Modeling uncertain biomass composition in
genome-scale metabolic models with
Flexible Nets
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Abstract. Genome-scale Metabolic Models (GEMs) are mathematical
representations of an organism’s metabolism that describe mass-balanced
relationships between metabolites using gene-protein-reaction associa-
tions. These models are used to analyze the metabolic fluxes through
reactions involved in the metabolism, with the most commonly used
method being Flux Balance Analysis (FBA). The usefulness of GEMs is
limited by the presence of uncertain parameters, which can lead to poor
predictions. In order to model uncertain biomass composition, a particu-
lar class of Flexible Nets (FNs), called ENDI, is proposed. The impact of
uncertain biomass composition on the growth rate of the organism can
be assessed straightforwardly by a linear programming problem.
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1 Introduction

Genome-scale metabolic models (GEMs) are mathematical representations of
the metabolism of an organism that describe a whole set of mass-balanced re-
lationships between the metabolites of the organism using gene-protein-reaction
associations resulting from the annotation process and experimental informa-
tion. A key element of a GEM is the biomass reaction, whose flux represents
the growth rate of the organism. Determining exactly the biomass reaction of
a GEM is a challenging task [1] since it is a fake reaction that, taking into
account the biomass compositions, specifies the metabolites consumed and pro-
duced by the cellular growth together with their corresponding stoichiometric
weights. For simplicity, these weights are ezact real numbers in most modelling
formalisms. Nevertheless, their actual values are usually uncertain. The effect of
biomass composition on the accuracy of the model has been investigated in sev-
eral works, e.g. [2], which show how the distribution of fluxes in the metabolism
depends on the biomass composition. This paper proposes the modelling formal-
ism of Flexible Nets (FNs) to model GEMs with uncertain stoichiometry and,
in particular, with uncertain biomass composition.



2 Flexible Nets for GEMs

A GEM can be represented as a constraint-based model (CBM) with a tuple
Cp ={R,M,S,1b,ub} where R is the set of reactions, M is the set of metabolites,
S € RIMIXIEl i5 the stoichiometric matrix, and b, ub : R — R are lower and
upper flux bounds of the reactions. Each reaction is associated with a set of
reactant metabolites and a set of product metabolites (one of these sets can be
empty).

The stoichiometric matrix S accounts for all the stoichiometric weights of
the reactions, i.e. S[m,r] is the stoichiometric weight of metabolite m € M for
reaction r € R. Thus, if S[m,r] < 0 then m is consumed when r occurs; if
S[m,r] > 0 then m is produced when r occurs; and if S[m,r] = 0 then m is
neither consumed nor produced when r occurs.

Given that most GEMs lack of kinetic information and just report flux for
their reactions, the FNs [3] will be constrained here to event nets with default
intensities, or equivalently, fluxes that are independent of the metabolic concen-
trations.

Definition 1 (Event net with default intensities (ENDI)) An event net
with default intensities is a tuple Ny = {P,T,V,Ey,A,B,J K} where
(P, T,V,Ey) is a tripartite graph determining the net structure, (A, B) are matri-
ces determining the stoichiometry, and (J, K) are matrices constraining potential
intensities of the net.

An ENDI has three types of vertices: places (set P), transitions (set T'), and
event handlers (set V). Each place, p € P, is depicted as a circle and models
a metabolite. Each transition, ¢ € T, is depicted as a rectangle and models
a reaction. Each event handler, v € V, is depicted as a dot and models the
stoichiometry of a reaction. The vertices of the net are connected by the edges
in Fy . Each pair of vertices can be connected by at most one edge. The set Ey is
partitioned into two sets E¥, (arc from a place to a handler or vice versa) and E
(edge connecting a transition and a handler). Direct connections among places
and transitions are not allowed. The matrices A and B model the potential ways
in which the concentrations of metabolites change when reactions occur.

The ENDI in Figure 1 has two places, P = {pa,pr}, three transitions,
T = {t1,ta2,t3}, and three event handlers V' = {wy,vs,v3}. The set of arcs
is BV = {(v1,pa), (v2, k), (Pa,v3), (Pk,v3)} and the set of edges is Ef =
{(t1,v1), (t2,v2), (3, v3)}-

In an ENDI, the flux of reactions is given by a vector \ € IR|>R0|, ie. Alt] is
the flux of reaction ¢, and the speed at which the amounts of metabolites change
is given by a vector Am, € R|>E0V‘, ie., Am.[(v,p)] is the speed at which v
produces metabolites in p, and Am.[(p,v)] be the speed at which v consumes
metabolites from p.

In general, the relationship between reaction fluxes, A\, and speeds at which
metabolite change is given by (see Definition 1):

AAm, < BA (1)
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Fig. 1: Event net with default intensities (ENDI) and uncertain stoichiometry.

In order to account for uncertain fluxes, all the potential values of )\ are
assumed to be constrained by:

JN< K (2)

where J and K are real matrices of appropriate size. Inequality 2 allows the
modeller not only to establish individual lower and upper flux bounds as in usual
CBMs, but also to state linear constraints among fluxes of different reactions.

3 Modelling uncertain biomass composition

A general expression for the biomass reaction, ry, is given by:
Tg: wer My + ...+ wep My, — wlepl + ...+ wpk’Mpk’ (3)

where {M,1, ..., M.} represent the set of reactants, {w.,1, ..., w,} are their cor-
responding coeflicients, { M1, ..., Myx/} represent the set of products and their
coefficients are {wp1, ..., wpr'}. In CBMs, these stoichiometric coeflicients are
sharp real numbers, this makes it difficult to model partially known reactions.
An appealing feature of ENDIs is that they can accommodate uncertain stoi-
chiometric coefficients.

The ENDI in Figure 1 models three reactions:

R1:®_>pa
Ry : 00— pg
R3 :pg + kpp — 0

where the stoichiometric weight k& is uncertain but known to be in the interval
[1.9,2.1]. This uncertainty is modelled by the inequalities 1.9v<k<2.1v associ-
ated with vs.

The fluxes of the reactions Ry, Ro, and R3 are uncertain and constrained
to the intervals [l1,u1], [l2,u2], and [0, us] respectively. This is modelled by the
inequalities above the reactions.



4 Steady state bounds

Similarly to FBA, it will be assumed that in the steady state both, the fluxes of
reactions and the amounts of metabolites keep constant. This assumption leads
to the following constraint that must be satisfied in the steady state:

ZAm; =0 (4)

where Z is a matrix with rows indexed by P, columns indexed by E¥, and such
that Z[pi, (pi, )] = =1V (pi,v) € EY, Zlpi, (v, pi)] = 1V (vx,pi) € Ef and
the rest of the elements in Z are 0.

Equation (4) together with equations (1) and (2) can be used to establish
a set of necessary conditions for the state variables, A and Am., in the steady
state.

Proposition 1 Let Ny be an ENDI, all the potential steady states (A, Am.;)
belong to SSy, where:
5SSy = {(A\Am, )|
AAm,. < B
ZAm, =0
JA< K}

(5)

Lower and upper bounds for a function of interest can be computed by adding
an appropriate objective function to the constraints in (5). For instance, an
upper bound for the flux of the biomass reaction, r4, i.e. an upper bound for
the growth rate, can be obtained by solving the following linear programming
problem (LPP):

mazx A[tg] subject to
AAm, < BA
ZAm, =0
JN<K

where ¢, is the reaction modelling biomass composition.
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