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Abstract

Current research on systems and synthetic biology relies heavily on mathematical models of the systems under study.
The usefulness of such models depends on the quantity and quality of biological data, and on the availability of appropriate
modelling formalisms that can gather and accommodate such data so that they can be exploited properly. Given our incomplete
knowledge of biological systems and the fact that they consist of many subsystems, biological data are usually uncertain
and heterogenous. These facts hinder the use of mathematical models and computational methods. In the scope of dynamic
biological systems, e.g. metabolic networks, this difficulty can be overcome by the novel modelling formalism of Flexible Nets
(FNs). We show that an FN can combine, in a natural way, a stoichiometric model and a kinetic model. Moreover, the resulting
net admits nonlinear dynamics and can be analysed in both transient and steady states.
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1 Background

Mathematical models play a crucial role in the study and
understanding of biological systems. They may be used
to efficiently predict system behaviour, to reason about
system properties, to elaborate (or exclude) hypothe-
ses, to speed up the design of experiments and, as an
unambiguous language, to exchange data among prac-
titioners. As an increasing amount of biological data is
available, mathematical models must be able to accom-
modate such data and the computational methods asso-
ciated with them must be robust enough to account for
any possible missing information. Given that biological
systems are composed of many connected subsystems,
existing biological data are heterogeneous and refer to
the particular subsystem(s) being studied. This often
leads to the adoption of several modelling formalisms [1]
for the study of a single system, each of these formalisms
being used to model a particular subsystem.
Some of the most popular modelling formalisms for bi-
ological systems are: Boolean networks [2,3], which are
networks of Boolean variables that are mainly used to
model gene regulatory networks [2] and signalling path-
ways [4]; Bayesian networks [5,6], which are a particu-
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lar type of probabilistic graph that can model gene reg-
ulation [7] and signalling networks [8]; Petri nets [9],
which are bipartite graphs that have been mainly used to
model metabolic and gene regulatory networks [10,11];
constraint-based models [12,13] are popular for their ease
to include flux bounds on the reactions of largemetabolic
networks, e.g. on the exchange reactions that model the
feed of nutrients; differential equations are a classical and
powerful formalism to model the dynamics of systems
whose parameters are known with precision [14,15]. A
comprehensive review of modelling formalism in systems
biology can be found in [1].
The use of several of these modelling formalisms to
model the different parts of a system hampers the analy-
sis tasks as they are usually difficult to connect and they
might not share computational methods. Moreover, the
resulting model tends to provide a less clear view of the
overall system. Thus, there is a need for general mod-
elling formalisms that can integrate, in a natural way,
the available biological data of subsystems in a unified
model. We propose here Flexible Nets (FNs) as an ap-
propriate modelling formalism that subsumes the mod-
elling capabilities of both constraint-based models and
differential equations. As a proof of concept, it will be
shown how the stoichiometric model of a metabolic net-
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work, modelled by a constraint-based model, and the ki-
netics of a bioreactor, modelled by differential equations,
are combined in a single model by FNs.
FNs were defined in [16] and are inspired by Petri
nets [9,17]. However, in contrast to Petri nets which are
bipartite graphs, an FN consists of two connected sub-
nets, an event net and an intensity net, each of which is
a tripartite graph. The three vertices of these nets are
places, transitions, and handlers. While the event net ac-
counts for the stoichiometry of the system, the intensity
net models the kinetics of the reactions. Handlers repre-
sent an intermediate layer between places (which model
metabolites) and transitions (which model reactions),
and capture the way in which the occurrence of a re-
action modifies the concentration of metabolites (event
handler), and the way in which the concentration of
metabolites modulates the reaction rates (intensity han-
dler). Uncertain parameters can be incorporated easily
in an FN by associating inequalities to handlers. Among
other possibilities, handlers facilitate the modelling of
partially observable systems, constrained control actions
and resource allocation [18]. Moreover, it will be shown
that the association of several sets of inequalities with
intensity handlers allows the modelling of reactions with
nonlinear rates. This leads to a powerful modelling for-
malism able to handle uncertain parameters and nonlin-
ear dynamics.
In addition to their modelling features, FNs are equipped
with computational methods to analyse both the tran-
sient and steady states of the modelled system. In order
to account for the uncertainties in the FN, sets of math-
ematical constraints that are necessarily satisfied by the
state variables are derived. These sets of constraints, to-
gether with an objective function, are the basis of the
computational methods to bound all the potential be-
haviours of the system.

2 Methodology

This section introduces the modelling formalism of Flex-
ible Nets (FNs) and presents its main features through
examples. The focus is on systems that can be described
as networks of reactions, e.g. metabolic networks, sig-
nalling networks, gene regulatory networks, etc. It will
be shown that FNs are particularly useful to model sys-
tems with partially unknown data. More precisely, one
of the main strengths of FNs is that they are able to
integrate seamlessly in a single model all the available
data about the system as well as to accommodate the
existing parameter uncertainties.
We will first describe how the stoichiometry of reactions
can be modelled, and then how the reaction kinetics can
be incorporated into the model.

2.1 Modelling the stoichiometry

FNs is a modelling formalism that provides an intuitive
graphical representation of the modelled system. The
system is represented graphically as a net in which the
vertices are connected by edges. There are three different
types of vertices: places (which are represented as cir-

cles), transitions (which are represented as rectangles)
and handlers (which are represented as dots). The edges
can be directed and undirected. For simplicity, directed
edges are referred as arcs, and undirected edges as edges.
In an FN, places model the chemical species (or metabo-
lites) of the system, and transitions model the rates of
the reactions of the system. FNs account for the follow-
ing relationships between places, i.e. chemical species,
and transitions, i.e. reaction rates:
(1) The occurrence of a reaction modifies the concen-

tration (or copy number) of the chemical species.
(2) The concentration of the chemical species deter-

mines the rate of reactions.
These two relationships are modelled by handlers: event
handlers model the stoichiometry, i.e. the concentration
changes due to the occurrence of reactions; intensity han-
dlers model the way in which concentrations determine
the rate of reactions.

6A 9 B

C D

v : b=2a; c=a; d=10a

a
b

c
d

Fig. 1. FN modelling the stoichiometry of the reaction
R : A+ 2B → C + 10D.

Consider the reaction R : A + 2B → C + 10D which
has two reactants, A and B, two products C andD, and
is not reversible. Reaction R is modelled by the FN in
Fig. 1 which has 4 places, 4 arcs, and one event handler.
Each place is associated with a chemical species and the
reaction itself is modelled by the event handler v. An
arc from a place to v means that the place is a reac-
tant, and an arc from v to a place means that the place
is a product. Each arc has a label that is used in a set
of equations associated with the handler to determine
the stoichiometry of the reaction. For the sake of gen-
erality, we will not refer to particular concentration or
copy number units here (e.g. mmol, molecules) and will
just use the term “units” to refer to amounts of chemi-
cal species. In this particular case, the equations b = 2a;
c = a; d = 10a mean that when R occurs two units of B
are consumed for each unit of A that is consumed (i.e.
B decreases twice as much as A), one unit of C is pro-
duced for each unit of A that is consumed, and 10 units
of D are produced for each unit of A that is consumed.
The concentration of a chemical species can be repre-
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sented by a number located in the place associated with
the species. In the Flexible (and Petri) nets jargon such
a number is called marking and it is denoted by m, i.e.
m[A] = 6 and m[B] = 9 in Fig. 1 mean that the con-
centrations of A and B are 6 and 9 units, respectively.
Initial concentrations are denoted bym0. Uncertain con-
centrations can be modelled by means of inequalities
assciated with the FN. For example, the inequalities
5 ≤ m0[A] ≤ 8 and m0[B] = 2m0[A] would model that
the initial concentration of A is unknown but lies in the
interval [5, 8] and that the initial concentration of B is
twice as much as the concentration of A.
Uncertain stoichiometric weights can be easily modelled
by associating a set of inequalities (instead of equali-
ties) to event handlers. For instance, the association of
b = 2a; c = a; 9a ≤ d ≤ 11a with v in Fig. 1 models
a reaction with uncertain stoichiometry, R : A+ 2B →
C + nD, where n is uncertain, but known to be in the
interval [9, 11], i.e. for each unit of A that is consumed
between 9 and 11 units of D are produced (the partic-
ular number of units produced is unknown). This fea-
ture of FNs is particularly useful to model the assembly
or degradation of large macromolecules with uncertain
numbers of components.
In the FNs presented so far, the reaction rates (or
fluxes) are not specified and could be any nonnegative
value (including 0 and ∞). Stoichiometric models of
metabolic networks sometimes include numerical infor-
mation about the fluxes of their reactions. This infor-
mation, which usually refers to lower and upper flux
bounds, i.e. the miminum and maximum values of the
flux of transitions, can be incorporated into an FN by
means of a transition connected to the handlers mod-
elling the reactions.
In an FN, each transition t is assigned a default intensity
(or speed), which is denoted λ0[t]. This intensity can be
used to produce reaction rates on the event handlers con-
nected to t. For instance, assume that in the FN in Fig. 2
the default intensity of R is λ0[R] = 2 and the equations
associated with v are v : x=a; b=2a; c=a; d=10a. This
implies that the flux of the reaction is equal to 2 which is
the value assigned to the label x of the edge connecting
R and v (2 is also the rate at which A is consumed).
Similarly to the initial marking of places, default inten-
sities can be bounded by a set of linear inequalities if
their precise value is unknown. Let us associate the in-
equalities 1 ≤ λ0[R] ≤ 4, then the default intensity of R
can be any value in the interval [1, 4], i.e. the lower flux
bound of R is 1 and its upper flux bound is 4.
A reaction in a stoichiometric model is reversible if its
net flux can be positive or negative, i.e. reactants can be
produced and consumed. This is expressed with a neg-
ative lower bound and a positive upper bound. Given
that default intensities cannot be negative, reversible re-
actions are modelled in FNs by two non-reversible reac-
tions, a forward reaction and a backward reaction, such
that the forward reaction models consumption of reac-
tants and the backward reaction models production of

A B

C D

v : x=a; b=2a; c=a; d=10aR

a
b

c
d

x

Fig. 2. Reaction R : A + 2B → C + 10D with flux bounds
modelled by λ0[R], e.g. 1 ≤ λ0[R] ≤ 4.

reactants. The lower bounds of both reactions are set to
0, the upper bound of the forward reaction is equal to
the upper bound of the reversible reaction, and the up-
per bound of the backward reaction is equal to minus
the lower bound of the reversible reaction.
Consider the reversible reaction R : A+2B ↔ C +10D
with flux bounds [−2, 8]. The FN in Fig. 3 models such a
reversible reaction by setting 0≤λ0[Rf ]≤8, 0≤λ0[Rb]≤2
and by associating the same set of equalities with
both handlers vf and vb, i.e. vf :x=a; b=2a; c=a; d=10a
vb:x=a; b=2a; c=a; d=10a.

A B

C D

vf vbRf Rb

a b

c d

x

a b

c d

x

Fig. 3. FN modelling the reversible reaction
R : A+ 2B ↔ C + 10D.

2.2 Modelling the kinetics

In the modelling examples presented above, the rate
of the reactions is independent of the metabolite con-
centrations. This is usually the case for stoichiometric
models in which the stoichiometry of reactions together
with some steady state flux bounds are specified. How-
ever, more detailed kinetic information might be avail-
able for some organisms/systems that should be incor-
porated into the model in order to increase its accuracy
and modelling power. Such kinetic information can be
accommodated in FNs by means of intensity handlers.
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Fig. 4. (a) FN modelling a reaction R : A → B with rate equal to five times the concentration of A; (b) Trajectory of the
concentrations of places A and B; (c) Maximum and minimum trajectories of the concentration of place A when 4a ≤ r ≤ 6a
is associated with s.

Consider the reaction R : A → B with rate equal to five
times the concentration ofA. Such a reaction is modelled
by the FN in Fig. 4(a). As in the previous section, the
stoichiometry of the reaction is modelled by the places
A and B, by the event handler v, by the arcs (A, v) and
(v,B), and by the edge {R, v}. These elements compose
the so-called event net. Note that the labels of (A, v),
(v,B), and {R, v} have been omitted for the sake of
clarity.When the labels are ommitted, it is assumed that
all the labels are made equal by the equations associated
with the handler (v in this case), e.g. if the name of
the labels of (A, v), (v,B) and {R, v} were a, b and x
respectively, then the equations associated with v are
a = b and a = x (i.e. if the reaction occurs once, then one
unit of A is consumed and one unit of B is produced).
The rate of the reaction is equal to the intensity of the
transition R, which is denoted λ[R], associated with it.
If no arc is connected to the transition, then its intensity
is equal to its default intensity, i.e. λ[R] = λ0[R]. The
intensity of a transition can be increased by incoming
arcs that originate in an intensity handler (conversely, it
can be decreased by outgoing arcs to an intensity han-
dler). The FN in Fig. 4(a) has one intensity handler s
connected to place A and transition R. The edge {A, s}
means that the concentration in A is used to produce
intensity, and the arc (s,R) together with the equation
r = 5a of s means that the intensity produced in R
is five times the concentration of A. The places, tran-
sitions and elements in blue in Fig. 4(a) compose the
so-called intensity net that determines the rates of re-
actions. Although, event and intensity handlers can be
distinguished graphically by their arcs and edges (event
handlers are connected to places by arcs and to transi-
tions by edges; intensity handlers are connected to places
by edges and to transitions by arcs), in order to make the
presentation clearer, arcs and edges connected to event
handlers will be depicted in black, and arcs and edges
connected to intensity handlers will be depicted in blue.

Figure 4(b) shows the time trajectory of the concentra-
tion of places A and B assuming that the initial con-
centrations of A and B are 10 and 0, respectively. Sim-
ilarly to uncertain stoichoimetric weights modelled by
the event net, inequalities can be associated with in-
tensity handlers in order to model uncertain reaction
rates. Assume that the reaction rate of R is uncertain
but known to be in the interval [4a, 6a] where a is the
concentration of A. This can be modelled by associat-
ing the inequality 4a ≤ r ≤ 6a with s. This leads to
a spectrum of potential time evolutions of the system.
Although such a system becomes nondeterministic, its
behaviour can still be analysed by computing bounds of
the potential time trajectories. The dotted trajectory in
blue(red) in Fig. 4(c) corresponds to the upper bound or
maximum(lower bound or minimum) of all the potential
trajectories that satisfy the constraint that the reaction
rate is in the interval [4a, 6a] (the black line is the de-
terministic trajectory when the rate is 5a). Thus, FNs
make it possible to constrain the potential trajectories
of a system with uncertain reaction rates.
An appealing modelling feature of FNs is the ease with
which they model complex regulatory networks in which
two or more enzymes must act at the same time to modu-
late the rates of reactions. The FN in Fig. 5 models three
reactions R1 : A → B, R2 : C → D and R3 : E → F
that are regulated by enzymes X , Y and Z. Notice that
while A, B, C, D, E and F have incoming and outgoing
arcs, i.e. they are consumed and produced, X , Y and Z
are only connected by edges to intensity handlers, i.e.
their concentrations are always constant and are used to
produce intensities. Given that place X has two edges,
its concentration can be used either to produce intensity
in R1 through s1 or in R2 through s2. Thus, the concen-
tration of X is divided into two parts, one of them pro-
duces intensity in R1 and the other in R2. Similarly, Y
can produce intensity in R1 and R3, and Z can increase
the intensity of R2 and decrease the intensity of R3 (the
decrease is modelled by the arc (R3, s5)).
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Fig. 5. FN modelling three reactions catalysed by enzymes.

More precisely, the rate of R1 is equal to the concen-
tration of X applied on s1 plus the concentration of Y
applied on s3 (thus the rate is the sum of the applied
concentrations). Reaction R2 has only one incoming arc
with intensity equal to the concentration of X applied
on s2 and equal to the concentration of Z applied on s2.
This implies that X and Z need to act at the same time,
for instance by forming a compound, in equal amounts,
e.g. α in order to produce an intensity α in R2. Finally,
the rate of R3 is equal to the concentration of Y applied
on s4 minus the concentration of Z applied on s5 (in this
case, Y can be seen as an enhancer and Z as a repres-
sor). Notice that the resulting FN provides an intuitive
graphical representation in which the regulation, i.e. the
intensity net composed of X , Y and Z, is clearly sepa-
rated from the production and consumption part of the
system, i.e. the event net composed of A, B, C, D, E
and F .
In the FNs presented so far the rate of reactions is ei-
ther constant or proportional to the concentration of
metabolites, i.e. there is a linear relationship between
rates and concentrations. This kind of relationship is not
enough to model many of the complex and nonlinear re-
action rates in biological systems. In order to account for
such nonlinearities, FNs offer the possibility of analysing
piecewise linear functions with intensity handlers.
The FN in Fig. 6 models three reactions:
• R1 : ∅ → A
• R2 : A → ∅
• R3 : ∅ → B

such that the rate of R1 is constant and equal to 2 (this
is modelled by λ0[R1] = 2), the rate of R2 is equal to
the concentration of A (this is modelled by the equation
r = a in s1) and the rate ofR3 depends piecewise linearly
on A. More precisely, the equations “t = 0 if a < 1”
and “t = a otherwise” in s1 imply that the rate of R3 is
0 if the concentration of A is less than or equal to 1.0,

and equal to the concentration of A if it is greater than
1.0, i.e. this FN models the activation of the reaction R3

when the concentration of A is sufficientely high.

A

v1

R1

λ0[R1] = 2

v2

s1

s1: r=a; t=

{

0 if a ≤ 1.0

a otherwise

a

R2

r

R3

t v3

B

Fig. 6. Reaction R3 is activated when the concentration of
A is greater than 1.0.
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m[B]

Fig. 7. Trajectories of the concentrations of places A and B
of the FN in Fig. 6.

5



Figure 7 shows the time trajectories of the concentra-
tions of A and B assuming that their initial value is 0.
While the concentration of A tends asymptotically to
2.0, the rate of R3, and hence the concentration of B, is
constant and equal to 0 until A crosses the threshold of
1.0. From that time instant on, the rate of R3 is equal
to the concentration of A, and B increases.
The association of piecewise linear functions with in-
tensity handlers can be used to approximate genuinely
nonlinear reaction rates. The FN in Fig. 8(a) shows a
reaction R : A → ∅ with a rate that follows a particu-

lar Hill equation θ = [L]n

Kd+[L]n with Kd = 1 and n = 3;

see the equation associated with the intensity handler s.
The analysis methods of FNs rely on the solution of the
mixed-integer linear programming problems that are de-
rived from the models. Such a derivation is only possible
if the equations associated with the intensity handlers
are piecewise linear. Thus, the Hill equation, which is
shown in Fig. 8(b), cannot be handled directly by the
analysis methods of FNs. In order to analyse the FN in
Fig. 8(a), the Hill equation must be approximated by a
piecewise linear function. A possible piecewise linear ap-
proximation of such an equation is shown in Fig. 8(c).
The computed approximation partitions the state space
of the concentration of A in 7 regions and associates a
linear function with each region. The equations that ap-
proximate the Hill function, and that are associated with
s, are:

s: r=











































0.039a if a < 0.2

−0.051 + 0.270a if 0.2 ≤ a < 0.4125

−0.194 + 0.617a if 0.4125 ≤ a < 0.625

−0.310 + 0.810a if 0.625 ≤ a < 1.05

−0.009 + 0.530a if 1.05 ≤ a < 1.475

+0.388 + 0.258a if 1.475 ≤ a < 1.9

+0.783 + 0.058a otherwise

Notice that the density of regions is higher in those in-
tervals in which the rate has more variability. The result-
ing time trajectory of the concentration of A together
with the regions it visits are shown in Figure 8(d). It
should be noticed that the partition of the state space
in regions can be performed automatically (e.g. with the
fnyzer Python package [19]) in order to minimize the
error of the piecewise linear approximation to the non-
linear function.

2.3 Model integration

FNs are particularly useful for integrating the known in-
formation about the kinetics of the reactions of a system
into a single net model. This information can be either
none (i.e. nothing is known about the reaction rate), or
partially known (i.e. there is some uncertainty in the pa-
rameters that define the rate) or completely known (i.e.
there is a well-known equation with accurate parameters
defining the reaction rate). An example of such integra-
tion in a single model is shown in Fig. 9 which models

Reaction Modelled by

R1 : ∅ → A v1

R2 : ∅ → B v2

R3 : A → C v3

R4 : 2A+B → D v4

R5 : C → ∅ v5

R6 : D → ∅ v6 and s1
Table 1
Reactions modelled by the FN in Fig. 9.

the system of reactions listed in Table 1.
The following information for the reaction rates is as-
sumed:
• The rates of R3, R4 and R5 are completely unknown.
Hence, these reactions are modelled just by the event
handlers v3, v4 and v5 which are connected through
arcs to the places that model reactants and products.
Event handlers v3 and v5 have no explicit equations
associated with them (and their arcs have no labels),
thus, this implies that all the stoichiometric weights
of reactions R3 and R4 are equal to 1. On the other
hand, the equations a = 2b and d = b associated with
v4 imply that two units of A are consumed per each
unit of B, and that one unit ofD is produced per each
unit of B that is consumed.

• The rate of R2 is uncertain and known to be in the
interval [2, 4]. This is modelled by the inequalities
2 ≤ λ0[t2] ≤ 4 associated with transition t2.

• The rates of R1 and R6 are completely known. The
rate of R1 is equal to 6 which is modelled by the equa-
tion λ0[t1] = 6 associated with t1. The rate of R6 is
equal to the concentration (or marking) of D which
is modelled by the intensity handler s1 and the edge
and arc connecting it to D and t3.

Given that the described system of reactions contains
uncertain dynamics, its analysis should consider all the
potential time evolutions that are consistent with the
known information. The computational methods in [16]
and [20] develop a set of mathematical inequalities (or
constraints) that the state (i.e. concentrations, rates,
etc.) of the FN must satisfy over time and in the steady
state, respectively. Such constraints can be interpreted
as necessary reachability conditions and account for all
the potential states that the FN can reach. These sets of
constraints can be combined with an objective function
in order to study the behaviour of the system by solv-
ing the associated programming problems. That is, the
computational methods developed for FNs can analyse
nondeterministic models.
As an example of the analysis capabilities in FNs, let
us compute concentration bounds of D in Fig. 9 in the
long run, i.e. in the steady state. A steady state lower
bound ofD can be obtained by associating the objective
function min m[D], where m[D] denotes the average
steady state concentration of D, with the constraints
described in [20]. The obtained lower bound is 2.0; with
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Fig. 8. (a) FN modelling a reaction R with rate following a Hill equation; (b) Hill equation; (c) Piecewise linear approximation;
(d) Trajectory of the concentration of A.
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Fig. 9. Integration of reactions with and without dynamic
information.

such a concentration, the rate of R6 is 2.0, i.e. in the
steady state, the flux coming into (production rate) D
and going out of (consumption rate)D is 2.0. Given that
v4 establishes that B is consumed at the same rate at
which D is produced, the rate of R4 is necessarily 2.0
and therefore the rate of R2 is also 2.0 (which is in the
range [2, 4] established by 2 ≤ λ0[t2] ≤ 4). A rate 2.0 of
R4 implies that R4 consumes A at a rate 4.0 and hence,
given that A is produced by R1 at rate 6.0, it must be
consumed by R3 at rate 2.0. In the steady state, the
production and consumption rate of C is also 2.0.
The solution of the programming problem associated
with the FN and the objective function set does not only
provide a lower bound ofD, but also the state of the FN
that achieves that value, i.e. all the mentioned values,
which are reported in Table 2 (row “Lower bound”), are
given by the solution of the programming problem.
Similarly, an upper bound of D can be computed by
considering the objective function max m[D]. For such
a function, the obtained upper bound is 3.0, the rate of
R6, the flux through B, and the rate of R2 is also 3.0.
This implies that A is consumed by R4 at the same rate

at which it is produced by R1, and hence the rate of R3

and the flux through C is also 0.0. The obtained reaction
rates are reported in Table 2 (row “Upper bound”).

3 Results

The ability of FNs to integrate stoichiometric and kinetic
models in a single net is exploited in this section to model
and analyse a continuous cell culture that takes place in
a bioreactor [21]. The considered stoichiometric model
is a simplified metabolic network of mammalian HeLa
cells [22], and the kinetic model is given by the differen-
tial equations that determine the evolution of the main
bioreactor variables [23]. Figure 10 sketches the layout
of the system which is composed of three main parts: a
reservoir that contains a sterile growth medium that is
fed into the bioreactor; a bioreactor (or tank) which is
assumed to be well-mixed and that contains the cell cul-
ture; and an effluent that discharges the excess volume
of the bioreactor.

Reservoir Tank Effluent

medium

cell culture

Fig. 10. Sketch of a continuous cell culture in a bioreactor.

The overall system was introduced in [23] where a
method similar to Dynamic Flux Balance Analysis
(DFBA) [24] was used to determine the potential steady
states of the system. We show here that the differen-
tial equations associated with the bioreactor and the
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Objective function m[D] R1 R2 R3 R4 R5 R6

Lower bound min m[D] 2.0 6.0 2.0 2.0 2.0 2.0 2.0

Upper bound max m[D] 3.0 6.0 3.0 0.0 3.0 0.0 3.0

Table 2
Steady state lower and upper bounds of the concentration of D (m[D]) and reaction rates of the FN in Fig. 9.

constraint-based model of the metabolic network of the
cells in the culture can be accommodated in a single FN
which represents graphically the system structure and
that offers appealing analysis possibilities.

3.1 System description

We will first describe the bioreactor variables (these can
be seen asmacroscopic variables) and then themetabolic
network of the cells.
Bioreactor: The differential equation that defines the
evolution of the cell density in the tank is:

dX

dt
= (µ− φD)X (1)

where X is the cell density in the tank (gDW L−1), µ is
the effective cell growth rate (h−1), φ is a unitless bleed-
ing coefficient accounting for the fraction of cells that
escape from the tank through a cell-retention device [25]
and D is the dilution rate (h−1). It should be stressed
that the employment of the cell retention device means
that the relationship between cell density and dilution
rate will not follow classical chemostat kinetics [26].
The evolution of the concentration of metabolites in the
culture is given by:

dsi
dt

= (ci − si)D − uiX (2)

where ci is the concentration of metabolite i in the
medium (mM), si is the concentration of metabolite i
in the culture (mM) and ui is the specific uptake rate of
metabolite i (mmol gDW−1 h−1). Notice that if ui > 0
the metabolite is consumed by the cell and if ui < 0 the
metabolite is excreted from the cell.
Metabolic network: While the values of D, si and φ
can be controlled when setting up the system, the values
of µ, ui and in turn si will depend on the particular cell
line being cultured and, in particular, on its metabolic
network. The focus here is on a reduced metabolic net-
work of HeLa cells which is modelled by the FN in Fig. 11
and that exemplifies some of the main features of FNs.
The places in the FN model the four metabolites that
are taken into account: S is the primary nutrient, P is
an intermediate, E is the energetic currency, and W is a
waste product. The consumption of S from the medium
by the cell is modelled by the arc going from the event
handler vu to the place S. It should be noted that the
direction of the arc (vu, S) imposes consumption of the
metabolite, i.e. the consumption rate will be us ≥ 0, if
a metabolite can be both consumed and excreted, then

vu

S

vF :

{

w=p

e=pNF

e

e

E

ve te

λ0[te]=e

w

v

vw

W

vR:e=pNR; p=v
tR

λ0[tR]≤rmax
p p

P

vs

Fig. 11. FN modelling a simplified metabolic network of a
HeLa cell.

Reaction Modelled by

Ru : ∅ → S vu

Rs : S → P vs

RF : P → NFE +W vF

RR : P → NRE vR

Re : E → ∅ ve

Rw : W → ∅ vw
Table 3
Reactions of the metabolic network in Fig. 11.

a reversible reaction should be used; see Fig. 3. The nu-
trient S is processed into P , see arcs (S, vs) and (vs, P ).
The intermediate P can undergo either fermentation,
modelled by vF , or respiration, modelled by vR. These
alternative paths are modelled by the arcs (P, vF ) and
(P, vR) respectively. On the one hand, fermentation pro-
duces NF units of energy , see arc (vF , E), and one unit
of waste product, see arc (vF ,W ). On the other hand,
respiration producesNR units of energy, see arc (vR, E).
The values of NF and NR [27] are reported in Table 5.
The energy consumption of the cell E is modelled by
the arc (E, ve), and the excretion of the waste product
W from the cell is modelled by the arc (W, vw). This
way, the list of the reactions of the described metabolic
network are reported in Table 3.
The information provided so far about the metabolic
network refers exclusively to its stoichiometry, i.e. only
arcs have been discussed and no kinetic parameter has
been introduced. Thus, under the current description,
the reactions can proceed at any rate. Let us constrain
the rate of reactionsRe andRR. It will be assumed that a
constant energetic demand is required by the cell [28,29],
this is modelled by transition te, by the edge {te, ve}, and
by the default intensity λ0[te]=e associated with te. On
the other hand, reactionRR has an important enzymatic
cost [30] and hence its rate must be bounded. This can
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be achieved by associating the inequality λ0[tR]≤rmax

with reaction tR which is connected through an arc to
event handler vR.
It should be noted that, although the rates (or fluxes)
of Re and RR have been constrained, the FN that mod-
els the metabolic network is exclusively an event net,
i.e. there are no intensity handlers and hence the reac-
tion rates do not depend on the concentrations of the
metabolites. This is usually the case for most genome-
scale metabolic networks in the literature.

3.2 Model integration

The integration of the discussed metabolic network with
the equations (1) and (2) that describe the dynamics of
the bioreactor variables requires an interface that relates
the variables of both models. Let us first describe how
equations (1) and (2) can be modelled in terms of FNs.
In order to do so, we will consider the three parts of the
bioreactor - reservoir, tank, and effluent - separately; see
Fig. 10. The resulting FN that integrates the bioreactor
variables and the metabolic network is shown in Fig. 12.
The model for the reservoir (see compartment reservoir
in Fig. 12) just needs to account for a flux of nutrient S
going into the tank. Such a flux is equal to the dilution
rate D times the concentration c of the nutrient S in
the medium. This is modelled by the default intensity
λ0[tsin]=Dc associatedwith transition tsin and the event
handler vsin that feeds the place Stank.
The variables that describe the state of the tank are the
nutrient concentration, the cell density, and the waste
product concentration; these are modelled by places
Stank, X and Wtank respectively. While the dynamics of
X is ruled by (1), the dynamics of both Stank andWtank

are determined by (2).
With respect to S, equation (2) establishes that S has
one input flux equal toDc from the reservoir (previously
discussed) and two output fluxes: 1) a flux equal to uX ,
where u is the consumption rate of the cells, that goes
into the cells, i.e. is consumed by the cells, and; 2) a flux
equal to Ds, where D is the dilution rate and s is the
concentration of the nutrient S in the tank, which leaves
the tank as effluent without being consumed by the cells.
These two fluxes are modelled by the arcs (Stank, vut)
and (Stank, vsout). The fact that the flux leaving the tank
is proportional to the concentration of S is modelled by
the intensity handler ssout which is associated with the
equation ssout:r=Ds. The flux going into biomass must
be linked to the fluxes of the metabolic network and is
discussed below.
Given that there is no waste product in the medium,
equation (2) just establishes one input flux and one out-
put flux for the waste product W in the tank. The out-
put flux is similar to that of S and it is proportional to
the concentration of W in the tank. This is modelled by
the intensity handler swout and the equation r=Dw as-
sociated with it.
With respect to the cell density X , equation (1) states
that it has one input flux and one output flux. The out-

put flux follows a similar pattern to those of S and W
and is equal to φDx.
The interface (or link) between the tank variables and
the metabolic network is achieved by means of the inte-
sity handlers su, sr and sw that connect the compart-
ments Tank and Cell in Fig. 12. These handlers relate
the fluxes of the macroscopic variables with the exchange
fluxes of the cells as follows: each macroscopic flux is
equal to X times the exchange flux of the cell, where X
is the cell density in the tank. This is modelled by the
equations ut = uX , tt = rX and wt = vX associated
with the handlers. In addition to ut = uX , the equation
u≤V associated with su bounds the maximum uptake
rate of the nutrient by the cell.
The input flux of X deserves special attention. Accord-
ing to (1), its input flux is µX where µ is the effective cell
growth rate. The value of µ is obtained by µ = z − τw
where z is proportional to the flux of E consumed for
biomass production (see arc (E, vx)). Thus, it is assumed
that E is a direct precursor of biomass and e = yz where
e is the flux of E used for biomass production and y is
constant (see equation associated with vx). On the other
hand, the term τw, where w is the concentration of W
in the tank and τ is a constant, models the toxicity of
the waste product and quantifies the amount in which it
inhibits growth. This inhibition is modelled by the arc
(txt, swout) which subtracts an intensity (or growth rate)
amount of τwX , see equation associated with swout, to
transition txt.
It should be noted that the equations associated with su,
sr, sw and swout are not linear , e.g. the equation associ-
ated with su contains the multiplication of two variables,
the cell density, X , and the intensity of arc (su, tu), and
must be approximated as nonlinear functions in a sim-
ilar way to the Hill function in Fig. 8. This is achieved
by partitioning the interval [0.0, 3.0], where the cell den-
sity X lies, into 250 regions of equal length. It has been
checked that this number of regions provides a suffi-
ciently accurate approximation of the functions in the
intensity handlers. Notice, however, that the accuracy of
this approximation can be improved by setting a higher
number of regions. This would imply a higher compu-
tational burden to analyse the system. Conversely, the
computational load can be reduced by setting less re-
gions, however, this can involve less accurate results.
The units of the variables of the FN in Fig. 12 can be
found in Table 4. For the sake of brevity, the reaction
fluxes, which are expressed in concentration of the reac-
tant or product per hour, are not reported in the Table.
All the values of the parameters used together with their
units can be found in Table 5.
The analyses presented in the previous sections focused
on the transient behaviour of the systems and obtained
time trajectories of the concentration variables. The
analysis possibilities of FNs are now exploited to com-
pute the value of the variables at steady state. In [20]
mathematical inequalities were derived that account for
all the potential steady states that satisfy the constraints
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tR
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P

vs

Reservoir Effluent

Cell

Tank

Fig. 12. FN integrating a metabolic network (Cell compartment) with the bioreactor dynamics (Reservoir, Tank and Effluent
compartments) in continuous culture mode.

Variable Units Description

X gDW L−1 Cell density

Stank mM Nutrient in the tank

Wtank mM Waste product in the tank

S mmol gDW−1 Nutrient in the cells

P mmol gDW−1 Intermediate product in the cells

E mmol gDW−1 Energetic currency in the cells

W mmol gDW−1 Waste product in the cells

Table 4
Units of the variables of the FN in Fig. 12.

defined in the FN. The set of potential states is larger
if the constraints are loose, this allows the modeller to
check the system possibilities even with highly uncer-
tain parameters at the price of risking the accuracy of
the results, the set is smaller if the the constraints are
tight. This allows the achievement of accurate results at
the price or requiring precise parameters. If there is no
uncertainty, then, the system evolves in a deterministic
way.
In order to show how uncertain parameters can be han-
dled by FNs, wewill assume that the toxicity of the waste

product is uncertain, but known to be in the interval
[(1−ǫ)τ, (1+ǫ)τ ] where τ = 0.0022 h−1mM−1 and ǫ > 0
represents the uncertainty of the parameter, e.g. if ǫ = 0
there is no uncertainty. We will assume an uncertainty
of 10%, i.e. ǫ = 0.1. This way, the equality d=τwX as-
sociated with swout will be replaced by the inequalities
(1− ǫ)τwX ≤ d ≤ (1 + ǫ)τwX in the following.
The FN in Fig. 12 models a nondeterministic system, i.e.
different time evolutions and different steady states of
the system are consistent with the defined constraints.
This nondeterminism derives, not only from the intro-
duced uncertain toxicity of the waste product, but also
from the defined flux bounds, e.g. λ0[tR]≤rmax, which do
not establish a fixed flux, and from the flux fork at some
places, e.g. P has two output fluxes which are unrelated
(different state evolutions will result from the different
ways in which these two fluxes can consume P ). In order
to obtain a particular steady state, an objective function
must be added to the set of inequalities obtained in [20].
In a similar way to FBA, the solution of the resulting
programming problem yields a steady state that is a the-
oretical maximum (or minimum depending on the opti-
mization sense) of the objective function. The objective
function considered here is the maximization of the cell
density, X , which is assumed to be the general tendency
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Parameter Value Units Description

D 0.6/24.0 h−1 Dilution rate

c 15 mM Nutrient concentration in medium

φ 0.7 unitless Bleeding coefficient

NF 2 unitless Units of E produced per unit of P

NR 38 unitless Units of E produced per unit of P

e 1.0625 mmol gDW−1 h−1 Energetic maintenance demand

rmax 0.45 mmol gDW−1 h−1 Maximum respiratory capacity

V 0.5 mmol gDW−1 h−1 Maximum uptake rate of nutrient

y 348 mmol gDW−1 Energy units needed per unit of biomass produced

τ 0.0022 h−1mM−1 Toxicity of waste product

Table 5
Parameters of the FN in Fig. 12.

of unicells.

3.3 System analysis

Figure 13(a) shows the steady state cell densities, X ,
obtained by the described programming problem for di-
lution rates in the interval [0.01, 2.5] day−1, i.e. these
cells densities are theoretical maxima for the different
dilution rates. The cell density exhibits a rapid increase
for low dilution rates and then this increase slows down
due to the large amounts of nutrient in the medium re-
quired by high cell densities achieved by the retention
device. The considered programming problem does not
only yield a value for its objective function, but also for
all the variables that compose the state of the FN; e.g.
concentrations, fluxes, time ratio spent at the different
regions, values assigned to the uncertain parameters, etc.
Figure 13(b) presents the steady state concentration of
the nutrient in the tank. For dilution rates in the range
[0.01, 1.6] day−1 this concentration is equal to 0, which
implies that all the nutrient fed by medium is consumed
by the cells. At a dilution rate of 1.6 day−1 there is a sud-
den drop in the cell density, i.e. the FN predicts a dilu-
tion washout of 1.6 day−1. The reason for this is that the
cell growth and division cannot keep pace with the ever
increasing dilution rates. In particular, in this FN this
is accounted for by the upper flux bound λ0[tR]≤rmax

imposed on transition tR. This transition is associated
with cellular respiration and its upper bound models the
fact that the respiration capacity of the cell is limited. It
should be noticed that tR is the main provider of energy
which, in this model, is linked to the growth rate. Thus a
limited flux of tR implies a limited growth rate and, given
that the growth rate µ must equal φD at steady state
(see Eq (1)), a washout takes place for higher values of
D. For values ofD above the critical dilution rate (which
approximates the maximum specific growth rate, µmax),
the nutrient starts to accumulate in the tank as it can-
not be consumed by the cells at the rate imposed by the
applied dilution rate. These plots reproduce the existing
dependence of the bioreactor variables with respect to
the dilution rate in a continuous culture [23,31,32].

Figures 13(c) and (d) show the steady state fluxes
through arcs (P, vF ) and (P, vR) respectively. Given that
the objective function is the maximization of the cell
density, the nutrients consumed by the cell have to be
used as efficiently as possible to produce energy and,
in turn, growth. Since respiration is more efficient for
energy production than fermentation (NR > NF ), the
solution of the described programming problem diverts
as much nutrient as possible towards respiration. This
implies that, for low dilution rates, all the nutrient is
diverted towards respiration. Thus, the flux through
(P, vR) depends linearly on the dilution rate and the flux
through (P, vF ) is 0. At a dilution rate of 1.6 day−1, the
flux through (P, vR) hits the bound λ0[tR]≤rmax. This
means that respiration gets saturated and cannot pro-
cess all the intermediate product for dilution rates higher
than 1.6 day−1 and, hence, fermentation occurs.
Figures 13(e) and (f) explore the potential concentra-
tions of waste product W in the tank, i.e. they show the
minimum and maximum concentrations of W that are
compatible with the computed cell densities. In a sim-
ilar fashion to Flux Variability Analysis [33], the mini-
mum(maximum) W has been computed by a program-
ming problem that fixes the cell density to its maximum
value, which has been computed previously, and mini-
mizes(maximizes) the variable W . The maximum value
ofW represents the highest concentration of toxic waste
with which the system can cope whilst still maintaining
the cell density for that dilution rate in that particular
growth medium.
Theminimum values computed forW represent themin-
imum concentration of waste product that will be found
in the tank. For low dilution rates, this minimum con-
centration is 0, i.e. there might not be toxic product at
all. For higher dilution rates (see Fig. 13(f) which zooms
out an interval of D) the minimum W becomes strictly
positive, which means there will be toxic product in the
tank. This is due to a flux of P being diverted to W be-
cause reaction RR is saturated, hence, producing waste
product in the tank. Notice that in Fig. 13(f) the val-
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Fig. 13. Steady state variables of the bioreactor and the metabolic network modelled by the FN in Fig. 12 as a function of
the dilution rate D: (a) cell density; (b) nutrient concentration in the tank; (c) flux through arc (P, vF ); (d) flux through arc
(P, vR); (e) and (f) minimum and maximum waste product concentration in the tank for different intervals of D.

ues of the minimum and maximum W get rather close.
This means that W has not much freedom and, hence,
its value is estimated quite accurately.
All the reported results have been computed by the Py-
ton tool fnyzer [19] on an Intel i7 (2.00 GHz, 8 GiB)
running Ubuntu 14.04 LTS. The CPU time required to
solve the programming problem associated with each di-
lution rate was 35.78 s.

4 Discussion

Flexible Nets (FNs) is a modelling formalism for dy-
namic systems inspired by Petri nets that is able to inte-
grate, in a single model, heterogeneous data from differ-
ent sources.We have shown the potential of FNs to com-
bine stoichiometric models (which lack detailed kinetic
information and are mainly expressed as constraint-
based models) with kinetic models (which are expressed
as differential equations). In addition to subsuming
constraint-based models and differential equations, FNs
can also accommodate with ease uncertain, i.e. partially
known, parameters (both stoichiometric and kinetic).
This feature is useful, not only to incorporate imprecise
data in the model, but also to estimate the parameter
values that are consistent with a given observation of the
system.
FNs can be expressed graphically by means of two nets:
an event net and an intensity net. While the event net
models the system stoichiometry, the intensity net mod-
els the system dynamics. Such a graphical representa-

tion provides a precise and unambiguous view of the
whole system. In addition to its graphical representa-
tion, FNs can be expressed by state equations that can
be analysed by sets of inequalities derived from them.
Such sets of inequalities account for all the potential evo-
lutions of the system and can refer both to its transient
or steady state behaviour. This way, the analysis capa-
bilities of FNs cover the analysis methods based on FBA
(for constraint-based models) and the analysis methods
based on differential equations (for dynamic models),
plus offering the facility of coping with uncertain param-
eters.
In order to obtain a time trajectory of the system, or a
steady state value, the mentioned sets of inequalities are
associated with an objective function that contains the
expression to be optimized. The solution of the resulting
programming problem represents a theoretical bound (a
maximum, if the objective function is maximized, and
a minimum, if it is minimized) of the optimized expres-
sion. If the theoretical minimum and maximum values
are close, then the considered expression is estimated ac-
curately, otherwise the expression in the objective func-
tion admits a wide range of values, e.g. tolerance to the
toxic product in the discussed example in Fig. 12, that
are consistent with the model constraints.
With respect to steady state analyses, it should be noted
that in order to compute steady states it is not neces-
sary to simulate the transient of the system, the steady
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state values are directly obtained from the constraints
associated with the net. Moreover, balance equations
are already taken into account by the mathematical in-
equalities that are derived automatically from the FN.
For instance, in Fig. 12, there is no need to make ex-
plicit the balance equation flux(vs, P ) = flux(P, vF )+
flux(P, vR) (where flux(a, b) denotes the steady state
flux from a to b) for the concentration of metabolite P .
This constraint will be necessarily satisfied because the
average marking of P at the steady state is forced to be
constant; hence, the sum of its input fluxes must equal
the sum of its output fluxes.
The proposed analysis methods rely on the solution
of programming problems derived from the FN model.
Thus, the efficiency of the methods is given by the com-
putational burden associated with the algorithms used
to solve such programming problems. If all the rates of
the reactions are linear, then the resulting programming
problems contain exclusively real variables with linear
and convex quadratic constraints that can be solved ef-
ficiently. Thus, FNs can handle efficiently genome-scale
metabolic networks whose kinetic information is mainly
given by flux bounds and linear dependencies on the
concentrations of metabolites. If the rates are not lin-
ear, then these nonlinearities must be approximated by
piecewise linear functions which result in mixed-integer
linear programming problems with real and binary vari-
ables. The complexity involved in the solution of these
problems depends primarily on the number of binary
variables. Interestingly, the trade-off between the com-
putational burden and the accuracy of the results can be
tuned by the modeller by selecting the precision of the
approximation of nonlinear functions by piecewise lin-
ear functions, i.e. by setting the number of regions to be
used and hence increasing or diminishing the number of
binary variables in the programming problem.

Data, code and materials: The Python files that
define the FNs in Fig. 4, 6, 8, 9 and 12 are
ratecon.py, inprod.py, hillpwlnet.py, modint.py
and HeLanet.py respectively. These files, together with
HeLanetss.py, can be used to obtain numerical val-
ues and generate the associated plots. The numeri-
cal values of the plots in Fig. 13 can be found in
HeLanetss results.xls.
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