
On the Reachability Space and Deadlock-Freeness in Flexible Nets

Jorge Júlvez

Abstract— Deadlock-freeness is a basic property of dynamical
systems that ensures that at least one process of the system can
operate indefinitely. Given that a system is deadlock-free if at
any reachable state there is at least one process that can operate,
the reachability space, i.e. the set of states that can be reached,
and deadlock-freeness are closely related. This paper focuses
on some fundamental properties of the reachability space of
Flexible Nets, a modeling formalism that can easily account
for uncertain parameters. After showing that the reachability
space is convex, a sufficient condition for deadlock-freeness is
derived.

I. INTRODUCTION

A number of modeling formalisms have been proposed

to model and analyze dynamical systems. These formalisms

establish the primitives and the construction semantics to

build mathematical models of real systems. Moreover, the

analysis capabilities of a model is largely determined by the

formalism used to produce the model.

Petri nets [1], [2] is an appealing modeling formalism

that can be represented graphically and that offers a number

of analysis possibilities. Petri nets have been successfully

applied to very different application domains such as hard-

ware design [3], systems biology [4], manufacturing [5],

game theory [6], conformance checking [7], etc. Despite

the modeling power of Petri nets, there are some common

features of real systems that are difficult to model by Petri

nets such as nonlinear dynamics and uncertainties in the state

change produced by an event, the speed of transitions or the

initial state.

Flexible nets (FNs) [8] is a relatively novel modeling

formalism that aims to enhance the modeling and analysis [9]

capabilities of Petri nets. In addition to places and transi-

tions, FNs introduce handlers which capture the relationships

between the state and the processes of the system. The

association of sets of linear inequalities with handlers allows

the modeler to capture the potentially uncertain relation

between state and processes. In order to avoid the state

explosion problem of large discrete event systems, the state

of an FN is defined in the reals, nevertheless, hybrid systems

can also be modeled by considering guards [10].

In the scope of FNs, this paper focuses on two basic prop-

erties: reachability and deadlock-freeness. While reachability

accounts for the set of states that can be reached by the

system, deadlock-freeness ensures that no reachable marking

blocks the system completely, i.e. at least one process of the

This work was supported by the Spanish Ministry of Science and
Innovation through the projects DAMOCLES-PID2020-113969RB-I00 and
TED2021-130449B-I00.

J. Júlvez is with the Department of Computer Science and Systems Engi-
neering, University of Zaragoza, Zaragoza, Spain julvez@unizar.es

system can operate indefinitely. Similarly to continuous Petri

nets, it is shown that the reachability space of a FN is convex.

With respect to deadlock-freeness, a sufficient condition is

obtained.

The rest of the paper is organized as follows: Once Sec-

tion II introduces event nets, Section III develops the main

results related to the reachability space. Intensity and FNs

are introduced in Sections IV and V respectively. Section VI

focuses on deadlock-freeness. The main conclusions are

drawn in Section VII.

II. EVENT NETS

In the following, the reader is assumed to be familiar with

Petri nets (see [1], [2] for a gentle introduction).

A Flexible Net (FN) is composed of an event net and an

intensity net: the event net determines how the processes of

the system change the state of the system, and the intensity

net establishes the speed of such processes (see [8], [10] for

a detailed definition an modeling examples of FNs).

Definition 1 (Event net): An event net is a tuple NV =
(P, T, V, EV , A,B) where (P, T, V, EV) is a tripartite graph

determining the net structure and (A,B) are matrices deter-

mining the potential evolutions of the marking.

The vertices of the event net are P , T and V , where P is

a set of |P | places, T is a set of |T | transitions and V is a

set of |V | event handlers. Places are depicted as circles and

model the types of components in the system. Transitions are

depicted as rectangles and model the processes of the system.

Event handlers are depicted as dots and model the different

ways in which the transitions can change the marking.

The vertices of the event net are connected by the edges in

EV . Each pair of vertices can be connected by at most one

edge. The set EV is partitioned into two sets EP
V and ET

V :

The edges in EP
V are directed and are referred as event arcs,

every e ∈ EP
V is either an arc e = (pi, vk) from a place pi to

a handler vk, or an arc e = (vk, pi) from a handler vk to a

place pi. Every e ∈ ET
V is an edge e = {tj, vk} connecting a

transition tj and a handler vk. In a similar way to Petri nets,

the following notation is used: pvk denotes the input places

of vk; v
p
k denotes the output places of vk; vpi denotes the

input handlers of pi; p
v
i denotes the output handlers of pi;

tvk denotes the transitions connected to vk; and tvj denotes

the handlers connected to tj .

For instance, the event net in Fig. 1 has two places,

P = {p1, p2}, one transition, T = {t1}, and one event

handler, V = {v1}. The set of arcs of the net is EP
V =

{(p1, v1), (v1, p2)} and the set of edges is ET
V = {{t1, v1}}.

In an event net, each place contains a number of tokens (or

marking), and each transition contains a number of actions

3

p1

v1 :

{

a=v

0.5·v≤b≤1.5·v

p2

2 t1

a b

v

Fig. 1: Event net with two places, one transition and one

event handler.

that represent the potential of the system to carry out the

process that the transition models. The state of an event

net accounts not only for the marking and the number of

actions, but also for the marking changes and the execution

of actions:

Definition 2 (State): The state of an event net NV is given

by the tuple x = (σ, aT , aE ,∆m,m), where:

• σ ∈ R
|T |
≥0 is a vector indexed by T where σ[tj] is the

number of actions produced in tj .

• aT ∈ R
|T |
≥0 is a vector indexed by T where aT [tj] is the

number of actions available in tj .

• aE ∈ R
|ET

V |
≥0 is a vector indexed by ET

V where

aE [{tj, vk}] is the number of actions of tj executed

by vk.

• ∆m ∈ R
|EP

V |
≥0 is a vector indexed by EP

V where

∆m[(pi, vk)] is the number of tokens in pi consumed

by vk, and ∆m[(vk, pi)] is the number of tokens in pi
produced by vk.

• m ∈ R
|P |
≥0 is the marking, i.e. a vector indexed by P

where m[pi] is the number of tokens in pi.

The state depicted in the event net in Fig. 1 is given by

σ[t1] = 2, aT [t1] = 2, aE [{t1, v1}] = 0, ∆m[(p1, v1)] = 0,

∆m[(v1, p2)] = 0, m[p1] = 3, and m[p2] = 0. The

interpretation of this state is the following: σ[t1] = 2 and

aT [t1] = 2 mean that two actions were produced in t1 and

both actions are available; aE [{t1, v1}] = 0 means that v1
has executed 0 actions of t1; ∆m[(p1, v1)] = 0 means that 0
tokens in p1 have been consumed by v1; ∆m[(v1, p2)] = 0
means that 0 tokens have been produced in p2 by v1; and

m[p1] = 3 and m[p2] = 0 mean that the number of tokens

in p1 and p2 is 3 and 0 respectively.

Each event handler vk ∈ V is associated with a set of

linear inequalities that relate the number of actions executed

in the connected transitions to the marking changes in

the connected places. For instance, the labels a, b and v

associated with the arcs and the edge of the net in Fig. 1 and

the inequalities associated with v1 mean that each action of t1
executed by v1 consumes one token from p1 and produces

in p2 a nondeterministic amount of tokens in the interval

[0.5, 1.5].
The coefficients of the inequalities associated with an

event handler vk can be expressed by two matrices (Ak, Bk)
of real numbers that have the same number of rows. The

number of actions, af ∈ R
|tvk|
≥0 , executed by vk and the

produced marking changes, ∆mf ∈ R
|pvk|+|vp

k
|

≥0 , is given by

Ak∆mf≤Bkaf . The columns of Ak are indexed by the arcs

connecting vk to places. The columns of Bk are indexed

by the edges connecting transitions to vk. For example, the

matrices A1 and B1 associated with the inequalities of v1 in

Fig. 1 are:

A1=







1 0

−1 0

0 −1

0 1






;B1=







1

−1

−0.5

1.5







where the indices of the columns of A1 are ordered as

(p1, v1), (v1, p2), and the index of the column of B1 is

{t1, v1}. Thus, if the number of actions executed by v1 is

1, i.e. af [{t1, v1}] = 1, then A1∆mf≤B1af implies that

∆mf [(p1, v1)] = 1 and 0.5 ≤ ∆mf [(v1, p2)] ≤ 1.5.

Matrices A and B are obtained by arranging all the

matrices Ak and Bk diagonally. For the sake of simplicity,

the inequalities of handlers will be omitted if all the labels

are equal, e.g. the omission of the inequalities of v1 in Fig. 1

would imply a = b = v.

Notice that the number of actions available in the tran-

sitions, aT , is equal to the number of actions that were

produced, σ, minus the number of actions, aE , that have

been executed by the connected event handlers. Hence, for

every tj ∈ T it holds that:

aT [tj] = σ[tj]−
∑

vk∈tv
j

aE [{tj, vk}] (1)

Similarly, the number of tokens in a place pi is equal to the

initial number of tokens, which is denoted m0[pi], minus

the number of tokens consumed plus the number of tokens

produced by the connected event handlers. Hence, for every

pi ∈ P it holds that:

m[pi]=m0[pi]−
∑

vk∈pv
i

∆m[(pi, vk)]+
∑

vk∈vpi

∆m[(vk, pi)]

(2)

As an example, if one action is executed by v1 in Fig. 1,

then one of the potential states that can be reached (remember

that a nondeterministic amount of tokens is produced) is

σ[t1] = 2, aT [t1] = 1, aE [{t1, v1}] = 1, ∆m[(p1, v1)] = 1,

∆m[(v1, p2)] = 1.2, m[p1] = 2, and m[p2] = 1.2.

III. REACHABILITY

This section first introduces some concepts related to the

enabling and firing of event handlers, and then shows that

the reachability space of an event net is convex.

Definition 3 (Enabling): Event handler vk is enabled at

x = (σ, aT , aE ,∆m,m) if a vector af ∈ R
|tvk|
≥0 indexed by

the edges of vk, and a vector ∆mf ∈ R
|pvk|+|vp

k
|

≥0 indexed

by the arcs of vk exist such that:

af [{tj, vk}] ≤ aT [tj] ∀ tj ∈
tvk (3)

Ak∆mf ≤ Bkaf (4)

∆mf [(pi, vk)] ≤ m[pi] ∀ pi ∈
pvk (5)

1af + 1∆mf > 0 (6)

Inequality (3) guarantees that enough actions are avail-

able, (4) makes use of the matrices Ak and Bk (as discussed

in Secion II) to relate the number of executed actions to

the marking changes, (5) guarantees that enough tokens

are available to be consumed in the input places, and (6)

guarantees that the overall state change is not null. Notice

that the inequalities (4) allow the modeling of uncertainty in

the marking changes produced by the execution of actions.

Definition 4 (Firing): An event handler vk ∈ V enabled

at x = (σ, aT , aE ,∆m,m) can fire. The firing of vk leads

instantaneously to a new state x
′ = (σ, a′T , a

′
E ,∆m′,m′)

where only the variables associated with edges, arcs, places

and transitions connected to vk are updated as follows:

a′T [tj] = aT [tj]− af [{tj , vk}] ∀ tj∈
tvk

a′E [{tj, vk}] = aE[{tj , vk}] + af [{tj , vk}] ∀ tj∈
tvk

∆m′[(pi, vk)] = ∆m[(pi, vk)] + ∆mf [(pi, vk)] ∀ pi∈
pvk

∆m′[(vk, pi)] = ∆m[(vk, pi)] + ∆mf [(vk, pi)] ∀ pi∈ v
p
k

m′[pi] = m[pi]−∆mf [(pi, vk)] ∀ pi∈
pvk

m′[pi] = m[pi]+∆mf [(vk, pi)] ∀ pi∈ v
p
k

where af and ∆mf satisfy (3), (4), (5) and (6).

The fact that x′ is reached from x after the firing of vk
with af and ∆mf is denoted as:

x
(af ,∆mf ,vk)
−−−−−−−−→ x

′

An event handler is said to be well-defined when it allows

the flow of tokens and the execution of actions in all the

connected places and transitions,

Definition 5 (Well-defined): An event handler vk ∈ V is

well-defined if there exist ∆mf≥1 and af≥1 such that

Ak∆mf ≤ Bkaf
If an event handler is not well-defined, it will avoid

the flow of tokens or the execution of actions. Given that

such a behavior is not useful from a modeling point of

view, in the following, it will be assumed that all the event

handlers are well-defined. Notice, however, that the firing

of an event handler does not necessarily imply consumption

and production of tokens and execution of actions in all its

connected places and transitions.

Definition 6 (Reachable state): Let the state of an event

net NV be x0 = (σ, σ, 0, 0,m0), i.e. σ actions are

available and no event handler has fired. A state x =
(σ, aT , aE ,∆m,m) is reachable from x0 if a finite se-

quence (α1, β1, va1
), (α2, β2, va2

), . . . , (αk, βk, vak
) exists

such that:

x0

(α1,β1,va1
)

−−−−−−−→ x1

(α2,β2,va2
)

−−−−−−−→ x2 . . .
(αk,βk,vak

)
−−−−−−−→ x

The reachability space, denoted as RSNV
(x0), is the set

of all reachable states from x0. For the sake of clarity, a

firing sequence (α1, β1, va1
), (α2, β2, va2

) . . . , (αk, βk, vak
)

can be abbreviated as q, and γ · q with γ ∈ R>0 denotes the

same firing sequence where each term (αi, βi) is multiplied

by γ.

Given that the firing of a handler implies a linear trans-

formation of the state, the following property holds:

0
0

1

1

2

2

3

3 m[p1]

m[p2]

m0

Fig. 2: Reachable markings of the event net in Fig. 1.

Lemma 1: Let NV be an event net and

x = (σ, aT , aE,∆m,m) be a state reachable

from x0 = (σ, σ, 0, 0,m0) through the sequence

q={(α1, β1, va1
), (α2, β2, va2

), . . . , (αk, βk, vak
)}, i.e.

x0

(α1,β1,va1
)

−−−−−−−→ x1

(α2,β2,va2
)

−−−−−−−→ x2 . . .
(αk,βk,vak

)
−−−−−−−→ x

Then, for every γ ∈ R>0, the state

γ·x=(γ·σ, γ·aT , γ·aE , γ·∆m, γ·m) is reachable from

γ·x0=(γ·σ, γ·σ, 0, 0, γ·m0) through the sequence γ·q =
{(γ·α1, γ·β1, va1

), (γ·α2, γ·β2, va2
), . . . , (γ·αk, γ·βk, vak

)}.

Similarly to continuous Petri nets [11], this property

implies that the reachability space of an event net is a convex

set.

Proposition 2: The reachability space, RSNV
(x0), is a

convex set.

Proof: Let x1 and x2 be two states that can be reached

by the sequences q1 and q2 respectively, i.e. x0

q1
−→ x1 and

x0

q2
−→ x2. Let γ ∈ (0, 1), then, by Lemma 1, the state

γ · x1 can be reached from γ · x0 by the sequence γ · q1,

i.e. γ · x0

γ·q1
−−→ γ · x1, and the state (1 − γ) · x2 can be

reached from (1 − γ) · x0 by the sequence (1 − γ) · q2, i.e.

(1− γ) · x0

(1−γ)·q2
−−−−−→ (1− γ) · x2. Hence, γ ·x1+(1−γ)·x2

can be reached from x0 by firing the sequences γ·q1 and

(1− γ)·q2.

The triangle in Fig. 2 represents the convex reachability

space of the markings of the net in Fig. 1 with initial state

x0=(σ, σ, 0, 0,m0) where σ[t1]=2, m0[p1]=3, m0[p2]=0.

The overall change in the state produced by several firings

is the result of adding the changes produced by each firing.

This fact allows us to write a set of equations that must be

satisfied by all the states reachable from the initial state.

Proposition 3 (State equations): Let the state of an

event net NV be x0 = (σ, σ, 0, 0,m0). Every state

x = (σ, aT , aE,∆m,m) reachable from x0 belongs to

SENV
(x0) where:

SENV
(x0) = {x = (σ, aT , aE,∆m,m)|

σ = aT + YσaE

A∆m ≤ BaE

m = m0 + Zm∆m}

(7)

where Yσ and Zm are determined by the net structure:

• Yσ is a matrix with rows indexed by T , columns indexed

by ET
V , and such that Yσ[tj , {tj, vk}]=1 ∀ {tj, vk} ∈

ET
V and the rest of the elements in Yσ are 0,

• Zm is a matrix with rows indexed by P ,

columns indexed by EP
V , and such that

Zm[pi, (pi, vk)]=−1 ∀ (pi, vk) ∈ EP
V ,

Zm[pi, (vk, pi)]=1 ∀ (vk, pi) ∈ EP
V and the rest

of the elements in Zm are 0,

and aT , aE , ∆m and m are nonnegative variables.

Roughly speaking, the role of matrix Yσ is to distribute the

actions in transitions among the handlers connected to them,

see (1). The role of Zm is to collect and add the marking

changes produced by the firings, see (2).

Proposition 3 states that RSNV
(x0) ⊆ ESNV

(x0). In

other words, the state equations (7) represent necessary

reachability conditions. This means that, as in Petri nets,

equations (7) can contain spurious solutions, i.e. states that

satisfy the equations but are not reachable (see Fig. 7 for an

example of a spurious solution).

IV. INTENSITY NETS

The vector σ ∈ R
|T |
≥0 in the state x = (σ, aT , aE ,∆m,m)

of an event net denotes the number of actions produced in

the transitions. Such actions are produced by the intensity net

as time elapses. This section introduces the basic concepts

of intensity nets.

Definition 7 (Intensity net): An intensity net is a tuple

NS = (P, T, S,ES , C,D) where (P, T, S,ES) is a tripartite

graph determining the net structure and (C,D) are matrices

determining the potential intensities produced by the mark-

ing.

The vertices of an intensity net are P , T and S, where P

is a set of |P | places, T is a set of |T | transitions and S is

a set of |S| intensity handlers. Places and transitions model

the same system features as in the event net. The intensity

handlers are depicted as dots and model the different ways

in which the tokens can generate intensities, or speeds, in the

transitions. The vertices of the intensity net are connected by

the edges in ES . Matrices C and D have similar roles to A

and B in the event net (see [8] for a detailed description).

Every transition tj has a nonnegative real intensity, or

speed, λ[tj] ∈ R≥0. The integral of λ[tj] over time is equal

to σ[tj], i.e. the number of actions produced in tj .

t1

0≤λ0[t1]≤1
s1:2·x≤r1≤3·x

6

p1

s2:r2=x=y

2

p2

t2

λ0[t2]=0

r1 x

x

y

r2

Fig. 3: Intensity net with two places, two transitions and two

intensity handlers.

t1

1≤λ0[t1]≤2

v1
3

p1
v2 :

{

a=v

0.5·v≤b≤1.5·v

p2

t2

λ0[t2]=0
s1

a b

v

Fig. 4: FN in which the default intensity of t1 is uncertain

and the firing of v2 produces an uncertain number of tokens

in p2.

The intensity of a transition tj is equal to its default

intensity, λ0[tj], plus the intensity of its incoming arcs

minus the intensity of its outgoing arcs. The intensity in the

arcs is produced by the tokens in places connected to the

intensity handlers. A token is active if it is being used by

an intensity handler, otherwise it is idle. While idle tokens

are associated with places, active tokens are associated with

edges. Places whose tokens are forced to be active are drawn

as single circles, places whose tokens can be idle are drawn

as double circles. Each intensity handler determines how

much intensity is produced in its arcs as a function of the

number of active tokens in its edges.

For instance, in the intensity net in Fig.3, all the tokens in

p1 (depicted as a single circle) are forced to be active, and

the tokens in p2 (double circle) are not forced to be active.

Hence, each token in p1 must be used either by s1 or s2.

Each token used by s1 produces between 2 and 3 units of

intensity (see inequality associated with s1) which is added

to the default intensity λ0[t1] of t1. Each token of p1 used

by s2 synchronizes with a token in p2 to produce one unit

of intensity in t2. As in event nets, if the inequalities of an

intensity handler are omitted, it is assumed that all the labels

of its arcs and edges are equal.

V. FLEXIBLE NETS

An FN is composed of an event net and an intensity

net that have the same set of places and the same set of

transition [8]. While the intensity net produces actions in the

transitions, the event net makes use of the produced actions

to carry out changes in the marking.

Given that uncertain system parameters can be modeled

by the inequalities associated with the initial marking, the

default intensities, and the handlers, any time trajectory

that satisfies the constraints imposed by such inequalities is

possible. In the FN in Fig. 4, the default intensity of t1 is

uncertain and constrained to the interval [1, 2], the number

of tokens produced in p2 by each action executed by v2 is

also uncertain and constrained to [0.5, 1.5]. Any trajectory

that satisfies these constraints is possible. Figure 5 shows

the upper and lower bounds of all the potential trajectories

of the marking.

Notice that the intensity net of an FN constrains the states

that are reachable by the associated event net by producing

particular amounts of actions. Thus, the state equations (7)

0.0 0.5 1.0 1.5 2.0 2.5
time

0

1

2

3

4

5

6

7

8

9
min m[p1]

max m[p1]

min m[p2]

max m[p2]

Fig. 5: Upper and lower bounds of the potential time evolu-

tions of the markings of the FN in Fig. 4.

can be used to establish necessary conditions for reachability

of the event net by ignoring the actual amounts of actions

produced by the intensity net.

Proposition 4: Let N be an FN that contains an event

net NV with initial state x0 = (0, 0, 0, 0,m0). Every state

x = (σ, aT , aE ,∆m,m) of NV reachable from x0 over time

satisfies:

σ = aT + YσaE

A∆m ≤ BaE

m = m0 + Zm∆m

(8)

VI. DECIDING ON DEADLOCK-FREENESS

Deadlock-freeness is a basic behavioral property that guar-

antees that at least part of the system can operate indefinitely.

In other words, an FN is said to be deadllock-free if for every

state reachable at a any time, there exists an event handler

that can fire.

In order to derive a sufficient condition for deadlock-

freeness, let us first define some preliminary concepts.

A set of input places of an event handler, vk, is an enabling

set if the event handler can be enabled by the tokens in those

places. More formally, the enabling sets of vk are defined as:

Definition 8 (Enabling sets of vk): ES(vk) = {u|u ⊆
pvk and there exist ∆mf ∈ R

|pvk|+|vp

k
|

≥0 and af ∈ R
|tvk|
≥0

p1

p2

p3

v1

t1

p4

p5

p6a

b

c

d

x

a

b

c

v1:











a=b

d=a+c

d=x

v2:c=a+b

Fig. 6: Event net in which both event handlers, v1 and v2,

have three enabling sets.

such that:

Ak∆mf ≤ Bkaf (9)

∆mf [(pi, vk)] > 0 ∀ pi ∈ u (10)

∆mf [(pi, vk)] = 0 ∀ pi ∈
pvk \ u (11)

}
As an example, the enabling sets of the event handler v1 in

Fig. 6 are: ES(v1) = {{p1, p2}, {p3}, {p1, p2, p3}}, and the

enabling sets of v2 are: ES(v2) = {{p4}, {p5}, {p4, p5}}.

Given that in an FN, actions can be produced and exe-

cuted simultaneously, an event handler can have a positive

consumption and production of tokens while there are no

available actions at the connected transitions. Thus, to check

whether a transition can provide actions to an event handler

in an FN, it is more convenient to focus on its intensity rather

than on its available actions. For simplicity, in the following

it will be assumed that if the marking of all the places of an

enabling set u ∈ ES(vk) is positive, then the intensity of the

transitions connected to vk is also positive. This is a mild

assumption, since the input places of an event handler are

usually part of the intensity net that produces intensity in the

connected transitions, see Figs. 4 and 7. This way, enabling

sets can be used to determine whether an event handler in

an FN can operate at a given state.

An enabling set is said to be minimum if it does not

contain any other enabling set:

Definition 9 (Minimum enabling sets of vk):

MES(vk) = {u|u ∈ ES(vk) and ∄ w ∈ ES(vk)
such that w ⊂ u}

The minimum enabling sets of v1 in Fig. 6 are:

MES(v1) = {{p1, p2}, {p3}}, and the minimum enabling

sets of v2 are: MES(v2) = {{p4}, {p5}}.

For each pi ∈ P , let us define a binary variable

δpi ∈ {0, 1} such that:

δpi = 0 → m[pi] = 0 (12)

Notice that (12) can be expressed algebraically as:

m[pi] ≤ δpi ·M (13)

where M is any upper bound of m[pi]. If the the markings

of all the places are bounded by (8), then a value M that

upper bounds the marking of any place can be computed

efficiently by the following linear programming problem:

max
∑

pi∈P

m[pi] subject to

σ = aT + YσaE

A∆m ≤ BaE

m = m0 + Zm∆m

Let us now define a binary variable, δku ∈ {0, 1}, for each

vk ∈ V and each u ∈ MES(vk), such that δku = 0 implies

that at least one place in u is empty:

δku = 0 →
∑

pi∈u

δpi < |u| (14)

where |u| denotes the number of places in u. Clearly, if

δku = 0, then the marking of the places in u do not enable

vk.

The implication (14) can be expressed algebraically as:
∑

pi∈u

δpi < |u| · (δku + 1) (15)

The defined binary variables together with the necessary

reachability conditions in (8) allow us to derive a sufficient

condition for deadlock-freeness:

Theorem 5: Let the state of an event net NV be x0 =
(0, 0, 0, 0,m0) and let M ∈ R be un upper bound for all

the markings. If the solution of the following programming

problem (where the variables δpi and δku are binary, and the

rest of variables are nonnegative reals):

min
∑

vk∈V

∑

u∈MES(vk)

δku subject to

σ = aT + YσaE

A∆m ≤ BaE

m = m0 + Zm∆m

m[pi] ≤ δpi ·M ∀ pi ∈ P
∑

pi∈u

δpi
<|u|·(δku+1) ∀vk ∈ V, ∀u ∈ MES(vk)

(16)

is greater than 0, then any FN with NV as event net is

deadlock-free.

Theorem 5 states that if at any marking that satisfies the

necessary reachability conditions in (8), there is at least one

event handler that can fire, then the net is deadlock-freee.

Notice that Theorem 5 can be applied to any event net, i.e.

it is not constrained to particular net subclasses. On the other

hand, the problem (16) is a mixed integer linear programming

problem and, hence, no method with polynomial complexity

is known to solve it. This is, however, an expected cost

because FNs are an extension of Petri nets, and the deadlock

problem is PSPACE-complete in Petri nets [12].

The FN in Fig. 7 shows that the condition in The-

orem 5 is not necessary for deadlock-freeness. Notice

that a state with the marking m[p1]=6, m[p3]=4, and

m[p2]=m[p4]=m[p5] = 0 is a deadlock that satisfies the

6

p1

p2

p3

p4

4

p5

t1

t2

v1:

{

c≤b≤2·c

a+b=2·c

v2 v3

v4:











a=v

a≤b≤2·a

b+c=2·a

s1

s2:2·x≤r≤3·x

a

b
c a

b

c v

x

r

Fig. 7: FN with a spurious deadlock.

equations in (8) with ∆m[(p5, v1)]=8, ∆m[(v1, p2)] = 4,

∆m[(p2, v2)] = 4, ∆m[(v2, p5)] = 4, ∆m[(v2, p3)] = 4, and

the rest of elements in ∆m equal to 0, that is not reachable,

i.e., such a state is a spurious deadlock. In fact, given that the

firing of v2 consumes tokens from p2 and produces tokens in

p5, these two places cannot be emptied simultaneously with

a finite firing sequence. Moreover, the fact that the speed

at which tokens are consumed from p2 is proportional to

its marking, see intensity handler s1, makes it impossible to

empty p2 in a finite amount of time.

VII. CONCLUSIONS

Flexible Nets, a modeling formalism inspired by Petri

nets, are composed of an event net and an intensity net

that capture the relationships between the marking and the

speed of the processes. A number of uncertain parameters

can be accommodated in a Flexible Net by associating sets

of inequalities with the default intensities, initial markings

and handlers.

It has been shown that the reachability space of an event

net, i.e. the set of states that can be reached is a convex

set. Given that the intensity net just affects the speeds of

the processes, the state equations of the event net represent

necessary reachability conditions for any Flexible Net that

contains such an event net. These state equations, together

with some additional concepts, have been exploited to derive

a sufficient condition for deadlock-freeness.

REFERENCES

[1] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Procs.

of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[2] M. Silva, “Introducing Petri Nets,” Practice of Petri Nets in Manufac-

turing, pp. 1–62, Chapman & Hall, London, 1993.
[3] J. Cortadella, A. Yakovlev, and G. Rozenberg, eds., Concurrency and

Hardware Design, Advances in Petri Nets, vol. 2549 of Lecture Notes

in Computer Science, Springer, 2002.
[4] I. Koch, W. Reisig, and F. Schreiber, Modeling in Systems Biology.

The Petri Net Approach. Springer-Verlag London, 2011.
[5] J. M. Mendes, P. Leitão, A. W. Colombo, and F. Restivo, “High-

level Petri nets for the process description and control in service-
oriented manufacturing systems,” International Journal of Production
Research, vol. 50, no. 6, pp. 1650–1665, 2012.

[6] J. Clempner, “Modeling shortest path games with Petri nets: A
Lyapunov based theory,” Int. J. Appl. Math. Comput. Sci, vol. 16,
pp. 387–397, 01 2006.

[7] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Confor-

mance Checking - Relating Processes and Models. Springer, 2018.
[8] J. Júlvez, D. Dikicioglu, and S. G. Oliver, “Handling variability and

incompleteness of biological data by flexible nets: a case study for
Wilson disease,” npj Systems Biology and Applications, vol. 4, p. 7,
1 2018.

[9] J. Júlvez and S. G. Oliver, “Extending the Modeling and Analysis
Capabilities of Continuous Petri nets by Flexible Nets,” in 2021 60th

IEEE Conference on Decision and Control (CDC), pp. 1750–1756,
2021.

[10] J. Júlvez and S. G. Oliver, “Modeling, analyzing and controlling
hybrid systems by Guarded Flexible Nets,” Nonlinear Analysis: Hybrid

Systems, vol. 32, pp. 131–146, 2019.
[11] L. Recalde, E. Teruel, and M. Silva, “Autonomous continuous P/T sys-

tems,” in Application and Theory of Petri Nets 1999 (J. K. S. Donatelli,
ed.), vol. 1639 of Lecture Notes in Computer Science, pp. 107–126,
Springer, 1999.

[12] G. Liu, “Complexity of the deadlock problem for Petri nets modeling
resource allocation systems,” Information Sciences, vol. 363, pp. 190–
197, 2016.

