol from glucose,
making B. subtilis a competitive producer compared to E. coli.

The remainder of this paper is organized as follows: Section 2 introduces
Flexible Nets and shows their capabilities to model complex dynamics in biolog-
ical systems. Sections 3, 4 and 5 introduce two methods to implement kinetic
and proteomic constraints as well as their alternative using FNs. Sections 6 and
7 introduce the case study and discuss how we enriched the model and assessed
its performance. The main conclusions are drawn in Section 8.

2 Flexible Nets to model biological systems

2.1 Flexible Nets

Flexible Nets (FNs) (Júlvez et al. [2018]) is a modeling formalism for dynamic
systems inspired by Petri Nets (Murata [1989], Silva [Chapman & Hall, London,
1993]). An FN models the interaction between the state and the processes of a
dynamic system through two interconnected nets: the event net and the intensity
net. While the event net describes how processes alter the state variables, the
intensity net captures how these variables determine the process rates.
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In contrast to Petri Nets, both the event and intensity nets are tripartite
graphs whose vertices are places, transitions, and handlers. In the event net,
event handlers trigger changes in metabolite concentration resulting from re-
actions, while in the intensity net, intensity handlers model how metabolite
concentrations affect reaction rates. Places (depicted as circles) are linked with
metabolites; transitions (depicted as rectangles) are linked with reactions; event
handlers (depicted as dots) monitor metabolite concentration changes; and in-
tensity handlers (also dots) model the impact of metabolite concentrations on
reaction rates.

If only the stoichiometry of a metabolic network is taken into account, i.e.,
no reaction rate is specified, then, an event net is enough to model the behavior
of the network. Figure 1 shows a simple event net modeling a system consisting
of 4 metabolites (places {A,B,C,D}), 2 reactions or transitions ({R1, R2}), and
2 event handlers ({v1, v2}) that connect places and transitions. In this simple
system, A and B react (reaction R1) to produce 2 molecules of C; and B is also
substrate of a reaction (R2) that transforms this metabolite into D. The reaction
network modeled by the net is:

R1: A+B → 2C (1)

R2: B → D (2)

A B

C

Dv1:


a=x

b=x

c=2x

v2

v2:

{
b=x

d=x

R1

R2

a

c

x

b

b

x

d

Fig. 1. Event net that only takes into account the stoichiometry of the reactions R1 :
A+B → 2C and R2 : B → D.

The equalities in v1, a=x; b=x; and c=2x imply that the occurrence of re-
action R1 triggers the consumption of 1 unit of metabolite A and 1 unit of
metabolite B to produce 2 units of metabolite C. Similarly, the equation of v2
models that when reaction R2 happens, 1 unit of metabolite B is converted into
1 unit of metabolite D.

An appealing feature of FNs is that its intensity net can model complex
dynamics in an intuitive way. For instance, assume that reaction R2 is enzymat-
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Fig. 2. Flexible Net modeling the reactions R1 : A + B → 2C and R2 : B + E + L →
D + E + Lig. The event net is represented by black arcs and edges. In contrast, blue
arcs and edges depict the intensity net.

ically catalyzed by an enzyme E that needs to incorporate a ligand, Lig, to be
active (Figure 2). This phenomenon is quite common in biology as an enzymatic
regulation process. The reaction formulation would look like:

R1: A+B → 2C (3)

R2: B + E + L → D + E + Lig (4)

The regulation of R2 is captured by the intensity net which, for clarity, is
colored in blue. The enzyme, depicted by E catalyzes the reaction R2 which
will be activated depending on the ligand concentration, modeled by l. This
relationship is determined by the inequalities that define the intensity handler
s1. The first condition, r = 0 if 0≤l<5, indicates that the reaction rate, r, of R2

is null when the concentration of Lig, l, is less than a threshold set to 5 units. If
the concentration of Lig is greater than or equal to 5 units, then the rate of R2 is
equal to a constant, k, multiplied by the enzyme abundance, e. This dependency
is captured by the inequality r = ke if l≥5.

In FNs, the rate of a reaction, Ri, is captured by the variable λ[Ri]. This
variable is equal to λ0[Ri], which is the default intensity in a transition, plus the
intensities associated with its input arcs minus the intensities of its output arcs.

If no λ0[Ri] is explicitly associated with a reaction Ri, then it is assumed
that λ0[Ri] = 0. Thus, in the presented example, the intensity of R2 in Figure 2
can be expressed as:

λ[R2] = λ0[R2] +∆λ[(s1, R2)] = ∆λ[(s1, R2)] (5)

where, according to the equations associated with s1, ∆λ[(s1, R2)] is equal to k
times the enzyme abundance, e, if the concentration of Lig is greater than or
equal to 5, and equal to 0 otherwise.
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2.2 Modeling GEMs with FNs

GEMs are mathematically defined as a tuple {R, M, S, L, U}, where R
is the set of reactions, M is the set of metabolites, S ∈ R|M|×|R| refers to
the stoichiometric matrix whose rows(columns) are associated with the metabo-
lites(reactions) of the model, and L,U ∈ R|R| are the lower and upper flux
bounds that constrain the fluxes of the reactions. Since GEMs mainly account
for mass balance and stoichiometric constraints, these flux bounds are usually
extremely loose. A common assumption when analyzing GEMs is that the model
is in steady state. Under this condition, all the metabolites have a constant con-
centration and, hence, its production rate is equal to its consumption rate. This
is expressed by:

S · v = 0 (6)

where v is a one-column vector with the fluxes of the reactions. The addition of
the flux bounds, L and U , and an objective function to (6) results in the FBA
linear programming problem:

max cT · v
S·v = 0

L ≤v ≤ U

(7)

where c is a vector of weights indicating the contribution of each reaction to
the objective function. Notice that the FBA of GEMs can be mimicked by FNs
by imposing constant concentrations of all metabolites, adding flux bounds and
introducing an objective function (see Júlvez and Oliver [2020] for details on
steady state analysis in general FNs).

Some methods, such as GECKO (Domenzain et al. [2022]) and sMOMENT
(Bekiaris and Klamt [2020]), have been developed recently to restrict the
metabolic fluxes of an organism with enzymatic and proteomic data. Never-
theless, they rely on the addition of various artificial reactions and metabolites
that expand the original GEM stoichiometric matrix. In addition to modeling
all the reactions in a GEM, FNs can capture complex enzymatic relationships
that are difficult to accommodate with current methods.

3 GECKO method

The GECKO method consists of constraining the metabolic flux of each cat-
alyzed reaction for which there is information about the abundance of a specific
enzyme. In particular, the flux of a given reactionRi, vi (mmol g−1

DW h−1), cannot
exceed the product between the catalytic constant, kcat,i (1/h) and the enzyme
abundance, ei (mmol g−1

DW ) (Equation (8)). This is applied to each metabolic
enzyme, ei, in the model:

vi ≤ kcat,i · ei (8)

GECKO constraints are integrated into the GEM as follows:
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1. Add a metabolite, Ei, as a reactant with stoichiometric coefficient 1
kcat,i

to

each metabolic enzyme-catalyzed reaction Ri. For instance, if Ri:A → B,
then the addition of Ei results in:

R′
i: A+

1

kcat,i
Ei → B

2. Add a reaction, R′′
i for each implemented enzyme abundance, ei. For in-

stance:

R′′
i : ∅ → Ei

The upper bound of R′′
i is set to the enzyme abundance, i.e. U [R′′

i ] = ei.

3.1 Modeling the GECKO method with FNs

The GECKO method can be easily modeled by FNs. Consider a reaction R1

catalyzed by an enzyme E that transforms metabolite A into B:

R1: A+ E → B + E

The FN in Figure 3 shows how the reaction rate of R1 is constrained by
enzymatic limitations according to Equation (8).

E

B

R1

s1

s1: r≤kcat · e1

v1

A

e1r

b

x

a

Fig. 3. Flexible Net that models the dynamics of a system where the reaction rate of
R1 is limited by a GECKO-like constraint. Since the intensity transferred from s1 to
R1 satisfies that r ≤ kcat · e1, the intensity of R1 will satisfy λ[R1] ≤ kcat · e1.

In Figure 3, the inequatility presented in the intensity handler s1 is equivalent
to Equation (8). Thus, the flux of a reaction must be less or equal than the
catalytic constant multiplied by the enzyme abundance. This strategy is applied
to all the reactions for which information about their kinetic parameters and
specific enzyme abundances is available.
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4 sMOMENT method

sMOMENT is a method to constrain metabolic fluxes of the reactions in a GEM
when the kcat and molecular weights of the enzymes that catalyze the reactions
are known. As GECKO, sMOMENT also assumes steady state conditions, see
Equation (6). Additionally, the specific constraint added in this method corre-
sponds to the total concentration, P , of all the enzymes experimentally mea-
sured. A threshold is set so that the total abundance of enzymes cannot exceed
this value, P (g/gDW ): ∑

i

ei ·MWi ≤ P (9)

where MWi is the molecular weight of an enzyme. Additionally, Equation (8)
can be alternatively expressed as:

vi
kcat,i

≤ ei (10)

This leads to Equation (9):∑
i

vi ·
MWi

kcat,i
≤ P (11)

which can be rewritten as:

vpool −
∑
i

vi
MWi

kcat,i
= 0; vpool ≤ P (12)

where vpool is an auxiliary variable that corresponds to the total mass of
metabolic enzymes expressed in g/gDW .

This constraint is integrated into a GEM through the following steps:

1. Add an artificial metabolite called Mpool in all the reactions catalyzed by
metabolic enzymes. For instance, if Ri:A → B, then the addition of Mpool

results in:

R′′′
i : A+

MWi

kcat,i
Mpool → B

2. Add a new artificial reaction, Rpool:

Rpool: ∅ → Mpool

whose upper flux bound is equal to the sum of the abundances of all the
metabolic enzymes, P .

This way the resulting model is constrained by the total abundance of
metabolic enzymes.
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Fig. 4. FN that models the dynamics relationships of a system where the reaction rates
of R1 and R2 are limited by an sMOMENT-like global constraint. The net determines

that the intensity transferred from s1 to R1 satisfies that r ≤ kcat,1 · p1
MW1

, thus, the

intensity of R1 will satisfy that λ[R1] ≤
kcat,1 · p1
MW1

. The same is applied to R2.

4.1 Modeling the sMOMENT method with FNs

In contrast to the sMOMENT method which requires the addition of artificial
net elements, i.e. a metabolite and a transition, to account for the effect of
the available enzymes, FNs can model the same behavior in a more natural and
simple way by means of the intensity net. For instance, assume that we know the
kinetic parameters of two reactions, R1 and R2, and the sum of the abundances
of the enzymes that catalyze them, Y and Z, respectively. R1 is catalyzed by an
enzyme that transforms metabolite A into C and R2 is catalyzed by a different
enzyme converting B into D:

R1: A+ Y → C + Y

R2: B + Z → D + Z

Both enzymes are part of a pool of enzymes Etotal whose total amount is
constrained by experimental data.

The global constraint referring to the total measured abundance of enzymes
is implemented as in Figure 4. The place Etotal accounts for all the metabolic
enzymes, two in this case, and it is assigned a marking, P , that represents the
total enzyme concentration (g g−1

DW ) which is expressed in (12). The edges con-
nected to Etotal allow enzyme abundances to be distributed between reactions
R1 and R2. The dynamics of the system are captured by the intensity handlers
s1 and s2. These net elements, Etotal, s1 and s2, model the following inequalities,
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which are derived from (12):

vi≤
kcat,i · pi
MWi

(13)

20∑
i=1

pi ≤ P (14)

where vi is the metabolic flux of reaction Ri, kcat,i is the catalytic constant of
the enzyme that catalyzes reaction Ri, MWi is its molecular weight, and pi is
the abundance of an individual metabolic enzyme from the pool directed to the
reaction Ri.

5 Combining the sMOMENT and GECKO methods

This section shows how FNs can accommodate simultaneously the global and
individual enzymatic constraints (sMOMENT and GECKO methods) of a
metabolic network by means of its intensity network.

Assume that we know the kinetic and proteomic information of two enzymes
Y and Z that catalyze two reactions R1 and R2:

R1: A+ Y → C + Y

R2: B + Z → D + Z

In the FN in Figure 5, the intensity handlers s1 and s2 collect the enzymatic
constraints that limit the fluxes of R1 and R2 respectively. This is extended to
all the reactions for which enzymatic information is available.

The flux of the reaction R1, r, is doubly constrained. On the one hand, it has
to be less than or equal to the product of the kcat (kcat,1 in the figure) of the
enzyme Y by its abundance from the pool of enzymes directed to the reaction
that Y catalyzes, p1, divided by its molecular weight, MW1. This would be
the implementation of the global constraint. On the other hand, the flux of
R1 must satisfy a second inequality, being r less or equal than the kcat of Y
enzyme multiplied by its specific abundance, e1 (equivalent to GECKO). The
same procedure is applied to the reaction R2.

6 Bacillus subtilis models

In this work, we enriched a B. subtilis GEM (iYO844 available in the BIGG
Models database (Norsigian et al. [2019])) with enzymatic constraints using FNs
to computationally simulate the work presented in Michon et al. [2020] where a
mutant strain was genetically modified to produce scyllo-inositol from glucose.

Since a wild-type strain of B. subtilis cannot endogenously produce myo-
inositol from glucose, Norsigian et al. [2019] introduced the gene ino1 that en-
codes the inositol-1-phosphate (MI1P) synthase (MI1PS) from Mycobacterium
tuberculosis to convert glucose-6-phosphate (G6P) into MI1P. Subsequently, the
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s1:

{
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MW2
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{
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v2:

{
b=x

d=x

R1 R2

p1r

p2 r
e1 e2

a
c

x

b

d
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Fig. 5. Flexible Net that sets the dynamics relationships of a system where the reac-
tion rates of R1 and R2 are limited by GECKO-like and an sMOMENT-like global
constraints. Consider that the the intensity transferred from s1 to R1 satisfies the two
inequalities associated to s1. As a result, the intensity of R1 will satisfy both conditions:

λ[R1] ≤
kcat,1 · p1
MW1

and λ[R1] ≤ kcat,1 · e1. The same is applied for s2.

inositol monophosphatase (IMP) cleaves-off a phosphate from the MI1P originat-
ing a molecule of myo-inositol. This myo-inositol is the substrate of the inositol
2-dehydrogenase IolG encoded by the gene iolG. The last step of the scyllo-
inositol production pathway is catalyzed by the IolW enzyme, the scyllo-inositol
2-dehydrogenase encoded by the gene iolW (Figure 6). However, the metabolite
produced by IolG, 2-inosose, can be degraded by a series of catabolic reactions.
To avoid that the 2-inosose follows its catabolic pathway, researchers inhibited
it, so all the 2-inosose goes through the scyllo-inositol pathway.

The above genetic modifications can be computationally integrated in the
GEM of B. subtilis by means of the following steps:

1. Add the reaction catalyzed by the MI1PS. This way, the B. subtilis model
can transform the G6P into MI1P (R1 in Figure 6).

2. Set a null flux of the reaction that degrades 2-inosose, INSCR:

λ[R2] = 0 (15)

3. Include the reaction that catalyzes the conversion of 2-inosose into scyllo-
inositol (R3 in Figure 6).

For clarity, in Figure 6, the transitions of the model that are not relevant for
this case study have been omitted. The equations corresponding to the event han-
dlers were also omitted because the stoichiometry of the represented metabolites
is one to one in all the reactions of the scyllo-inositol production pathway, and
hence, all the labels in the event handlers are equal (e.g. in v1, a = x and b = x).
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Fig. 6. Schematic representation of the analyzed pathways in the B. subtilis modified
model. Glucose (glc c in the scheme) can be either converted into MI1P, following the
scyllo-inositol synthesis pathway or employed for the growth of the cell. The red arrow
pointing to vINSCR indicates the inhibited reaction in the model, INSCR, that simu-
lates the experimental knock-out of the multiple reactions degrading the intermediate
2-inosose in Michon et al. [2020].

Moreover, the event handler vgrowth models that the G6P can be consumed by a
series of reactions to generate growth and vexchange models an exchange reaction
that allows scyllo-inositol to leave the system in order to satisfy the steady state
condition.

As a result, we obtained a B. subtilis model with the capacity to synthesize
scyllo-inositol from glucose as carbon source (sc iYO844). These modifications
were included using the library COBRApy (Ebrahim et al. [2013]).

7 Enriching iYO844 with kinetic and proteomic constraints
using FNs

7.1 Collection of enzymatic parameters

To obtain the enzymatic data for the GEM enrichment, we followed the process
introduced in Massaiu et al. [2019]. This process consists in a manual search in
several databases and literature. The kinetic parameters were obtained from the
BRENDA (Chang et al. [2020]) and SABIO-RK (Wittig et al. [2017]) databases
and the literature. The molecular weights (kDa) of the enzymes were obtained
from the SubtiWiki (Pedreira et al. [2021]), a database that collects exclusively
information about B. subtilis proteins and genes. The information for each en-
zyme is in Table 1 (see Annex).

Protein abundances expressed in mmol g−1
DW for each enzyme were quantified

in Goelzer et al. [2015] at exponential phase. As stated in Massaiu et al. [2019],
when the protein levels were under the detection limit, we took the minimum
value among the protein level measurements in the same condition (6.8 x 10−8
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mmol g−1
DW ). Since we also integrated the sMOMENT global constraint, total

protein abundance data were required. On the one hand, according to Milo
[2013], the total amount of enzymes in an E. coli cell is 0.55 g g−1

DW . On the
other hand, the mass fraction of metabolic enzymes (the 20 enzymes taken into
account) is 0.0194 (Massaiu et al. [2019]). This value was computed by summing
the abundance expressed in parts per million of all the 20 enzymes retrieved
in PaxDB (Huang et al. [2023]). Thus, the total enzyme abundance is P =
0.0194 · 0.55 g g−1

DW = 0.01067 g g−1
DW .

7.2 Integrating kinetic and proteomic constraints

Once all the necessary enzymatic data was collected, we applied the specific
constraints on the enzyme-catalyzed reactions (17 in the glucose metabolism
pathway and 3 that belong to the scyllo-inositol production pathway) and over
the total concentration of metabolic enzymes.

For the GECKO-like constraints, we followed Equation (8) for the 17 enzyme-
catalyzed reactions participating in glucose metabolism. Conversely, for the 3
enzymes participating in the scyllo-inositol pathway, we assumed the following:
the flux of the scyllo-inositol synthesis reactions will satisfy Equation (16) be-
cause these enzymes are overexpressed and, consequently, their abundances must
be strictly higher when scyllo-inositol production is maximized than when they
were experimentally measured (when the growth rate is maximized).

vi ≥ kcat,i · ei (16)

For the constraint that accounts for the total amount of enzymes modeled
by FNs as showed in Figure 4, we applied the corresponding restriction, i.e.
inequality (13), to each of the 20 enzyme-catalyzed reactions.

7.3 Assessing the effect of the integrated constraints

The aim of this section is to assess the effect of kinetic, proteomic and glucose
uptake rate constraints on the scyllo-inositol production and growth rate. Several
models, which depend on the integrated constraints, were generated from the
original GEM (iYO844):

– sc ec iYO844. This model implements the kinetic constraints for the 17 re-
actions of the carbon source metabolism (the GECKO-like constraints).

– sc ec iYO844 + uptake constraint. This model integrates the kinetic con-
straints for the 17 reactions and the constraint for the glucose uptake rate.

– sc ec iYO844 + vpool. This model integrates the proteomic constraints that
end up limiting the total amount of enzymes as a pool (sMOMENT-like
constraint).

– sc ec iYO844 + vpool + uptake constraint. This model includes all the above
presented constraints: kinetic, proteomic and glucose uptake rate constraints.
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Fig. 7. Fluxes of scyllo-inositol synthesis (dashed lines) and glucose uptake (continuous
lines) for growth rates in the interval [0, 0.624] h−1.

If the steady state condition is imposed to the sc iYO844 FN and the syn-
thesis of scyllo-inositol is maximized, then the obtained growth rate is null. Con-
versely, if the growth rate is maximized (0.624 h−1), scyllo-inositol production
is zero. This is biologically non-realistic and shows that, when there is no kinetic
or proteomic constraints, the carbon source is either directed to the growth or
to scyllo-inositol synthesis. In other words, there are pathways that compete for
the carbon source, and the maximization of one implies zero flux in the other.

In further simulations, we ran the steady state condition applied in Equation
7 on each of the presented models converted to FN, setting the scyllo-inositol
synthesis as the objective function to be maximized. The maximization of scyllo-
inositol synthesis was performed while fixing the growth rate to 20 different
values, equally distributed in the interval between 0 and 0.624 h−1. The obtained
results are shown in Figure 7.

The purple and blue lines refer to the glucose uptake and the scyllo-inositol
production, respectively, in the model sc iYO844. The red and orange lines cor-
respond with the glucose uptake and scyllo-inositol production, respectively, in
sc ec iYO844. Finally, the black and green lines represent the glucose uptake and
the scyllo-inositol production, respectively, when including all the constraints in-
troduced in Section 7.2 (sc ec iYO844 + vpool constraint). These results suggest
that the inclusion of the kinetic and proteomic constraints results in a reduction
of the solution space, and consequently predicts a more realistic production of
scyllo-inositol. The initial production of scyllo-inositol is high (between 93.118
mmol g−1

DW h−1 and 87.034 mmol g−1
DW h−1 when the growth rates are minimum
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Fig. 8. Fluxes of scyllo-inositol synthesis (dashed lines) and glucose uptake (continuous
lines) for growth rates in the interval [0, 0.624] h−1 with the experimental glucose
uptake in B. subtilis as an additional constraint.

and maximum, respectively) due to the lack of tight constraints in sc iYO844.
Notice that the experimental uptake rate of glucose in B. subtilis is 7.71 mmol
g−1
DW h−1 (Massaiu et al. [2019]) and that, according to the reaction network in
Figure 6, one molecule of glucose can produce at most one molecule of scyllo-
inositol. Hence, 7.71 mmol g−1

DW h−1 is an upper bound for the scyllo-inositol
synthesis flux and, therefore, the reported initial productions are unreachable by
a real cell.

As shown in Figure 7, the glucose uptake rate varies in an interval between
9.06 and 11.30 mmol g−1

DW h−1 when implementing the whole set of enzymatic
constraints in the model, so our enriched model predicts a similar but slightly
higher uptake rate than the experimental one even if it is not explicitly con-
strained in the model. Therefore, this adjusted uptake rate solely limited by the
enzyme availability leads to a more reduced flux for the scyllo-inositol production
and a more realistic value in comparison to the one obtained with the original
model sc iYO844. To further support the predictive capacity of the enriched
sc ec iYO844 + vpool, we calculated the conversion efficiency from glucose to
scyllo-inositol (the ratio between the scyllo-inositol synthesis flux and the glu-
cose uptake rate) and compared it with the available bibliography. In Tanaka
et al. [2017], a conversion efficiency of 0.55 with myo-inositol as substrate was
reported, and in Michon et al. [2020], the reported value using glucose as sub-
strate was 0.10. Notice that these values are closer to the conversion efficiencies
predicted using sc ec iYO844 + vpool, see Table 2 (Annex).
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In the end, we conducted a further analysis to uncover how the glucose up-
take rate and the kinetic and proteomic constraints affect the scyllo-inositol
production.

In Figure 8, the green and black lines refer to the scyllo-inositol production
and the glucose uptake rate, respectively, in the sc ec iYO844 + vpool model;
the blue and red lines correspond with the scyllo-inositol production and the
glucose uptake rate, respectively, in the sc ec iYO844 + uptake constraint model;
the orange and purple lines represent the scyllo-inositol production and glucose
uptake rate when utilizing the sc ec iYO844 + vpool + uptake constraint model.
Here, the results indicate that when higher levels of scyllo-inositol are produced,
which implies low growth rates, the enzymatic constraints are predominant over
the glucose uptake constraint, being the enzyme availability the bottleneck for
the scyllo-inositol synthesis. However, there is a point, when the growth rate is
approximately 0.32 h−1, where the glucose uptake rate constraint imposes over
the enzymatic constraints. This happens exactly when the blue and green lines
intersect. This can also be noted in the black line: when growth rate reaches 0.32
h−1, the glucose uptake rate needs to increase because it becomes the limiting
constraint instead of the kinetic and proteomic ones.

The Python script that performs the reported optimizations is available at:
https://github.com/jlazaroibanezz/scyllo-inositol-bacillus.

8 Conclusions

Flexible Nets (FNs) can integrate naturally different enzymatic constraints in
order to produce a realistic model of metabolism. In this work, two different
types of enzymatic constraints were implemented in the same FNs model: the
constraints that limit individually the availability of an enzyme (GECKO) and
a global constraint that restricts the total amount of enzymes (sMOMENT).
Among other properties such as having a simple and intuitive graphical repre-
sentation, FNs offer the possibility of modeling the activation or inhibition of
a certain reaction depending on the concentration of a metabolite, see Figure
2, and can approximate non-linear dynamics (Júlvez et al. [2018]), making this
approach more versatile in several aspects than its recently updated analogue
GECKO 3.0 (Chen et al. [2024]). Moreover, the integration of the constraints
seems more natural in FNs because they directly constrain the rates of real bio-
logical processes (biochemical reactions). In contrast, GECKO 3.0 does the same
but less directly and consequently, in a harder to interpret way.

An FN has been developed to study the production of scyllo-inositol in a
genome-scale metabolic model of Bacillus subtilis. It has been shown that more
realistic levels of scyllo-inositol production are computed when the model is
enriched with enzymatic constraints. In particular, the model predicts that the
scyllo-inositol production is limited by the enzyme availability and kinetics when
the metabolic flux is mainly directed to maximize scyllo-inositol production.
Nevertheless, the limiting constraint changes to the glucose uptake rate as the
growth rate increases and, consequently, the scyllo-inositol production decreases.
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9 Annex

Reaction name EC kcat[s
−1] [E][mmol/gDW ] Organism of kcat data

PGI 5.3.1.9 126 1.55 · 10−5 E. coli

TPI 4.1.1.31 150 1.28 · 10−5 E. coli

GAPD NAD 1.2.1.12 70 5.77 · 10−5 B. subtilis

PGK 2.7.2.3 329 3.60 · 10−5 E. coli

PGM 5.4.2.12 765.9 8.85 · 10−6 B. subtilis

ENO 4.2.1.11 130.4 3.17 · 10−5 B. subtilis

G6PDH 1.1.1.49 174 8.05 · 10−6 E. coli

CS 2.3.3.16 49 2.51 · 10−5 B. subtilis

ICDHy 1.1.1.42 82 1.10 · 10−4 B. subtilis

FUM 4.2.1.2 283.3 7.29 · 10−6 E. coli

MDH 1.1.1.37 177.1 1.06 · 10−4 B. subtilis

PTAr 2.3.1.8 651.6 8.49 · 10−6 B. subtilis

LDH L 1.1.1.27 6416.6 3.60 · 10−6 B. subtilis

PGCDr 1.1.1.95 14.56 1.90 · 10−5 B. subtilis

OXADC 4.1.1.2 59 6.21 · 10−7 B. subtilis

MICITL 4.1.3.30 19 6.80 · 10−8 E. coli

OXGDC 4.1.1.71 0.2 6.80 · 10−8 B. subtilis

IMP 3.1.3.25 6.5 6.80 · 10−8 E. coli

IOLG 1.1.1.18 21.84 6.80 · 10−8 B. subtilis

IOLW 1.1.1.371 84.63 6.80 · 10−8 B. subtilis

Table 1. This table gathers data from Massaiu et al. [2019], and includes the kinetic
and proteomic information of three of the enzymes participating in the scyllo-inositol
synthesis pathway (IMP, IolG and IolW).
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Conversion efficiency

Growth rate (h−1) sc iYO844 sc iYO844 + vpool

0.0 0.931 0.513

0.032 0.928 0.505

0.065 0.924 0.496

0.098 0.921 0.487

0.131 0.918 0.477

0.164 0.915 0.468

0.197 0.912 0.457

0.229 0.909 0.447

0.262 0.906 0.436

0.295 0.903 0.409

0.328 0.899 0.374

0.361 0.896 0.341

0.394 0.893 0.309

0.426 0.890 0.280

0.459 0.886 0.253

0.492 0.883 0.227

0.525 0.880 0.207

0.558 0.876 0.189

0.591 0.873 0.170

0.624 0.870 0.150

Table 2. Conversion efficiency values in the sc iYO844 and the sc ec iYO844 + vpool
models depending on the fixed growth rate.
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