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Abstract—This paper presents a novel approach to analyze
and optimize healthcare systems based on clinical pathways,
using timed continuous Petri nets (TCPNs) under infinite server
semantics. TCPNs allow for an efficient continuous-time analysis
of the patient flow and resource utilization dynamics of these
types of systems. We demonstrate the feasibility and effectiveness
of our method through a case study of a hip fracture pathway
at the “Lozano Blesa” University Clinical Hospital, in Zaragoza
Spain. Additionally, we propose a method to optimize the behav-
ior of the modeled system by taking a control theory approach,
which enables the system to achieve maximum throughput more
efficiently. Finally, we provide simulation results to demonstrate
the effectiveness of the proposed controller in practical settings.

Index Terms—healthcare systems; clinical pathways; modeling;
timed continuous Petri nets; nonlinear analysis and design.

I. INTRODUCTION

Healthcare systems are an essential component of any
society, providing crucial medical services to individuals in
need. However, the complex and dynamic nature of these
systems, including tasks that often demand the coordination
of multiple processes and resources, simultaneous actions, and
decision-making, can pose significant challenges to their effi-
cient operation. Consequently, the development of advanced
analysis and optimization tools for healthcare systems has
become a critical research area.

This contribution focuses on the analysis and optimization
of healthcare systems based on clinical pathways [1]. A
clinical pathway is a structured approach to the treatment
and management of patients with a particular diagnosis or
condition. It provides a standardized set of recommendations
for medical staff to follow in terms of diagnostic tests, in-
terventions, and treatments for each step of a patient’s care
journey. As a case study, we consider the analysis of the
clinical pathway of hip fracture from the “Lozano Blesa”
University Clinical Hospital in Zaragoza, Spain.

To deal with this problem, discrete event systems (DES)
and, in particular, Petri nets (PNs) have proven to be highly
appropriate for modeling the event-driven nature of healthcare
systems [2]–[5]. The advantage of this approach is that by
leveraging these formalisms, healthcare professionals can gain
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valuable insights into the operation of these complex systems,
leading to better patient outcomes and a higher quality of care.
However, it is well-known that the use of analysis techniques
for DES may become inefficient in highly populated systems
since they suffer from the state explosion problem, requiring
a substantial amount of time to complete the analysis.

In order to cope with this, we propose a model to describe
the structure and dynamics of the clinical pathway using timed
continuous Petri nets (TCPNs), which are a fluid relaxation of
discrete PNs [6], [7]. The proposed model is based on the one
presented in [3] where Stochastic Well-Formed (SWN) Petri
nets were used to model the clinical pathway and available
SWN solution techniques, such as event-driven simulation [8],
were used to obtain an estimation of different performance
indices. The advantage of our approach is that it achieves
a reduction in computational complexity for analyzing the
system while maintaining a good level of accuracy with
respect to the behavior of the discrete model. Furthermore,
this approach offers the benefit of leveraging the analysis and
design techniques that have been developed for TCPNs which
have been extensively addressed in the literature (steady-state
throughput analysis [9], fault diagnosis [10], controllability
[11], observability [12], among others).

TCPNs have been previously used in the literature to model
healthcare systems [13], [14]. However, these works deal with
the optimization of the system differently. For instance, [14]
proposes to optimize the healthcare system by solving a linear
programming problem for the determination of the optimal
resources, i.e., by redesigning the system by changing its
initial parameters and resource availability. In this work, we
use a different approach: our goal is to manage the available
resources to optimize system performance, assuming redesign
is not desirable or feasible.

In order to do that, we take a control theory approach by
using the available literature on controllability analysis and
control design for TCPN systems (e.g., [11], [15], [16]). First,
we deal with the controllability analysis of the proposed model
by using the results developed in [11] that efficiently deal with
the controllability verification. This is a crucial property of
any dynamic system since if a system is not controllable, then
there does not exist a controller that drives the system to the
desired state. We have implemented this approach in SimHPN,
an available MATLAB toolbox for the analysis of hybrid Petri



nets [17]. Next, we propose a control scheme, based on the
one proposed in [16] that enables the modeled system to reach
a state of maximum throughput more quickly. The scheme is
based on an On-Off type control over the firing speed at the
controllable transitions that reduces the marking error, i.e., the
difference between the desired and actual state of the clinical
pathway. In the context of the modeled system, the proposed
control law can be interpreted as that it prioritizes activities
that reduce the marking error, resulting in an optimized use of
personnel and a more efficient system. The proposed control
law can be computed easily online, despite the complexity
of the system. Finally, we provide simulation results that
demonstrate the effectiveness of the proposed control scheme
in the model under study.

The paper is structured as follows: Section II provides
the basic concepts of the formalism and tools utilized for
the analysis of the modeling of the healthcare system. In
Section III, we briefly review controllability concepts and
control laws for TCPNs based on prior research. Section IV
outlines the TCPN model developed to represent the clinical
pathway, which is validated against the original SWN model.
In Section V, we perform a controllability analysis and present
the simulation results of the control scheme implementation.
Finally, Section VI provides a summary of the conclusions
drawn from the study.

II. BASIC CONCEPTS

This section introduces some basic concepts of PNs and
TCPNs. We assume that the reader is familiar with these
subjects, which can be consulted in [6], [7]. Notation a[i]
stands for the i-th entry of vector a. Similarly, A[i, j] denotes
the i, j-th entry of matrix A, A[i, •] its i-th row, and A[•, j]
its j-th column.

Definition 1: A Petri net (PN) structure is a directed bipartite
graph defined as N = ⟨P, T,Pre,Post⟩ where: P and T
are finite non-empty disjoint sets of nodes named places and
transitions, respectively; Pre and Post are |P |×|T | matrices,
where Pre[j, k],Post[j, k] ∈ N≥0 represent the weight of
the arc, (pj , tk), connecting pj to transition tk, and the arc,
(tk, pj), connecting tk to pj , respectively.
In net systems, each place pj ∈ P has a non-negative real
number of tokens denoted by mj ∈ R≥0. The vector m ∈
R|P |

≥0 is named the marking (or state) of the system, where
m[j] = mj .

Definition 2: A continuous PN (CPN) system, ⟨N ,m0⟩,
is a PN structure provided with an initial marking, m0 ∈
Rn

≥0. CPNs allow for transitions to be fired in non-negative
real-valued amounts. The enabling degree of the system at
marking mr is denoted by the |T |-sized vector enab(mr),
and is defined s.t. its k-th component is: enab(mr)[k] =
minpj∈•tk {mr[j]/Pre[j, k]} representing how much tk can
be fired at mr; tk is enabled at mr if enab(mr)[k] > 0.
An enabled transition tk can be fired in any real amount, 0 ≤
αk ≤ enab(mr)[k], leading to a new marking mr+1 = mr+
C[•, k]αk, where C = Post−Pre is the the token-flow matrix
of a PN. This is denoted as mr

αk−−→ mr+1. A sequence, σ =

αkαl...αm such that m0
αk−−→ m1

αl−→, ...,
αm−−→ mr is said to

be a fireable sequence. A marking m reached after the firing of
σ at m0 can be computed by the fundamental CPN equation:

m = m0 +Cσ (1)

where the firing count vector, σ = [α1 ... α|T |]
T , indicates the

amount of firing of each transition in the sequence σ. Given
⟨N ,m0⟩, the set of all reachable markings from m0 is convex
and it is denoted as RS(N ,m0) [7].
If x ̸= 0 (resp. y ̸= 0) is a non-negative solution of Cx =
0 (resp. yTC = 0) then it is named T-semiflow (resp. P-
semiflow). N is consistent, denoted as Ct (resp. conservative,
denoted as Cv) if there exists a T-semiflow x > 0 (resp. P-
semiflow y > 0).

The notion of time can be included in CPNs by timing the
firing of their transitions, leading to the timed continuous Petri
net systems.

Definition 3: A timed continuous Petri net (TCPN) system is
a continuous-state system described by the tuple ⟨N ,λ,m0⟩,
where ⟨N ,m0⟩ is a CPN system and λ ∈ R|T |

>0 is the
firing rate vector or timing of the net, which assigns to each
transition a positive real number representing its firing rate.
By assuming that the marking and the firing count vector in
(1) are dependent on time, τ , m(τ) = m0 +Cσ(τ), the state
equation of the timed system is obtained by taking the time
derivative of m(τ):

ṁ(τ) = Cf(τ) (2)

where f(τ) = σ̇(τ) is the firing flow vector of the TCPN.
This work defines the flow vector using infinite server seman-
tics (ISS), which offers a more accurate approximation of the
performance of the system’s discrete counterpart for a broad
class of net systems [18]. Under ISS, the flow of the k-th
transition is defined as the product of its firing rate, λk = λ[k],
and its instantaneous enabling degree, enab(m(τ))[k]:

f(τ)[k] = λkenab(m(τ))[k] = λk min
pj∈•tk

{
m(τ)[j]

Pre[j, k]

}
(3)

The min operator in Eq. (3) allows describing the state
evolution of a TCPN system as a piecewise affine system. The
next concepts illustrate this:
(1) A configuration of the TCPN, C = {(pα1

, t1), · · · ,
(pα|T | , t|T |)}, is a set of arcs, one per transition s.t. pαk

∈ •tk.
(2) The |T | × |P | configuration matrix Πi, associated to Ci,
is defined as:

Πi[k, j] =

{
1

Pre[j,k] if (pj , tk) ∈ Ci
0 otherwise

(4)

(3) A configuration Ci is said to be active at m(τ) if
Πim(τ) = enab(m(τ)). If Ci is active and (pj , tk) ∈ Ci,
it is said that pj constrains the flow of tk at Ci.
(4) A region Ri is the convex subset of markings for which
Ci is active: Ri = {m ∈ RS(N ,m0)|Πim = enab(m)}.
According to (3), within region Ri, the flow vector is given by
f(τ) = Λ·enab(m(τ)) = ΛΠim(τ) where Λ is the diagonal



matrix containing the entries of λ in its main diagonal.
(5) A linear mode of a TCPN system, Σi, is the linear-
time invariant system, ṁ(τ) = Cf(τ) = CΛΠim(τ), that
describes the evolution of the marking inside Ri

1.
Given a TCPN system, a marking mss ∈ RS(N ,m0)

that fulfills that mss = limτ→∞ m(τ), mss ∈ Rs and
ṁ = CΛΠsmss = 0 is named a steady state of the system.
The steady-state flow, or throughput, of the system is given
by fss = ΛΠsmss.

Control actions can be applied to TCPN systems to enforce
a desired behavior. They consist of local reductions of the
flow through the transitions. Transitions in which control
actions can be applied are named controllable. The set of
all controllable transitions is denoted by Tc and the set of
uncontrollable transitions is Tnc = T \ Tc. The control
vector u(τ) ∈ R|T |

≥0 is defined s.t. u(τ)[j] represents the
control action on the j-th transition. A control vector is called
suitably bounded (s.b.) if it fulfills that u(τ) ≤ f(τ) and that
u(τ)[k] = 0, ∀tk ∈ Tnc. Only, s.b. control vectors can be
applied. The forced state equation of a TCPN system is given
by:

ṁ(τ) = C[f(τ)− u(τ)] = CΛΠ(m)m(τ)−Cu(τ) (5)
0 ≤ u(τ) ≤ f(τ)

where Π(m) = Πi when m(τ) ∈ Ri. In the following, the
particular case of TCPN system with u(τ) = 0 will be referred
to as the unforced case.

An important subset of RS(N ,m0) is the set of equilibrium
markings, i.e., the “potential steady states” of the forced
system. The set of equilibrium markings in Ri is:
Ei = {mq ∈ Ri | ∃uq s.b., s.t. C(ΛΠimq − uq) = 0} The
union of the sets Ei, for all Ri, is denoted as E.

To simplify the forced state equation, we can interpret the
control inputs as local variations in the firing rate of the
controllable transitions. This can be achieved by rewriting
the input signal as u(τ) = Iu(τ)ΛΠ(m)m(τ) where the
control variable is Iu(τ) = diag[Iu1(τ) ... Iu|T |(τ)] with
0 ≤ Iuk(τ) ≤ 1 ∀tk ∈ Tc and Iuk(τ) = 0 ∀tk ∈ Tnc.
Then the matrix Ic(τ) = I− Iu(τ) = diag[Ic1(τ) ... Ic|T |(τ)]
is constructed, where I is the identity matrix of size |T |, and
the forced state equation can be rewritten as:

ṁ(τ) = CIc(τ)ΛΠ(m)m(τ)

Notice that 0 ≤ Ick(τ) ≤ 1 ∀tk ∈ Tc and Ick(τ) = 1
∀tk ∈ Tnc.

III. CONTROLLABILITY AND CONTROL IN TCPN SYSTEMS

Controllability analysis of dynamic systems is crucial since
if a system is not controllable, then there does not exist a
controller that drives the system in the desired way. The
analysis of controllability for the particular case of TCPNs has
been extensively studied in the literature, obtaining adequate

1When the marking is at the border of two adjacent regions, any of
the corresponding linear modes can be used interchangeably to govern the
system’s dynamics (thus, it is not important which one is taken).

and efficient results to perform this task for this particular
class of systems [11], [15]. Our focus in this paper, however,
is not to provide an in-depth explanation of the theory, but
rather to demonstrate the effectiveness of the control strategy
in optimizing the system performance. We will provide a high-
level overview of the analysis and control approach used in this
work. In the literature, the controllability for TCPN systems
under ISS has been defined as:
A TCPN system is bounded input controllable (BIC) over a
set of markings S ⊆ RS(N ,m0) if, for any m1, m2 ∈ S,
there exists a s.b. u(τ) that transfers the system from m1 to
m2 in finite or infinite time and maintains this marking.

In this work, we deal with TCPN systems that contain
uncontrollable transitions. Consequently, these systems are
frequently not BIC over RS(N ,m0) [15]. The commonly
adopted goal for this case is to study BIC over the equilib-
rium markings of the system. This is particularly relevant in
practical applications, where controllers are designed to guide
the system toward specific stationary states. To cope with this,
we will employ the techniques developed in [11], which study
structural conditions (depending only on the structural infor-
mation of the TCPN) for net rank-controllability (NRC). NRC
is a structural sufficient condition for BIC over the equilibrium
markings of a system and can be tested efficiently by means
of polynomial time algorithms. We have implemented these
algorithms in SimHPN, an available MATLAB toolbox for
the analysis of hybrid Petri nets [17]. This toolbox will be
utilized for the analysis of the controllability of the system
under consideration.

After dealing with the controllability analysis, we turn our
attention to the following control design problem:
Given a TCPN system, ⟨N ,λ,m0⟩ and a required target
marking, mr, design a control law that drives the marking
of the TCPN from m0 to mr, and then keeps the marking at
mr indefinitely.

To solve this problem from our particular case study, we
adopt a control law presented in [16], originally designed for
the case where all the transitions are controllable. This scheme
is based on defining a required marking, mr ∈ E and defining
the marking error as:

e(τ) = mr −m(τ) (6)

Based on this, we can now define the contribution degree
of a controllable transition. This is a measure of how much
the firing of a particular transition contributes to reducing the
overall error in the system, formally defined as:

The contribution degree of the k-th transition, Ψk(τ), is
defined as:

Ψk(τ) = eT (τ)C[•, k] (7)

Now, we can define the control law as follows:
Definition 4: Let ⟨N ,λ,m0⟩ be a TCPN system and mr ∈

E be the required marking. For each tk ∈ Tc, its control input
at instant τ is given by:

Ick(τ) =

{
1 if Ψk(τ) > 0

0 otherwise
(8)



In section V, the analysis and design techniques discussed
previously will be applied to the modeled system. It will
be demonstrated that the proposed scheme is capable of
improving the performance of the system.

IV. FLUID MODEL OF A HIP FRACTURE CLINICAL PATHWAY

In this section, we present the fluid model for the study of
the clinical pathway of hip fracture from the “Lozano Blesa”
University Clinic Hospital in Zaragoza, Spain. It is based on
the model developed in [3], as a stochastic well-formed Petri
net (SWN). We validate our model by comparing the results
obtained through TCPN simulation with those of the discrete
system. We show how the TCPN system can be used to obtain
a more efficient continuous-time analysis of the patient flow
and resource utilization dynamics while maintaining a good
level of accuracy, w.r.t. the original model.

The proposed methodology serves as a valuable tool for hos-
pital managers, enabling comprehensive resource assessments
and informed decision-making during the different parts of
the process. It can be used to obtain insights and recommen-
dations to optimize resource allocation and improve overall
performance. By utilizing the model, managers can identify
resource utilization patterns, address potential bottlenecks, and
enhance patient care and operational efficiency proactively.

A. TCPN model of the clinical pathway

The proposed TCPN model is depicted in Fig. 1. It contains
some modifications w.r.t. the original SWN, which will be
explained in the following. As in the original discrete model,
it captures the clinical pathway for hip fracture treatment: it
consists of all the tasks that need to be done during the pre-
operative day of hospitalization (left side of the figure), the
surgery (at the bottom of figure), and the post-operative day
(right side of the figure). The TCPN model includes places
that represent both the patients (p1) and the resources of the
system, such as nurses (p41) and doctors (p42). The model
shows how these entities are utilized throughout the clinical
pathway.

Originally, the SWN contains conflicts that represent the dif-
ferent alternatives through the clinical pathway. For instance,
p6 models the possibility of the patient having a urinary infec-
tion or not. In the SWN (Fig. 8 in [3]), a choice place is used
to model this scenario and a probabilistic resolution policy is
used to solve the conflict. For this particular case, statistically,
only 10% of the patients suffer from urinary infection and need
an urgent pre-operative study (procedure modeled from p7 to
t9) while 90% of the cases can continue the pathway without it.
For simplicity of analysis, we remove the probabilistic choices
in our model by introducing equivalent structures composed
by fork transitions (t6, t10, and t37) that divide the token flow
proportionally to each branch’s probability. For instance, for
t6, for each token that consumes, it allocates 0.9 tokens to the
first branch and 0.1 tokens to the second branch, representing
the behavior of the original system.

Next, to set the parameters for performance evaluation
purposes, we need to determine the timing of the transitions.

For the SWN, the mean time delay of each transition is defined
according to the time interval it takes to accomplish the task
it represents. This information is reported in Table 1 of [3].
The SWN model has two types of transitions: immediate
and timed. The former type represents events that occur
instantaneously, such as the allocation and release of resources
or probabilistic choices (depicted as black transitions in Fig.
1). The latter represents the tasks that must be performed
during the clinical path (depicted as white transitions in the
figure). This information is used to define the firing rate of
the transitions in the TCPN model, summarized in Table I.
It is worth noticing that we assume that the timing of the
immediate transitions is not instantaneous but only much faster
than the rest of the transitions. This way, we can still consider
the controllability analysis techniques from the literature [11],
which do not consider the case of immediate transitions, while
still obtaining a good approximation of the original model.

TABLE I
FIRING RATES OF THE TRANSITIONS OF THE CLINICAL PATHWAY.

Transitions set Timing (1/min)
{t4, t5, t12, t15, t16, t20} 1
{t11, t17, t29, t30, t34, t38} 1/5
{t3, t28} 1/15
{t8, t25, t31} 1/30
{t23} 1/120
{t1, t2, t6, t7, t9, t10, t13, t14, t18, t19, t21, t22
t24, t26, t27, t32, t33, t35, t36, t37, t39, t40} 10

Finally, the initial marking of the system is determined
by the number of available entities: number of patients nP ,
number of nurses nN , and number of doctors nD. Initially,
the marking in the rest of the places is 0, representing that
no patient is receiving care. Several cases will be simulated
in order to validate the model. For more information on the
modeled clinical pathway, please see [3].

B. TCPN model validation

In order to validate the proposed TCPN, we present the
performance results of our model under different assumptions
of patient workload and resource plan and compare them
with the results obtained for the SWN in [3]. The results are
summarized in Fig. 2. The performance index of interest is the
cycle time of t1, CTt1 , multiplied by the number of patients,
nP , i.e. CT = CTt1nP . This measure corresponds to the
mean time spent for a patient to undergo the treatment [3].
The CT values for the discrete case were obtained by event-
driven simulation using GreatSPN [8] and the SWN model.

To calculate this performance index in the TCPN system,
we first obtain the cycle time of a transition by analyzing
its throughput (the flow through its transitions at the steady
state) [7]. This was performed by simulating the behavior of
the system until it reached a steady state, using SimHPN2.
The throughput of transition t1 can then be obtained from
the flow at the steady state, fss, as χ1 = fss[t1]. Specifically,

2The simulations are performed using the algorithms implemented on
SimHPN with a computer with i5-6600 CPU @ 3.30GHz and 16GB RAM.
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Fig. 1. A TCPN system that models a hip fracture clinical pathway. The controllable transitions of the system are represented with a red outline. The model
is contained in SimHPN’s models folder as Model HipFractureClinicalPathway SS.mat

the throughput of a transition corresponds to the inverse of
its cycle time. Hence, the overall performance index can be
computed as CT = 1

χ1
nP 1

1440 , where the factor 1
1440 is added

to convert the time units from minutes (used in the TCPN
simulation) to days.

The simulation results for both models are reported in Fig.
2. We simulated the 26 different scenarios presented in [3],
where the authors considered several patient workloads on the
interval [1, 100] and different personnel resource plans. We
compared the CT obtained by using our proposed fluid model
(5th column) against the one obtained by the event-driven
simulation (8th column). The table also shows the relative
error between the performance values computed with both
techniques (6th column). The error was computed by con-
sidering the results of the event-driven simulation as reference
values: Rel.Err = CTSWN−CTTCPN

CTSWN × 100). Furthermore, the
solution time for obtaining the performance values in each

case is reported in columns 7 and 9.
The results in Fig. 2 show that the TCPN system provides

a suitable approximation for the problem under consideration.
Notably, the error tends to decrease as the number of tokens
(resources) increases. This is likely due to the fact that
fluidization typically provides a good approximation of the
original system in highly marked systems [18], which are often
the most challenging cases to analyze for the SWN model.
Overall, the relative error between the TCPN approximation
and the SWN model is relatively low, with a maximum error
of 21.05% occurring in only one scenario (case 5), in which
the number of tokens is relatively low. For the rest of the
scenarios, the error is below 12.25%, indicating that the TCPN
approximation provides an accurate representation of the
system behavior. Moreover, we observed that the simulation
time of the SWN model worsens as the number of resources
increases. In contrast, the TCPN simulation can handle larger



Case nP nD  nN CT Rel.Err. Sol. Time CT Sol. Time

1 100 3 5 9.396 11.53% 303.19 10.62 11.03

2 76 3 5 7.141 11.89% 227.83 8.105 8.02

3 50 3 5 4.698 12.24% 128.77 5.353 6.01

4 26 3 5 2.443 10.97% 61.26 2.744 3.04

5 2 3 5 0.1879 21.05% 9.25 0.238 0.03

6 1 3 5 0.1712 0.71% 6.89 0.17 0.02

7 100 6 5 4.698 7.97% 134.29 5.105 59

8 76 6 5 3.5703 10.43% 99.06 3.986 40.08

9 50 6 5 2.349 9.23% 67.34 2.588 29.06

10 26 6 5 1.2214 10.91% 29.22 1.371 15.01

11 2 6 5 0.1708 0.70% 9.23 0.172 0.05

12 100 9 5 3.1318 6.99% 79.23 3.367 132.08

13 76 9 5 2.3803 8.31% 64.08 2.596 98.07

14 50 9 5 1.566 7.12% 39.78 1.686 65.08

15 26 9 5 0.8143 6.29% 21.53 0.869 36.08

16 2 9 5 0.1708 1.07% 9.45 0.169 3.07

17 100 15 5 1.879 4.62% 63.84 1.97 1123.04

18 76 15 5 1.428 5.49% 37.24 1.511 936.08

19 50 15 5 0.94 5.72% 24.37 0.997 416.01

20 26 15 5 0.488 4.87% 12.20 0.513 200.07

21 2 15 5 0.1707 1.01% 7.61 0.169 2.03

22 100 25 5 1.1503 3.58% 274.14 1.193 1293.06

23 76 25 5 0.8742 1.66% 228.07 0.889 578.08

24 50 25 5 0.575 1.71% 248.67 0.585 707.02

25 26 25 5 0.299 8.00% 202.34 0.325 106.06

26 2 25 5 0.1708 0.47% 9.79 0.17 88.02

SWN Sim [3]Resources TCPN Sim

Fig. 2. Cycle time (CT ) values estimated using TCPN (5th column) and
SWN simulation (8th column). The relative error between both techniques
is also reported (6th column) and the solution time for each of the different
scenarios (7th and 9th columns). CT values are given in days and the solution
time in seconds.

systems with less computational time, making it a more
scalable approach for complex systems.

V. CONTROL AND OPTIMIZATION OF THE FLUID MODEL

The use of the TCPN model offers the advantage of enabling
the application of various analysis and design techniques
developed for this formalism. In this section, we demonstrate
how this feature can be leveraged to improve the performance
of the system by analyzing its controllability and designing an
appropriate control law. In particular, we show the implemen-
tation of a control law that enables the system to reach its state
of maximum throughput more quickly. We provide simulation
results to demonstrate the effectiveness of our controller in
practical settings.

A. Structural controllability analysis using SimHPN

In this section, we analyze the controllability of the fluid
model employing the techniques developed in [11], which
we have implemented in the toolbox SimHPN. The model
and parameters of this system are included in the toolbox
(to load the model select Model → Import from .mat file
→ models\Model HipFractureClinicalPathway SS.mat). The
controllability test can be carried out by selecting Con-
tinuous → Structural controllability analysis → Net rank-
controllability test (Fig. 3). This test verifies sufficient con-
ditions for net rank-controllability efficiently. The transitions
that can be controlled are depicted with a red outline in Fig. 1.

Fig. 3. SimHPN, the toolbox used for the performance and structural
controllability analysis of the system.

They represent the events of the patients entering the pathway,
assigning nurses and doctors to the different stages of the
process and some tasks within the pathway. We present 3
control scenarios:
1) Tc = {t1, t11, t38}, i.e., the events of assigning nurses and
doctors cannot be controlled: For this case, we obtain the
message “Influence is not total! Therefore, the set of control-
lable transitions does not guarantee net rank-controllability.
The only influenced nodes are: Places = [1 2 3 4 5 6 7 10
11 12 13 14 38 39 40 41] Transitions = [1 2 3 4 5 6 10
11 12 13 38 39 40]”. From a system point of view, total
influence means that the behavior of all states in the system
can be influenced by a set of controllable transitions, which
is a necessary condition for NRC [11]. In the context of a
clinical pathway, if the property of influence is not fulfilled, it
means that there are some modes of operation (configurations)
in which the behavior of several parts of the pathway cannot
be affected by means any control action.
2) Tc = {t1, t7, t11, t14, t22, t38}, i.e., the events of assigning
nurses cannot be controlled: By entering this set of control-
lable transitions we obtain the message “It is not possible to
decide if the timed net is net rank-controllable. The condition
related to the choice places is not fulfilled.”. In this case the
test cannot conclude if the system is NRC, since one of the
structural sufficient conditions does not hold. In particular, the
one related to the choice places (see [11] for more details).
This serves to give indications to the user about where the
problem may be in order to guarantee controllability.
3) Tc = {t1, t2, t7, t11, t14, t19, t22, t27, t33, t36, t38}, i.e., the
allocation of these resources can be decided upon: Here
we choose the set that we will consider in our case study,
which is such that it satisfies all the structural conditions for
controllability and is indicated by the message: “The timed net
is net rank-controllable.”

It is worth noting that, in general, the controllability analysis
is crucial to ensure the existence of a control law for a system.
In the literature, the synthesis of controllers for TCPNs has



often been addressed without tackling the controllability analy-
sis, considering particular cases in which this property trivially
holds (usually only when all transitions can be controlled).
However, the implementation of the results in [11] allows for
an efficient controllability analysis.

B. Control law implementation

In this section, we implement the controller presented in
Section III to the TCPN system. The goal is to reach a
state that guarantees maximum throughput, i.e., allocate the
available resources to ensure the optimal performance of the
system. To establish the target marking, we can use SimHPN
to compute such a state using: Continuous → Optimal →
Optimal Control. In order to compare the performance of the
controlled system against the unforced system (u(τ) = 0),
we choose the state of maximal throughput of the unforced
system as our target. To do this, we set the value of Un-
controlled Transitions as = [1:40] (as if there are no con-
trollable transitions), in the optimal control menu and use
the default values for the “Gain Vector w.r.t. Flow: w” and
“Cost Vector Due to Immobilization to Maintain the Product
Flow z” options. Although other target markings could be
chosen by applying additional constraints, we select this one
to enable a direct comparison. The obtained target marking is
mr = [0.0022 0.0022 0.3326 0.0222 0.0222 0.0022 0.0002
0.0665 0.0002 0.0022 0.0554 0.0222 0.0022 0.0022 0.0222
0.0222 0.1109 0.0022 0.0022 0.0222 0.0022 70.5474 2.6607
0.0022 0.6652 0.0022 0.0022 0.3326 0.1109 0.1109 0.6652
0.0022 0.0022 0.1109 0.0022 0.0022 0.0022 0.0554 0.0022
0.0022 3.1659 0.0067]T . Once an optimal steady state has
been computed, the objective is to reach and maintain the
desired marking in the shortest amount of time possible.

Before implementing the proposed control law (Eq. 8), it
is important to notice that due to its nature, it will generate
a high-frequency control input [16], switching between two
possible states: a transition working at maximum capacity
(when the value is 1) and stopping its activity (when the
value is 0). Therefore, the control input may lack physical
meaning for the discrete system, making its interpretation and
implementation difficult. Nevertheless, we propose a solution
by implementing the control scheme depicted in Fig. 4 that
adapts the high-frequency switching input to a smoother, more
physically meaningful signal, ensuring that our approach is not
only feasible but also suitable for the intended application.

In particular, we filtered the On-Off control input of each
transition by computing the running mean of the correspond-
ing control signal and applying a first-order low-pass filter to
it (using off-the-shelf functions in MATLAB). The result of
this procedure is depicted in Fig. 5 for the control signal of
t7. The upper subplot shows the high-frequency control input
computed with Eq. (8). The zooms on the plot show how the
duty cycle of the signals changes over time. The lower subplot
shows the filtered signal, which captures the control input as a
smoother control signal for the controllable transitions of the
system.

Fig. 4. Control scheme for the TCPN system.

Fig. 5. Filtering control input of transition t7.

Figure 6 shows the simulation results of the implemented
control: The upper subplot depicts the marking error (the
difference between the desired and the current state) of the
unforced case; the lower subplot depicts the marking error for
the forced case. Notice that it takes more than 1700 minutes
for the unforced case to reach the target. On the contrary, for
the forced case it takes around 700 minutes to reach it. The
filtered control signal on the different transitions is depicted
in Fig. 7.

To interpret the physical meaning of the simulation results
in the context of the clinical pathway, it is important to

Fig. 6. Marking error for the unforced and the forced case.



Fig. 7. Filtered control signal of the controllable transitions.

remember that the control inputs in our model correspond to
delays in the firing rate of certain transitions. In a clinical
pathway model with limited resources, the delays represent
the addition of extra time to certain activities to prioritize
others, thus optimizing the use of the available resources to
ensure that the system achieves its maximum productivity as
quickly as possible. For instance, in Fig. 7, the delay added
to transition t1 (which represents the entrance of patients
to the pathway), can be seen as the rate at which patients
enter the pathway is being regulated to avoid bottlenecks in
the early parts of the process and prioritize the efficient use
of the available personnel. Another example is the control
actions of t7 and t22 which represent the use of doctors in
a pre-operative phase and during the surgery, respectively:
at the beginning of the process, we may prioritize the use
of doctors during the preoperative stage (t7), to ensure that
patients are adequately prepared for surgery. As more patients
enter the pathway and become ready for surgery, we can
then shift the focus to the surgical stage (t22), where doctors
are needed to perform the operations. These are examples of
how, by carefully controlling the flow through the controllable
transitions, we can ensure that the available resources are
utilized efficiently and that the system reaches its steady state
as quickly as possible, optimizing the overall throughput of
the system.

VI. CONCLUSIONS

This paper proposes a novel approach using timed continu-
ous Petri nets (TCPNs) to analyze and optimize healthcare sys-
tems through clinical pathways. Our approach is demonstrated
through a case study of a hip fracture clinical pathway at
the “Lozano Blesa” University Clinical Hospital, in Zaragoza
Spain. First, it was shown that the TCPN model can be used
to perform a more efficient analysis of the patient flow and
resource utilization dynamics of the system while maintaining
a good level of accuracy, w.r.t. the discrete techniques. Next,
a control scheme that enables the modeled system to reach its
state of maximum throughput more quickly, was proposed.
The effectiveness of the proposed method is demonstrated
using simulation results. Moreover, it is worth noting that the
presented method can be generalized to the different types

of systems that can be modeled by TCPNs, encompassing
a wide range of domains such as traffic systems, flexible
manufacturing systems, and more.

Finally, while a formal proof of convergence for the pro-
posed control scheme is not provided, the paper highlights its
potential and the need for further investigation to understand
its limitations. Future research can also explore the practical
implementation of the proposed control scheme into the real
discrete system.
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