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Abstract— Technical advances in sequencing have allowed the
reconstruction of metabolic models of multiple microorganisms,
which have proven useful in advancing metabolic engineering
and drug discovery. Optimization methods have provided a
way to accurately predict flux phenotypes of various unicellular
organisms and their response to gene knockouts. Despite the
broad application of these methods, the role that different bio-
chemical reactions have in providing robustness and flexibility
has not been studied extensively. In this work, a method is
presented to identify those sets of reactions that are essential
for growth and those that are redundant and therefore account
for the robustness of metabolism. The problem of computing a
minimum set of reactions that can produce optimum growth is
formally stated. It is proven that such a problem is NP-complete
and a technique to reduce the search space of the problem is
proposed. The presented approach is experimentally applied in
various genome-scale models. The contribution of this work is
to provide insight into the roles that different reactions play in
the production of growth and to propose methods that can be
directly applied in model curation and analysis.

I. INTRODUCTION

Metabolism is the set of basic life processes that take place

in the cell and can be represented as a biomolecular network

of chemical reactions. As of 2019, genome-scale models

(GEM) of metabolism have been reconstructed for more than

6000 organisms including bacteria, archaea, and eukaryotes.

GEMs have proven useful in a wide range of applications,

such as expanding knowledge on microorganisms microbial

engineering , and drug discovery [1].

One of the main procedures regarding GEMs is the estima-

tion of the optimum growth, which is especially significant

as it helps in essentiality identification [2]. The computation

of the minimum metabolism is also a recurrent problem in

reconstruction and genome design [3], where the produced

results are expected to sustain growth. Most of the proposed

methods usually employ mixed-integer problems [4]. In areas

such as gap-filling cost-effective alternatives also exist such

as approximations [5] and topology based methods [6].

Despite the widespread usage of optimisation methods,

these cannot help in the systematic identification of reactions,

which hampers our ability to analyse and control such

systems. Approaches such as elementary modes [7] are

impractical due to their combinatorial explosion, and hence,

new methods are required [8].
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A. Oarga and J. Júlvez are with the Department of Computer Sci-
ence and Systems Engineering, University of Zaragoza, Zaragoza, Spain,
aoarga@unizar.es, julvez@unizar.es

In this work, we characterise formally essential reac-

tions and provide a method that addresses the minimum

metabolism problem. The document is organised as follows:

Section II defines constraint-based models and methods for

growth estimation; in Section III a computational procedure

for the identification of minimal metabolism for optimum

growth is proposed and its complexity is characterised;

Section IV presents the results obtained on various genome-

scale models; the main conclusions are drawn in Section V.

II. PRELIMINARY CONCEPTS

This section introduces the preliminary definitions and

concepts used in the paper.

Definition II.1. A constraint-based model [9] is a tuple

{R, M, S, L, U} where R is a set of reactions, M is a set

of metabolites, S ∈ R
|M|×|R| is the stoichiometric matrix,

and L,U ∈ R
|R| are lower and upper flux bounds of the

reactions.

Without loss of generality, it is assumed that

L[r]≤U [r] ∀r ∈ R.

Reactions are associated with a set of reactant metabolites

and a set of product metabolites (one of these two sets can be

empty). For example, the reaction r:A → 2B has a reactant

metabolite A, and a product metabolite B with stoichiometric

weight 2, i.e. two molecules of type B are produced per each

molecule of type A that is consumed by r. The stoichiometric

matrix S accounts for all the stoichiometric weights of

the reactions, i.e. S[m, r] is the stoichiometric weight of

metabolite m ∈ M for reaction r ∈ R.

Constraint-based models can be graphically represented as

Petri nets, with metabolites depicted as places and reactions

depicted as rectangles [10]. The presence of an arc from a

place(transition) to a transition(place) means that the place is

a reactant(product) of the reaction modelled by the transition.

The weights of the arcs of the Petri net account for the

stoichiometry of the constraint- based model. Notice that the

stoichiometric matrix of the model and the incidence matrix

of the Petri net coincide.

Example II.1. The Petri net in Figure 1 represents a simple

constraint-based model with 10 reactions and 6 metabolites,

where transition r5 models the reaction: r5: 2m3 → m4.

The flux bounds L,U of the model can be used to classify

reactions as dead, reversible, or non-reversible:

Definition II.2. A reaction r ∈ R is dead if L[r]=U [r]=0.



Definition II.3. A reaction r ∈ R is reversible if

L[r]<0<U [r].

Definition II.4. A reaction r ∈ R is non-reversible if r is

not dead and r is not reversible.

The sets of dead, reversible and non-reversible reactions

are denoted DR, RR and NR respectively.

Flux Balance Analysis (FBA) [11] is a mathematical pro-

cedure for the estimation of steady state fluxes in constraint-

based models. FBA can be used, for instance, to predict the

maximum growth rate of an organism. Let v ∈ R
|R| be

the vector of fluxes of reactions and v[r] denote the flux of

reaction r. At steady state, it holds that S · v = 0, where S
is the stoichiometric matrix. Thus, the linear programming

problem (LPP) for FBA is:

max z · v

st. S · v = 0

L ≤ v ≤ U

(1)

where z ∈ R
|R| expresses the objective function.

Let rg be the reaction that models growth (or biomass

production). Without loss of generality, it will be assumed

that L[rg]≥0. A theoretical optimum for the growth rate can

be obtained by the following FBA:

max v[rg ]

st. S · v = 0

L ≤ v ≤ U

(2)

The maximum v[rg ] obtained by the above LPP (2) will

be denoted µmax.

Two computational methods that are related to FBA are

Parsimonious Flux Balance Analysis (pFBA) and Flux Vari-

ability Analysis (FVA). pFBA computes a flux distribution

that produces the optimum growth rate while minimising the

overall sum of fluxes [12]. On the other hand, FVA [13]

computes the minimum and maximum fluxes of reactions

that are compatible with a given state. For instance, FVA

can be used to compute the fluxes that are compatible with

a growth γ · µmax where γ ∈ [0, 1]. Such an FVA can

be computed by solving two independent LPPs per reaction

r ∈ R. One programming problem maximises v[r], and the

other minimises v[r]. The constraints of both problems are

the same: the steady state condition S ·v = 0, the flux bounds

L ≤ v ≤ U , and the constraint γ · µmax ≤ v[rg]. The two

LPPs for a given r ∈ R can be expressed as:

max /min v[r]

st. S · v = 0

L ≤ v ≤ U

γ · µmax ≤ v[rg ]

(3)

Let lbγ, ubγ ∈ R
|R| be the result of computing FVA (3)

on a constraint-based model {R, M, S, L, U} for a given

γ, i.e. lbγ [r] and ubγ [r] are the minimum and maximum

flux given by FVA for reaction r. If the flux bounds L,U
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Fig. 1. Example Petri net modelling a constraint-based model.

of the constrained-based model are replaced by lbγ , ubγ, a

new constraint-based model, {R, M, S, lbγ , ubγ}, with

more restrictive (and realistic) flux bounds is obtained. Given

that the flux bounds of the model have changed, new sets

of growth dependent dead, reversible, and non-reversible

reactions must be considered. These sets are denoted DRγ ,

RRγ and NRγ respectively.

III. REACTIONS REQUIRED FOR GROWTH

A. Essential reactions

A reaction is said to be essential if it is required by the

organism to grow. In other words, the deletion of an essential

reaction implies null growth. Consequently, these reactions

have the potential to cause the death of the modelled organ-

ism.

Definition III.1. [2] A reaction r ∈ R is an essential

reaction if the solution of the following LPP:

max v[rg ]

st. S · v = 0

L ≤ v ≤ U

v[r] = 0

(4)

is equal to 0 or the LPP is infeasible.

The set of essential reactions, which is denoted ER, can be

computed straightforwardly by solving (4) for each r ∈ R.

Example III.1. In the Petri net in Figure 1, where rg models

growth and L[r]=0, U [r]=100 ∀r ∈ R, reactions r1, r4 are

essential reactions (i.e. ER = {r1, r4}). This is because, if

the flux of any of these reactions is set to 0, it is not possible

to produce metabolites m2 and m4 respectively, which are

required for the growth reaction rg .

Similarly to essential reactions, growth dependent essential

reactions are those reactions that are necessary to produce a

certain growth on the model.

Definition III.2. Let µmax be the solution of the LPP (2) and

γ ∈ [0, 1]. Reaction r ∈ R is essential for growth γ · µmax

if the solution of LPP (4) is lower than γ · µmax or the LPP

is infeasible.



The set of reactions essential for growth γ · µmax will be

denoted ERγ . This set can be computed straightforwardly

by solving LPP (4) for each reaction.

Special attention will be paid to the set of reactions ER1,

as it will consist of those reactions that are necessary to

produce the optimum growth of the model. This set will be

named essential reactions for optimum growth (EROG).

Example III.2. In the Petri net of Figure 1, reactions

r1, r4, r6 are essential reactions for optimum growth (i.e.

EROG = {r1, r4, r6}). Reactions r1, r4 are in ER and

therefore in EROG. Reaction r6 is in EROG because, if its

flux is set to 0, metabolite m4, which is required for growth

reaction rg , is produced through a less optimal reaction (i.e.

r5) and the model is not able to produce the optimum growth.

Notice that in addition to the reactions in EROG, other

reactions might be required to produce optimum growth. Let

||v|| denote the support of v ∈ R
|R|, i.e., ||v|| = {r ∈

R |v[r] 6= 0}. The set of reactions for optimum growth is

defined as follows:

Definition III.3. A set of reactions F is a set of reactions

for optimum growth (ROG) if ∃v ∈ R
|R| such that S ·v = 0,

L < v < U , v[rg] = µmax and ||v|| = F .

Notice that EROG ⊆ ROG. Moreover, since there can be

several flux distributions that produce optimum growth, ROG

might not be unique. Given that the reactions in a ROG are

sufficient to produce optimum growth, the model can produce

the optimum growth even if all the reactions in R − ROG
are inhibited.

B. Minimum set of reactions for optimum growth

This section focuses on the problem of computing a

minimum ROG. Let O be the set of all ROG sets of a model.

Definition III.4. A set of reactions Oi ∈ O is a minimum

set of reactions for optimum growth (MROG) if |Oi| ≤
|Oj | ∀Oj ∈ O.

Similarly to ROG, the set MROG might not be unique.

Example III.3. The model in Figure 1 has 2 feasi-

ble MROG sets: {r1, r2, r4, r6, r8} and {r1, r3, r4, r6, r8}.

Metabolite m2 is necessary for growth and can be equally

produced by reactions r1, r2 or r1, r3. Metabolite m6 can

be produced by various reactions, however, the minimum

number of reactions required to produce it optimally is 1

(i.e. r8), thus r8 is in MROG. Finally, reactions r1, r4, r6
are in EROG and therefore are present in any MROG set.

The problem to compute an MROG can be stated as:

Problem III.1. Given a constraint-based model

{R, M, S, L, U}, and an objective reaction rg ∈ R,

the minimum set of reactions for optimum growth problem

(MROGP ) is the problem of finding a minimum set of

reactions for optimum growth MROG.

It will be shown that MROGP can be solved by a

Mixed-Integer Linear Programming problem (MILP) where

the objective is to minimise the number of reactions required

for optimum growth. We will make use of a vector of

initial fluxes, w ∈ R
|R|, and a vector of binary variables,

δ ∈ {0, 1}|R|, that indicates which fluxes are canceled out,

i.e. δ[r] = 0 implies that there is no flux through r regardless

of w[r]. Thus, the actual flux of a given reaction, r, is

v[r] = δ[r]·w[r]. Let us consider the following programming

problem:

min
∑

r∈R

δ[r]

st. S · v = 0

v[r] = δ[r] · w[r] ∀ r R

L ≤ w ≤ U

v[rg ] = µmax

(5)

Given that the number of reactions with non-null flux is

minimized, the support of a vector v that is a solution to

the programming problem (5) is an MROG.

Equation v[r]=δ[r]·w[r] makes the problem (5) non-linear.

Such an equation is equivalent to the following inequalities:

v[r] ≤ U [r]·δ[r] ∀r ∈ R

v[r] ≥ L[r]·δ[r] ∀r ∈ R

v[r] ≤ w[r] − L[r]·(1 − δ[r]) ∀r ∈ R

v[r] ≥ w[r] − U [r]·(1− δ[r]) ∀r ∈ R

(6)

Thus, the replacement of v[r]=δ[r] · w[r] in (5) by the

above inequalities results in a MILP which solves MROGP.

C. Computational complexity

This section proves that a solution for MROGP can not

be found in polynomial time. Let us first restate the problem

as a decision problem:

Problem III.2. Given a constraint-based model

{R, M, S, L, U}, an objective reaction rg ∈ R,

and integer k, the set of reactions for optimum growth

problem (ROGP ) is the problem of determining whether

there exists a ROG set Oi with |Oi| ≤ k.

We will prove that ROGP is NP-complete. First, it is

proved that this problem is in NP.

Lemma III.1. ROGP is in NP.

Proof. Given a set of reactions Oi ⊆ R, we can verify

that the set is a ROG set for a constraint-based model

{R, M, S, L, U} with objective reaction rg ∈ R, by

removing all reactions not in Oi from the model and solving

the LPP in (2). If the growth obtained is equal to µmax and

|Oi| ≤ k, then the set Oi is a ROG set with size at most k.

Since LPPs can be solved in polynomial time, ROGP is in

NP.

Let us now prove that ROGP is NP-hard by reducing

the vertex cover problem [14] to ROGP . The vertex cover

problem is defined as:

Problem III.3. Given an undirected graph G = (V,E), a

vertex cover V ′ is a subset of V such that uv ∈ E → u ∈
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Fig. 2. a) Undirected graph with 5 vertices and 6 edges. b) Net of source reactions and metabolites resulted from transforming the undirected graph in
Figure 2a. c) Undirected graph from Figure 2a with a vertex cover of size k = 2 highlighted in red.
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Fig. 3. Constraint-based model resulting from transforming the undirected
graph in Figure 2a. Input reactions mapped from the vertex cover of Figure
2c are highlighted in red. Arcs and metabolites highlighted in blue show that
reactions r2 and r3 are able to produce all the metabolites of the model.

V ′ ∨ v ∈ V ′. The vertex cover problem is the problem of

determining whether there exists a vertex cover of size at

most k.

Lemma III.2. ROGP is NP-hard.

Proof. Let us reduce an instance of the vertex cover problem,

consisting of an undirected graph G = (V,E), to a ROGP .

First, the undirected graph is transformed into a bipartite

graph (represented graphically as a Petri net) of reactions

and metabolites as follows:

• For each vertex vi ∈ V create a source reaction ri with

L[ri]=0, U [ri]=2.

• For each edge ei ∈ E create a metabolite mi.

• For each adjacent edge ei of each vertex vj make the

corresponding metabolite mi a product of the corre-

sponding reaction rj .

Figure 2b shows an example of a network

R={r1, r2, r3, r4, r5} and M={m1,m2,m3,m4,m5,m6},

resulting from the transformation of the undirected

graph in Figure 2a with V={v1, v2, v3, v4, v5} and

E={e1, e2, e3, e4, e5, e6}.

In addition to the previous transformations, the following

ones are also performed:

• For each metabolite(edge) mi ∈ M create a sink reac-

tion rj with |V |<j≤|V |+|E| with L[rj ]=1, U [rj ]=|V |.
• Add an objective reaction rg with L[rg]=0, U [rg]=1

that consumes all metabolites mi ∈ M.

Figure 3 shows the final constraint-based model resulting

from applying the described transformation to the graph in

Figure 2a.

In the obtained constraint-based model, each source reac-

tion ri will act as an input to the network and sink reactions

will balance the potential excess of produced metabolite.

Notice that in order to achieve the optimum growth, all the

metabolites must be produced, and as long as |E| > 0, this

model will always be able to produce the maximum growth

(i.e. µmax=1) with a certain v ∈ R
|R| obtained by the LPP

in (2).

It can be seen that any ROG set will have the following

number of reactions: all sink reactions (the number of sink

reactions is |E|) since all sink reactions are constrained

to have non-null flux; the growth reaction; and a number

k of reactions, with 1 ≤ k ≤ |V |, that correspond to a

set of reactions necessary to produce all the metabolites

in the model. To summarise, any ROG set will have a

size equal to: k (source reactions) + |E| (sink reactions) +
1 (growth reaction). The set of k source reactions will be

used to derive a solution for the vertex cover problem. Let

us prove the following claim: a vertex cover of size k exists

if and only if a ROG set of size k + |E| + 1 exists. We

proceed by proving both directions of the claim:

1) If a ROG set of size k + |E| + 1 exists, then a

vertex cover of size k exists: Let Rin ⊆ R be the

set of k source reactions of a given ROG set. A

vertex cover V ′ ⊆ V of the graph G can be built as

follows: vi ∈ V ′ if ri ∈ Rin. Here, a source reaction

producing metabolites is considered equivalent to a

vertex covering its adjacent edges. If we consider

any source reaction ri ∈ Rin, it produces a set of

metabolites mj , ...,mk ∈ M that is equivalent to the

set of edges ej , ..., ek ∈ E that would be covered by

the corresponding vertex vi ∈ V . Since the k source

reactions produce all metabolites in the model, it is

guaranteed that the resulting vertex set V ′ covers all

edges of the graph, thus making V ′ a vertex cover.

2) If a vertex cover of size k exists, then a ROG set

of size k + |E| + 1 exists: let V ′ ⊆ V be a vertex

cover with |V ′| = k. Since all edges of the graph

are covered by k vertices and given the equivalence

between source reactions and vertices, it is guaranteed

that the corresponding k source reactions of the model

are sufficient to produce all metabolites of the model

and achieve optimum growth, hence a ROG of size at

most k + |E|+ 1 exists.

Figure 2c shows highlighted in red a vertex cover V ′ of



size k = 2 (i.e. V ′ = {v2, v3}) of the undirected graph

in Figure 2a. Figure 3 shows that the corresponding source

reactions r2, r3 (highlighted in red) are able to produce all

metabolites of the model (highlighted in blue). Therefore,

there exists a ROG set of size at least k + |E| + 1 with

k = 2 and |E| = 6.

Clearly, the same reasoning can be applied reversely to

obtain a vertex cover from the ROG set. Given the k source

reactions of the ROG set (e.g. r2, r3 in Figure 3), the

corresponding vertices are guaranteed to be a vertex cover

(e.g. v2, v3 in Figure 2c).

The following theorem is derived straightforwardly from

Lemmas III.1 and III.2.

Theorem III.3. Reactions for Optimum Growth Problem

(ROGP) is in NP-complete.

D. Problem size reduction

Given that ROGP is NP-complete, we can not expect to

find a solution in polynomial time, and consequently, we can

not expect to solve MROGP in polynomial time either. It

is possible, however, to achieve a reduction in the size of

MROGP and along with that a potential reduction in the

execution time required to solve it.

As mentioned previously, for any set ROG it holds that

EROG ⊆ ROG. Consequently, the space to search for

reactions in MROG can be reduced from R to R−EROG.

Similarly, the set DR1 contains all reactions whose only

compatible flux with optimum growth is the null flux, hence,

this set can also be ignored in the search for MROG. The

search space of the problem is then reduced from |R| to

|R − EROG−DR1|.
Note that the MILP in (5) had |R| binary variables, and

the above reasoning reduces the number of binary variables

to |R − EROG−DR1|. The resulting reduced MILP is:

min
∑

r∈F

δ[r]

st. S · v = 0

v[r] = δ[r] · w[r] ∀r ∈ F

v[r] = w[r] ∀r ∈ EROG

L ≤ w ≤ U

v[rg ] = µmax

(7)

where F = R− EROG−DR1.

IV. RESULTS

This section presents the results of computing the sets

defined in this work on a total of 30 constraint-based models

obtained from the BioModels repository [15]. The size of

each set can be found in Table I.

In the table, it can be seen that the coverage of the set

EROG varies considerably between models. Size ranges

from 8.18% of MODEL1507180006 reactions (32 of 391

reactions), to 60.96% of all MODEL1507180052 reactions

(214 of 351). It can also be seen that larger models do not

directly imply larger EROG sets.

Let us now consider the size of the dead reaction sets in

column DR1. Contrary to what happened with the EROG
set, larger models tend to have a larger number of dead

reactions. The coverage of this set ranges from 28.47% of

all reactions in smaller models such as MODEL1710040000

to 82% in larger models such as MODEL1507180054.

Section III-D presented how the problem of finding a

minimum set ROG could be reduced to minimisation in the

set of reactions R − EROG − DR1. Recall that this size

corresponds with the numbers of binary variables of MILP

(7). The size of this set has also been included in Table I.

In the corresponding column, it can be seen that the set size

ranges from 21 reactions in MODEL1507180052 to 804 in

MODEL1212060001. If we consider, for instance, the largest

of the selected models (i.e. model MODEL1507180017), it

can be seen that out of 2546 reactions, set R−EROG−DR1

has only 84 reactions. This means that the number of binary

variables is reduced from 2546 with the MILP (5) to only

84 in MILP (7).

The MILP in (7) was solved for each model. The solver

used approximates the solution by linearising all variables

in the problem, hence reducing significantly the execution

time (maximum wall clock for MILP resolution is 223.66s

with model MODEL1507180058). The downside is that the

solution is not guaranteed to be optimal. Column |MROG∗|
reports the sizes of the computed minimum sets for optimum

growth. To compare the results, the table includes sizes of

sets ROG computed with FBA and pFBA. |MROG∗| is

lower than the sizes of |ROG| computed by FBA and pFBA

in 24 models (out of 30). The largest difference is found in

model MODEL1507180015 where MROG∗ (682 reactions)

has 37 reactions less than the ROG computed with pFBA

(719 reactions). Note that 2 models (MODEL1507180070,

MODEL1507180017) have suboptimal solutions, (MROG∗

is larger than the other ROG sets).

The manipulation of the constraint-based models presented

and FBA, FVA computation was performed by the Python

toolbox COBRApy [16]. The presented MILP for MROG

computation was implemented using Pyomo language [17]

and solved by the commercial solver Gurobi Optimizer 9.1.2.

The maximum wall clock time was 252.48s to compute the

results of model MODEL1507180058 in an Intel Core i5-

9300H CPU @ 2.40GHz × 8.

V. CONCLUSIONS

This work provided methods for the identification of the

different types of reactions involved in the production of

growth. Taking into account only the growth-related informa-

tion available in the model, reactions that are indispensable

for the survival of the organism have been identified. Such

essential reactions are appealing pharmacological targets

in the fight against pathogens. We also computed those

reactions that provide redundancy and thus contribute to a

robust metabolism. It has also been shown that optimum

growth itself involves a combination of the above two types

of reactions. All this helps understand how metabolism works

in growth production and breaks the black-box conception



TABLE I

SIZES OF REACTION SETS COMPUTED ON MULTIPLE CONSTRAINT-BASED MODELS.

ID |R| |M| |EROG|
|R
−EROG

−DR1|
|DR1| |RR1| |NR1|

|ROG|
(FBA)

|ROG|
(pFBA)

|MROG∗|

MODEL1507180052 351 346 214 (60,96%) 21 116 (33,04%) 4 231 221 222 221 (62,96%)
MODEL1507180006 391 371 32 (8,18%) 55 304 (77,74%) 9 78 41 40 40 (10,23%)
MODEL1106080000 469 342 61 (13,00%) 52 356 (75,90%) 13 100 78 74 67 (14,28%)
MODEL1507180007 554 485 305 (55,05%) 41 208 (37,54%) 6 340 314 313 313 (56,49%)
MODEL1507180030 560 479 251 (44,82%) 39 270 (48,21%) 12 278 270 267 263 (46,96%)
MODEL1507180048 645 565 251 (38,91%) 41 353 (54,72%) 7 285 274 273 269 (41,70%)
MODEL1507180070 743 655 264 (35,53%) 169 310 (41,72%) 13 420 300 299 300 (40,37%)
MODEL1710040000 748 737 285 (38,10%) 250 213 (28,47%) 69 466 387 389 359 (47,99%)
MODEL1507180024 832 790 369 (44,35%) 90 373 (44,83%) 21 438 406 406 398 (47,83%)
MODEL1507180036 870 713 259 (29,77%) 252 359 (41,26%) 51 460 347 339 324 (37,24%)
MODEL1507180021 900 688 416 (46,22%) 57 427 (47,44%) 20 453 435 435 434 (48,22%)
MODEL1507180044 948 892 314 (33,12%) 47 587 (61,91%) 5 356 343 338 332 (35,02%)
MODEL1507180049 971 496 135 (13,90%) 393 443 (45,62%) 140 388 248 237 229 (23,58%)
MODEL1507180068 1056 911 284 (26,89%) 259 513 (48,57%) 71 472 357 358 344 (32,57%)
MODEL1507180060 1075 761 279 (25,95%) 85 711 (66,13%) 8 356 302 301 299 (27,81%)
MODEL1507180059 1112 1101 222 (19,96%) 278 612 (55,03%) 142 358 366 353 315 (28,32%)
MODEL1507180013 1245 987 325 (26,10%) 114 806 (64,73%) 49 390 372 368 361 (28,99%)
MODEL1507180058 1285 943 150 (11,67%) 494 641 (49,88%) 97 547 279 264 242 (18,83%)
MODEL1507180022 1333 1243 239 (17,92%) 251 843 (63,24%) 63 427 341 322 318 (23,85%)
MODEL1507180012 1379 796 214 (15,51%) 515 650 (47,13%) 227 502 328 322 321 (23,27%)
MODEL1507180027 1462 1253 285 (19,49%) 70 1107 (75,71%) 11 344 326 321 317 (21,68%)
MODEL1507180011 1576 1913 294 (18,65%) 54 1228 (77,91%) 17 331 326 326 317 (20,11%)
MODEL1507180033 1577 1228 255 (16,16%) 141 1181 (74,88%) 47 349 303 302 300 (19,02%)
MODEL1507180015 1681 1381 480 (28,55%) 521 680 (40,45%) 334 667 740 719 682 (40,57%)

MODEL1507180064 1785 2087 366 (20,50%) 18 1401 (78,48%) 0 384 373 372 372 (20,84%)
MODEL1212060001 1845 1008 272 (14,74%) 804 769 (41,68%) 0 1076 324 308 306 (16,58%)
MODEL1507180054 2262 1658 279 (12,33%) 128 1855 (82,00%) 10 397 326 321 317 (14,01%)
MODEL1105030000 2378 1669 374 (15,72%) 114 1890 (79,47%) 10 478 410 405 399 (16,77%)
MODEL1507180010 2477 1747 362 (14,61%) 124 1991 (80,37%) 16 470 414 409 397 (16,02%)
MODEL1507180017 2546 1802 479 (18,81%) 84 1998 (78,47%) 13 535 486 483 498 (19,56%)

of growth in constraint-based models. Moreover, it has been

shown that finding a minimum set of reactions that supports

optimal growth is computationally complex and a method to

optimise this procedure has been proposed.
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