
Extending the Modeling and Analysis Capabilities of Continuous Petri

Nets by Flexible Nets

Jorge Júlvez and Stephen G. Oliver

Abstract— Continuous Petri nets aim to avoid the state
explosion problem of classical discrete Petri nets by relaxing
the integrality constraint of the firing of transitions. Although
the resulting formalism can successfully model a number of
features of dynamic systems, its use in complex real systems
can be hindered by the limited number of possible dynamics
and by the difficulty in accommodating uncertain parameters.
The modeling formalism of Flexible Nets can overcome these
difficulties by significantly extending the modeling and analysis
possibilities of continuous Petri nets. The modeling capabilities
of Flexible Nets will be presented together with their analysis
possibilities in both the transient and steady state.

I. INTRODUCTION

Petri nets (PNs) [1] is a popular modeling formalism for

discrete event systems which has been used in a wide range

of application domains such as business process modeling,

systems biology, and game theory [2], [3], [4]. As with

any other formalism for discrete event systems, PNs suffer

from the state explosion problem and, hence, many analysis

methods are not efficient. A way to avoid this difficulty is

to relax the integrality constraint of the firing of transitions

and deal with Continuous Petri Nets (CPNs) [5]. Although

such a relaxation might involve the loss of some proper-

ties [6], more efficient analysis and control methods can

be developed [7], [8], [9]. Despite their modeling power,

some common features of real concurrent systems (such as

uncertainties, complex firing semantics and shared resources)

remain difficult to be modeled with CPNs.

Flexible Nets (FNs) [10] is a recent modeling formalism

inspired by PNs which can overcome some of the modeling

and analysis limitations of CPNs. An FN is composed of

two nets, an event net which models the state changes

produced by the processes of the system, and an intensity

net which captures how the state determines the speeds

of the processes. Both, the event and the intensity net are

tripartite graphs whose vertices are places, transitions and

(event and intensity) handlers. Places and transitions are

connected through handlers which can be associated with

sets of linear inequalities.

This work was supported by the Spanish Ministry of Science and Innova-
tion [ref. DAMOCLES-PID2020-113969RB-I00] to JJ, by the Biotechnol-
ogy & Biological Sciences Research Council (UK) grant no. BB/N02348X/1
to SGO, as part of the IBiotech Program, and by the Industrial Biotechnol-
ogy Catalyst (Innovate UK, BBSRC, EPSRC) to support the translation,
development and commercialisation of innovative Industrial Biotechnology
processes.

J. Júlvez is with the Department of Computer Science and Systems Engi-
neering, University of Zaragoza, Zaragoza, Spain julvez@unizar.es

S.G. Oliver is with the Cambridge Systems Biology Centre and the
Department of Biochemistry, University of Cambridge, Cambridge, UK
sgo24@cam.ac.uk

The introduction of handlers and inequalities enhances the

modeling power of FNs and opens the door to new analysis

possibilities. The use of inequalities, for instance to model

uncertain parameters, results in a nondeterministic model

with a range of different potential trajectories. Such a model

can be studied both in its transient and steady state by means

of mathematical constraints on its state variables [10], [11].

The remainder of the paper is organized as follows:

Sections II and III introduce CPNs and FNs respectively.

Section IV discusses how some basic features of CPNs can

be modeled by FNs. Section V shows how FNs can extend

the modeling and analysis capabilities of CPNs. Section VI

concludes the paper.

II. CONTINUOUS PETRI NETS

In the following, the reader is assumed to be familiar with

Petri nets (see [1], [5] for a gentle introduction to discrete

and continuous Petri nets).

A Petri net (PN) is a tuple N = {P, T,Pre,Post} where

P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are disjoint and

finite sets of places and transitions, and Pre and Post are

|P |×|T | sized, natural valued, incidence matrices. The preset

and postset of a node X ∈ P ∪ T are denoted by •X and

X• respectively.

In a Continuous PN (CPN), every place pi has a nonneg-

ative real marking (or number of tokens) m[pi]∈R≥0, the

initial marking is denoted m0[pi]. A CPN system is a tuple

{N ,m0} where N is the net and m0 is the initial marking.

In a CPN, the enabling degree of transition tj at marking m

is defined as enab(tj,m)= min
pi∈•tj

{

m[pi]

Pre[pi, tj]

}

.

The state equation of a CPN, m=m0+C·σ where C is

the incidence matrix, summarizes the system evolution. The

derivative of this equation with respect to time is ṁ = C·σ̇
where σ̇ = f is the speed (or flow) of transitions. Different

semantics exist to define f , the two most important being

infinite server and finite server semantics [5], [12], [13].

In order to define the flow under a firing semantics, a

vector l ∈ R
|T |
>0

which associates a positive value with each

transition is used. Under finite server semantics, the speed

of a transition ti at marking m such that enab(ti,m)>0
is equal to l[ti] (if enab(ti,m)=0 several possibilities have

been proposed [5], [13]). Under infinite server semantics,

the speed of a transition ti at marking m is equal to

l[ti]·enab(ti,m) [12].

For instance, the speed of t1 of the CPN in Fig.1(a) at

marking m=(2 3 0) is l[t1] under finite server semantics and

l[t1]·enab(t1,m)=l[t1]·1.5 under infinite server semantics.

2p1 3 p2

p3

t1

2

10

(a)

2p1 3 p2

p3

v1:

{

b = 2·a

c = 10·a

a
b

c

(b)

2p1 3 p2

p3

v1:











b=2·a

c=10·a

v=a

t1

λ0[t1] = 3

a
b

c

v

(c)

2p1

t1 l[t1]=5

p2

(d)

2 p1

v1

p2

t1
λ0[t1] = 0

s1:r=5·a
a

r

(e)

Fig. 1: (a) A simple CPN; (b) Event net modeling the untimed behavior of the CPN in (a); (c) FN with a constant firing

speed of t1; (d) CPN under infinite server semantics; (e) FN mimicking the CPN in (d).

III. FLEXIBLE NETS

Flexible Nets (FNs) are composed of an event net and

an intensity net: the event net determines how the system

processes change the state of the system, and the intensity

net establishes the speeds of such processes as a function of

the state. This section outlines the definition of FNs, see [10]

for a detailed definition.

Definition 1 (Event net): An event net is a tuple

NV =(P, T, V, EV , A,B) where (P, T, V, EV) is a tripartite

graph determining the net structure, and (A,B) are matrices

determining the potential evolutions of the marking.

The vertices of the event net are P , T and V , where P is

a set of |P | places, T is a set of |T | transitions and V is a

set of |V | event handlers. Similarly to Petri nets, places are

depicted as circles and model the types of components in the

system. As in CPNs, every place pi ∈ P has a nonnegative

real number of tokens, m[pi] ∈ R≥0, called marking (the

initial marking is denoted m0[pi]). Transitions are depicted

as rectangles and model the system processes. Event handlers

are depicted as dots and model the different ways in which

the transitions can change the marking.

The vertices of the event net are connected by the edges

in EV . Each pair of vertices can be connected by at most

one edge. The set EV is partitioned into two sets EP
V and

ET
V : The edges in EP

V are directed and are referred as event

arcs, every e ∈ EP
V is either an arc e=(pi, vk) from a place

pi to a handler vk, or an arc e=(vk, pi) from a handler vk to

a place pi. Every e ∈ ET
V is an edge e={tj , vk} connecting

a transition tj and a handler vk.

Each event handler is associated with a set of inequalities

which establishes how the marking can change, the inequal-

ities of all handlers are captured in matrices A and B [10].

For instance, the handler v1 in the event net in Fig.1(b) has

two equalities, b=2·a and c=10·a, where a, b and c are the

labels of the arcs. These equalities imply that for every token

consumed from p1 (label a), 2 tokens will be consumed from

p2 (label b) and 10 tokens will be produced in p3 (label c).

For the sake of simplicity, the inequalities of handlers will

be omitted if all the labels are equal, e.g. the omission of

the inequalities of v1 would imply a=b=c.

Definition 2 (Intensity net): An intensity net is a tuple

NS=(P, T, S,ES , C,D,P , ϕ) where (P, T, S,ES) is a tri-

partite graph determining the net structure, and (C,D) are

matrices determining the potential intensity changes pro-

duced by the marking. P is a set of partitions, and ϕ is

a function that associates guards with intensity arcs.

The vertices of the net are P , T and S, where P is a

set of |P | places, T is a set of |T | transitions and S is a

set of |S| intensity handlers. Places and transitions model

the same system features as in the event net. The intensity

handlers are depicted as dots and model the different ways

in which the tokens can generate intensities, or speeds, in

the transitions. Every transitions tj has a nonnegative real

intensity, or speed, λ[tj] ∈ R≥0 which can depend on the

marking (the default speed, denoted λ0[tj], is constant and

does not depend on the marking).

The vertices of the intensity net are connected by the

edges in ES . Each pair of vertices can be connected by at

most one edge. The set ES is partitioned into two sets ET
S

and EP
S : The edges in ET

S are directed and are referred as

intensity arcs, every e ∈ ET
S is either an arc e=(tj , sl) from

a transition tj to a handler sl, or an arc e=(sl, tj) from

a handler sl to a transition tj Every e ∈ EP
S is an edge

e={pi, sl} connecting a place pi and a handler sl. Notice

that although both, event handlers and intensity handlers, are

represented as dots, they can be distinguished by the arcs

and edges that connect them to transitions and places, e.g.

event handles are connected to transitions by edges while

intensity handlers are connected to transitions by arcs. For

clarity, intensity edges and arcs will be drawn in blue.

The tokens in places can be used by the intensity handlers

to produce intensities. A token is active if it is being used by

an intensity handler, otherwise it is idle. While idle tokens

are associated with places, active tokens are associated with

edges. The places whose tokens are forced to be active are

drawn as single circles, and the places whose tokens can be

idle are drawn as double circles, see Fig.1(e).

An intensity handler determines how much intensity is

produced in its arcs as a function of the number of active

tokens in its edges. The intensity produced in an incoming

arc (sl, tj) to tj(an outgoing arc (tj , sl) from tj) is added

to(subtracted from) the default intensity λ0[tj]. For instance,

the equation r=5·a of the intensity handler s1 in Fig.1(e)

implies that the intensity produced in arc (s1, t1) is equal to

5 times the number of active tokens in edge {p1, s1}. Given

that the tokens of p1 are forced to be active (p1 is drawn as a

single circle) and (s1, t1) is an incoming to t1, then the speed

of t1 at marking m=(2 0) is λ[t1]=λ0[t1]+5·m[p1]=10. As

in event nets, if the inequalities of an intensity handler are

omitted, it is assumed that all the labels of its arcs and edges

are made equal. Moreover, similarly to null initial markings,

null default speeds can be omitted.

In order to enhance the modeling power of FNs, several

sets of inequalities can be associated with each intensity

handler. Only one of these sets is active at a given instant,

and the active set depends on the marking of the net. The

conditions for the activation of the sets are called guards.

For example, if r=

{

4 if a ≥ 1

a otherwise
is associated with s1 in

Fig.1(e), then the speed of t1 is 4 if the marking of p1 is

higher than 1, and equal to the marking of p1 otherwise, i.e.

a guarded FN can be seen as a hybrid system. The sets of

inequalities and guards of the intensity handlers are encoded

in the net elements C, D, P and ϕ [10].

IV. FROM CONTINUOUS PETRI NETS TO

FLEXIBLE NETS

The introduction of handlers with inequalities in FNs

increases significantly their modeling power as compared to

CPNs. In particular, uncertainties and nondeterminism can be

easily modeled. The event net in Fig.1(b) mimics the untimed

behavior of the CPN in Fig.1(a) (the equalities of v1 just

capture the relative quantities in which tokens are consumed

and produced). Assume that c=10·a of v1 is replaced by

9·a≤c≤11·a. Then, for every token consumed from p1, a

real and nondeterministic quantity of tokens in the interval

[9, 11] is produced in p3. Thus, in contrast to CPNs, the

marking change produced by a handler is allowed to be

nondeterministic.

With respect to Fig.1(b), the net in Fig.1(c) introduces

a transition, t1, and the equality v=a in v1. This equality

implies that every action of t1 that is executed will consume

one token from p1, 2 tokens from p2, and will produce 10
tokens in p3. The speed of t1, i.e. the rate at which actions in

t1 are executed, is constant an equal to λ0[t1]=3. Instead of

this equality for λ0[t1], inequalities can be used, for instance

2.5≤λ0[t1]≤3.5 would imply that the speed of t1 is uncertain

(and can vary over time) but constrained to the interval

[2.5, 3.5]. The FN in Fig.1(e) mimics the timed behavior

of the CPN in Fig.1(d) under infinite server semantics. As

in the event handler, the equality in s1 can be replaced by

inequalities to model uncertain parameters, e.g. 4·a≤r≤6·a
would mean that the speed of t1 is uncertain but constrained

to the interval [4·m[p1], 6·m[p1]].
The use of inequalities in an FN results in a nondeterminis-

tic evolution of the model. In order to analyze the potential

evolutions, sets of mathematical constraints that represent

necessary reachability conditions in the transient [10] and

steady state [11] can be developed. Such constraints together

with an objective function can be used to build a program-

ming problem whose solution represents state bounds for all

potential evolutions.

V. MODELING AND ANALYSIS

This section exploits further the modeling capabilities of

FNs. These capabilities are presented together with analysis

possibilities of FNs by means of case studies.

A. Simultaneous enabling

The CPN in Fig. 2(a) has two self-loops, one consists of

the pair (p1, t1) and the other of the pair (p1, t2). Thus,

the firing of t1 (and t2) consumes and produces tokens

simultaneously in p1. Given that the arcs of the self-loops

have different weights, 1 and 2, the role of such arcs is both

a) to constrain the speeds of the transitions and; b) to specify

the number of tokens consumed and produced by the firing

of transitions. In contrast, FNs explicitly distinguish between

the marking change produced by firings and the way places

control the speed of transitions.

The event net in Fig. 2(b) models the marking changes

produced by the firing of transitions. Each transition is

connected to an event handler, and each event handler is

connected to places by arcs to specify consumption and

production of tokens. Given that no explicit inequalities are

associated with the handlers, the execution of one action

of a transition, e.g. t1, consumes one token from p1 and

p3 and produces one token in p2. Notice that the event net

models the overall marking change produced by the firings

and, hence, self-loops are not required. The absence of self-

loops makes it apparent that the markings of p1 and p3 are

equally affected by the transitions.

According to the definition of CPNs, the tokens of p1 in

Fig. 2(a) enable simultaneously both t1 and t2. In particular,

the speed of t1 is given by l[t1]·min(m[p1]/2,m[p3]) and

the speed of t2 by l[t2]·min(m[p1],m[p2]). This relation

between marking and speeds can be modeled by the in-

tensity net in Fig. 2(c) in which the inequalities associ-

ated with the intensity handler s1 state that the speeds

of the transitions are λ[t1]=k·min(m[p1]/2,m[p3]) and

λ[t2]=min(m[p2],m[p3]), where the parameter k is equal to

l[t1] and it is assumed that l[t2]=1. Let us assume that the

initial marking is m0=[5 0 4]. Figure 2(e) shows the steady

state speed of t1, λ[t1], computed according to the constraints

in [11] for different values of k when λ[t1] is maximized. It

must be noticed that λ[t1] is not monotonous with respect to

k and presents a discontinuity at k=2 (see [14]).

In contrast to CPNs, FNs offer the possibility of avoiding

the simultaneous enabling of transitions by the marking of

places. This possibility is exemplified by the intensity net in

Fig. 2(d) which has two intensity handlers, s1 is connected

to t1 and s2 is connected to t2. Place p1 has two edges,

each edge is connected to an intensity handler. This implies

that each token in p1 can be used either by s1 or by s2
but not by both simultaneously. The tokens that are active

in the edge {p1, s1} will synchronize with the tokens in

{p3, s1} to produce speed in t1, and the tokens that active

in {p1, s2} will synchronize with the tokens in {p2, s2} to

produce speed in t2. The number of tokens active in {p1, s2}
and {p1, s2} is not initially set and will be obtained when

the associated programming problem is solved. Figure 2(f)

5 p1

p2

4

p3

t1 t2

2
2

(a)

5 p1

p2

4

p3

t1v1
t2 v2

(b)

5 p1

p2

4p3

t1 t2s1

x

y

z
r1

r2

s1:



















r1 = k·x/2 if x/2≤z

r1 = k·z if x/2>z

r2 = x if x≤y

r2 = y if x>y

(c)

5 p1

p2

4p3

t1 t2s1 s2

x x

z

y

r
r

s1: r=

{

k·x/2 if x/2≤z

k·z otherwise

s2: r=

{

x if x≤y

y otherwise

(d)

0 1 2 3 4 5

k

0.0

0.5

1.0

1.5

2.0

2.5

λ
[t
1
]

λ[t1]

(e)

0 1 2 3 4 5

k

0

1

2

3

4

5
λ[t1]

µ[{p1, s1}]

µ[{p3, s1}]

min m0[p3]

(f)

Fig. 2: (a) CPN with a self-loop place with different arc weights; (b) Event net modeling the marking changes produced

by the firing of transitions; (c) Intensity net with simultaneous enabling; (d) Intensity net without simultaneous enabling;

(e) Steady state speed of t1 for different values of k under simultaneous enabling; (f) Steady state speed of t1 for different

values of k under non-simultaneous enabling.

shows the steady state speed of t1, λ[t1], for different values

of k when λ[t1] is maximized, it also shows the number

of active tokens in the edges connected to s1, µ[{p1, s1}]
and µ[{p3, s1}]. Notice that λ[t1] is now continuous and

monotonous with with respect to k. Moreover, from the plot

it can be deduced that m[p3] never constrains the speed of

t1 (µ[{p1, s1}]/2<µ[{p3, s1}] holds for any k>0) . In other

words, there are unused tokens in p3. FNs can be used to

compute the minimum initial marking of p3 that makes use

of all the tokens in the steady state without decreasing the

speed of t1. This can be achieved by forcing such a speed as

a constrain in the optimization problem and by minimizing

m0[p3]. The resulting initial marking, as a function of k, is

the trajectory min m0[p3] in Fig. 2(f). It has been assumed

that, both in Fig. 2(c) and Fig. 2(d), the tokens of all places

are forced to be active.

B. Allocation of resources

Let us consider the CPN in Fig. 3(a) with initial marking

m0=(0 4 6 0) and l=(1.0 1.0 1.5 1.0). The event net

in Fig. 3(b) models the marking changes produced by the

firing of transitions, and the intensity net in Fig. 3(c) models

the dependence of the speeds of the transitions on the

marking. Notice that t2 is the only transition that is not

a synchronization, i.e. it is enabled just by one place, p1.

Thus, the speed of t2 is modeled by one intensity handler,

s2, which connects p1 and t2. As in the previous case study,

see Subsection V-A, in order to model the simultaneous

enabling of t1, t3 and t4 by the tokens in p2, p3 and p4, only

one intensity handler, s1, must be used. Such an intensity

handler connects p2, p3 and p4 to t1, t3 and t4, and associates

equations with its arcs and edges according to the vector l
of the CPN, e.g. r3=1.5·min(x, y) implies that the speed

of t3 will be equal to 1.5·min(m[p2],m[p3]) (recall that

l[t3]=1.5). In order to mimic exactly the behavior of the

CPN the tokens of all places must be forced to be active.

Two limitations of the intensity net in Fig. 3(c) are:

1) as in the previous case study, tokens are forced to

simultaneously enable several transitions, which might not

be realistic; 2) the use of min in the equations of s1
requires the use of guards, e.g. r1=min(y, z) is equivalent

to r1=

{

y if y ≤ z

z otherwise
, and hence, the existence of binary

variables in the optimization problems, which can result in

a high computational complexity. In order to overcome such

limitations, the intensity net in Fig. 3(d) can be used. Such

a net has one intensity handler per transition and, hence,

places p2 and p3 have several intensity edges implying that

their tokens can enable any of the transitions to which they

are connected but not more than one simultaneously. In this

intensity net, the expressions of the handlers are equalities

and tokens p2, p3 and p4 are not forced to be active. Thus,

the tokens of such places can either be inactive or active

p1 4p2

t2

t3
t4

6 p3 p4

t1

(a)

p1 4p2

v2
t2

v3

t3

v4
t4

6 p3 p4

v1

t1

(b)

p1

4p2
s2

t2 s1

t3

t4

6 p3 p4
t1

x

y
zr1

r3
r4

s1:r1=min(y, z); r3=1.5·min(x, y); r4=x

(c)

p1

4p2
s2

t2
s3:r=1.5·x=1.5·y

s1:r=z=f

s4

t3

t4

6

p3 p4

t1

x

y

z
f

r

r

(d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

time

0

1

2

3

4

5

6
λ[t1]

λ[t2]

λ[t3]

λ[t4]

(e)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
m[p1]

m[p2]

m[p4]

µP [p3]

µE[{p3, s3}]

(f)

Fig. 3: (a) CPN with l = (1.0 1.0 1.5 1.0); (b) Event net modeling the marking changes produced by the firing of transitions;

(c) Intensity net mimicking the speeds of transitions with guards; (d) Alternative intensity net without guards; Time evolution

of the intensities (e) and markings (f) of the FN composed of the event net in (b) and the intensity net in (d).

in any of their intensity edges. Notice that the equalities of

the handlers forces an exact synchronization of tokens (or

resources) to produce intensities in the transitions. The actual

amounts of active and inactive tokens will be determined by

the solution of the optimization problem, which is now linear,

under consideration.

Assume that it is desired to maximize the average intensity

of t1, λ[t1] over a period of 1.5 time units. In order to

obtain a trajectory of the state variables over time for

such an optimization problem, intermediate states can be

considered [10]. Under this approach, the optimization period

is sampled in intervals in which the final state at the end of

one interval is forced to be equal to the initial state at the

beginning of the next interval. Figures 3(e) show the intensity

of the transitions over time when 60 intervals of length

0.025 time units are considered and the linear programming

6

p1

6

p2

1 p3

1 p4

20 p5

20 p6

25

p7

25

p8

t1

t2

t3

t4

t5
20

20

(a)

6

p1

6

p2

20 p5

20 p6

25

p7

25

p8

v1

t1

v2

t2

v3

t3

v4

t4 v5

t5

s1

s4

s5

λ0[t3]=10

λ0[t2]=10

(b)

0 2 4 6 8 10 12 14

time

6

8

10

12

14

16

18

20 λ[t5]

(c)

0 2 4 6 8 10 12 14

time

4

6

8

10

12

14

16

18

20 m[p1]

m[p2]

m[p5]

m[p6]

(d)

Fig. 4: (a) CPN showing an oscillatory behavior with l = (1 10 10 20 1); (b) FN mimicking the behavior of the CPN

without self-loops; (c) Time trajectory of λ[t5] of the FN; (d) Time trajectory of the markings of p1, p2, p5, and p6.

problem resulting of maximizing λ[t1] with the associated

constraints [10] is solved.

Given that the initial marking of p4 is 0, the initial speed

of t1, λ[t1], is necessarily 0. Thus, in order to maximize the

objective function λ[t1], tokens must be carried as soon as

possible to p4 to enable t1. Notice that there are two ways to

move tokens from p2 to p4: either use t3 or t4. Given that,

in contrast to t1, the intensity produced in t3 by s3 is 1.5
times the number of active tokens in the edges, it is faster to

use t3 than t1 to move tokens to p4 (notice, however, than

in other to use t3, tokens in p3 are required). This way, λ[t4]
is 0 during the first 0.48 time units, see Fig. 3(e), and all

the tokens in p2 are active in {p2, s3} during this period. At

time instant 0.48, λ[t4] becomes positive and λ[t3] exhibits

a sharper decrease. Figure 3(f) shows the marking of p1, p2
and p4 at each of the 60 steps, the number of idle tokens in

p3, µP [p3], and the number of p3 that are active in {p3, s3},

µE [{p3, s3}]. Notice that during the first 0.48 time units there

are idle tokens in p3 and then all are active. The trajectories

of both Fig. 3(e) and (f) tend to a steady state at which λ[t1]
is maximum.

C. Self-loops and firing semantics

Figure 4(a) shows a CPN with l = (1 10 10 20 1) and

self-loops in places p1, p2, p3 and p4 (in addition to self-

loops, p1 and p2 also have t2 and t4 as output transitions

respectively). Recall that in a CPN, arcs model consumption

and production of tokens, and hence self-loops are required

to model the fact that a transition speed depends on the

marking of a place but, if the weights of the arcs are the

same, its firing produces no change in the marking of such

a place. The initial marking of p3 and p4, which will remain

equal to 1 over time, is low enough to ensure that the

speeds of t3 and t2 are always equal to l[t3]·m[p3]=10 and

l[t2]·m[p4]=10 respectively. Thus, the self-loops in p3 and

p4 are used exclusively to model a constant speed, or finite

server semantics, of transitions t3 and t2.

On the other hand, t1 has two input places, p2 and p7, such

that the marking of p2 is always (for this net structure, initial

marking and l) less than that of p7. Hence, the speed of t1 is

always constrained by p2 and is equal to l[t1]·m[p2]=m[p2].
Transition t4 also has two input places, p1 and p2, with equal

initial marking. In order to make the speed of t4 equal to p1,

and hence independent of p2, the arcs of the self-loop in p1
are given a high value, e.g. 20, and l[t4] is given the same

value, l[t4]=20, this way it holds that the speed of t4 is

l[t4]·m[p1]/20=m[p1].
Figure 4(b) shows an FN which mimics the behavior of

the CPN. Given that in FNs, the marking changes and the

production of intensities are modeled by two different nets,

the event and the intensity net, no self-loops are required

either to model constant speeds or to model the fact that

the speed of a transition depends on a place whose tokens

are not consumed by its firing. In the FN, λ0[t2] and λ0[t3]
model constant speeds of t2 and t3, and s1 and s4 state that

the speeds of t1 and t4 depend exclusively on p2 and p1
respectively, i.e. λ[t1]=m[p2] and λ[t4]=m[p1].

The synchronization in t5 is modeled by s5 which just

establishes that the speed of t5 is equal to the number of

active tokens in {p5, s5} which has to be equal to the number

of active tokens in {p6, s5} (notice that the tokens in p5
and p6 are not forced to be active). By using an objective

function that maximizes λ[t5], it is ensured that at each

time instant all the tokens of either p5 or p6 are active

and equal to λ[t5]. In this way, it is possible to model a

synchronization without guards (and hence without binary

variables), thus reducing significantly the CPU time required

to obtain a time trajectory. The trajectories of λ[t5] and the

marking of places over time are shown in Figs. 4(c) and (d)

respectively. These trajectories are obtained by applying a

model predictive control approach [10] in which the length

of the control horizon was 0.025 time units.

The numerical results and trajectories in this section were

obtained by the fnyzer tool [15] (executed on a desktop

computer Intel i7, 2.00 GHz, 8 GiB, Ubuntu 20.04 LTS)

which solves the programming problems [10] associated with

the FNs. The CPU time to optimize each steady state in

Subsection V-A was below 0.05s both with guards, intensity

net in Fig. 2(c), and without guards, intensity net in Fig. 2(d).

The CPU time to solve the overall optimization problem in

Subsection V-B, intensity net Fig. 3(d), was 1.19 seconds.

The CPU time to solve the optimization problem at each step

of the model predictive control of the FN in SubsectionV-C,

FN in Fig. 4(b), was 0.0744 seconds.

VI. CONCLUSIONS

FNs is a recent modeling formalism for dynamic systems

which offers a number of modeling and analysis possibil-

ities. An FN combines an event net, which captures the

relationship between processes and marking changes, and

an intensity net, which models the relationship between the

marking and the speed of the processes. The vertices of these

nets are transitions, places and handlers. Linear inequalities

can be associated with handlers to account for the mentioned

relationships. Handlers, together with the associated inequal-

ities, can be exploited to model different server semantics,

resource allocation strategies and uncertainties.

Nonlinear dynamics can also be modeled in FNs by means

of guards. In a guarded net, an intensity handler can be

associated with several sets of linear inequalities. The set

of linear inequalities that rules the net dynamics at given

time instant is determined by the current marking. Guards

open the door to accommodate dynamics that are much more

general than the min operator of CPNs.

The current analysis methods of FNs rely on the solution

of programming problems that encode necessary reachability

conditions together with an objective function. Such prob-

lems can be used to analyze both the transient and the

steady state of the system. Among other possibilities, the use

of appropriate objective functions allows simulation of the

time evolution of a system with synchronizations just with

linear inequalities, and the optimization of the allocation of

resources in a system over time.
REFERENCES

[1] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Procs.

of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.
[2] W. M. P. van der Aalst and C. Stahl, Modeling Business Processes: A

Petri Net-Oriented Approach. Information Systems, Cambridge, MA:
MIT Press, 2011.

[3] I. Koch, W. Reisig, and F. Schreiber, Modeling in Systems Biology.

The Petri Net Approach. Springer-Verlag London, 2011.
[4] J. Clempner, “Modeling shortest path games with Petri nets: A

Lyapunov based theory,” International Journal of Applied Mathematics

and Computer Science, vol. 16(3), pp. 387–397, 01 2006.
[5] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets.

Berlin: Springer, 2005. (2nd edition, 2010).
[6] L. Recalde and M. Silva, “PN Fluidification revisited: Semantics

and Steady state,” in ADPM 2000: 4th International Conference on

Automation of Mixed Processes: Hybrid Dynamic Systems, pp. 279–
286, 2000.

[7] C. Mahulea, L. Recalde, and M. Silva, “Basic Server Semantics and
Performance Monotonicity of Continuous Petri Nets,” Discrete Event

Dynamic Systems, vol. 19, p. 212, 06/2009 2009.
[8] J. A. Fraustro-Valdez, J. Ruiz-León, C. R. Vázquez, and A. Ramı́rez-

Treviño, “Structural fault diagnosis in Timed Continuous Petri Nets,”
in 13th International Workshop on Discrete Event Systems, WODES

2016, pp. 159–164, IEEE, 2016.
[9] M. Taleb, E. Leclercq, and D. Lefebvre, “Model Predictive Control

for Discrete and Continuous Timed Petri Nets,” International Journal

of Automation and Computing, vol. 15, no. 1, pp. 25–38, 2018.
[10] J. Júlvez, D. Dikicioglu, and S. G. Oliver, “Handling variability and

incompleteness of biological data by flexible nets: a case study for
Wilson disease,” npj Systems Biology and Applications, vol. 4, p. 7,
1 2018.

[11] J. Júlvez and S. G. Oliver, “Steady State Analysis of Flexible Nets,”
IEEE Transactions on Automatic Control, pp. 1–1, 2019.

[12] M. Silva and L. Recalde, “Petri nets and integrality relaxations: A
view of continuous Petri net models,” IEEE Trans. on Systems, Man,

and Cybernetics, vol. 32, no. 4, pp. 314–327, 2002.
[13] F. Balduzzi, A. Giua, and G. Menga, “First-order hybrid Petri nets: a

model for optimization and control,” IEEE Transactions on Robotics

and Automation, vol. 16, no. 4, pp. 382–399, 2000.
[14] J. Júlvez, L. Recalde, and M. Silva, “Steady state performance

evaluation of continuous mono-T-semiflow Petri nets,” Automatica,
vol. 41, pp. 605–616, May 2005.

[15] J. Júlvez and S. G. Oliver, “fnyzer: A Python Package for the Analysis
of Flexible Nets,” in 18th International Conference on Computational

Methods in Systems Biology, vol. 12314 of Lecture Notes in Computer

Science, pp. 349–355, Springer, 2020.

