
fnyzer : a Python package for the analysis of

Flexible Nets

Jorge Júlvez1[0000−0002−7093−228X] and Stephen G Oliver2,3[0000−0003−3410−6439]

1 Department of Computer Science and Systems Engineering, University of Zaragoza,
Zaragoza, Spain, julvez@unizar.es

2 Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK,
sgo24@cam.ac.uk

3 Department of Biochemistry, University of Cambridge, Cambridge, UK

Abstract. This paper introduces fnyzer, a Python package for the anal-
ysis of Flexible Nets (FNs). FNs is a modelling formalism for dynamical
systems that can accommodate a number of uncertain parameters, and
that is particularly well suited to model the different types of networks
arising in systems biology. fnyzer offers different types of analysis, can
handle nonlinear dynamics, and can transform models expressed in Sys-
tems Biology Markup Language (SBML) into FN format.

1 Overview

Flexible Nets (FNs) [5] is a modelling formalism for dynamical systems, inspired
by Petri [10] nets, that can handle uncertain parameters and that offer different
analysis possibilities. FNs have four types of vertices: places, transitions, event
handlers, and intensity handlers. Places are represented as circles and model
state variables, e.g. metabolites. The value of the state variable, e.g. metabolite
concentration, modelled by a place is called marking. Transitions are represented
as rectangles and model processes that can modify the marking, e.g. reactions.

In addition to places and transitions, FNs incorporate: a) event handlers,
represented as dots, that model how the transitions modify the marking; and b)
intensity handlers, also represented as dots, that model how the marking modifies
the speed (or intensity) of the transitions. This way, places and transitions are not
connected directly but only through handlers. This connection can be established
either by means of arcs, which model consumption/production of marking or
intensity, or edges, which model the use of marking or intensity. In order to
account for the relationships “process–marking change” and “marking–speed
change”, both, event and intensity handlers, are associated with sets of equalities
and inequalities.

As an example, the FN in Fig. 1(a) is composed of 3 places A, B, and C

(with initial markings 6, 4, and 0 respectively) that are connected through the
event handler v by means of arcs. The equalities associated with v determine
the stoichiometry of the reaction modelled by the net, namely a=2b establishes
that two units of A are consumed per each unit of B that is consumed; and b=c

2 Jorge Júlvez et al.

6A 4 B

v : a=2b; b=c

C

a
b

c

(a)

t1
v1

A
s3

t3 v3

v2

B

C v4

t4

(b)

Fig. 1: FNs modelling the stoichiometry of reaction R : 2A + B → C (a) and;
exchange reactions with partially known dynamics (b).

establishes that one unit of B is consumed per each unit of C that is produced.
This way, the FN models the reaction R : 2A+B → C, and it does not specify
a speed as there is no transition in the net. FNs are defined in f nyzer by Python

dictionaries, e.g. the Python dictionary that defines the FN in Fig. 1(a) is:

stonet = { # FN modelling reaction R: 2A + B -> C

’name ’: ’stonet’,

’solver ’: ’glpk ’,

’places ’: {’A’: {’m0’: 6}, ’B’: {’m0’: 4}, ’C’: {’m0’: 0}},

’vhandlers ’: { # Event handler

’v’: [{’a’: (’A’,’v’), ’b’: (’B’,’v’), ’c’: (’v’,’C’)},

’a == 2*b’, ’b == c’]}, # Stoichiometry

’obj’: {’f’: "m[’C ’]", ’sense’: ’max’},# Objective function

’options ’: {’antype ’: ’un’} # Untimed analysis

}

Thus, in addition to the net structure determined by the keys places and
vhandlers, the dictionary contains information about the objective function and
the type of analysis to be carried out by fnyzer.

Figure 2 sketches (in FN fashion) the main tasks performed by fnyzer in
order to analyse an FN. First, a set of mathematical constraints is derived from
the FN definition and the desired type of analysis. This set of constraints, which
represent necessary reachability conditions, together with an objective function
are used to set up a programming problem by using the package Pyomo [4]. This
programming problem is solved by a state-of-the-art solver (current supported
solvers are CPLEX [1], Gurobi [3] and GLPK [9]) and the obtained solution is
saved in a spreadsheet and plotted.

fnyzer : Flexible Nets AnalYZER 3

Flexible

Net

Analysis

Type

Process Process

Data

Set of

Constraints

Objective

Function

Pyomo

MILP

Solver

Solution

Solution

Plot

Spreadsheet

Fig. 2: Main pipeline of fnyzer from the input data to the results.

2 Installation and use

fnyzer is an open Python package that can be installed with pip, the standard
tool for installing Python packages:

$ pip install fnyzer

The online documentation of fnyzer detailing all the available options can
be found at https://fnyzer.readthedocs.io, the source code is available at
https://bitbucket.org/Julvez/fnyzer, and the file nets/fnexamples.py in
that repository contains a number of FN examples, e.g. the above dictionary
stonet is in that file.

Assuming that the mentioned file fnexamples.py is in your working direc-
tory, the execution of:

$ fnyzer fnexamples .py stonet

produces: a) the spreadsheet stonet.xls with the optimization results and CPU
times; and b) the file stonet.pkl with the pickled FN object (see “Access-
ing saved objects” in the next section). For the proposed objective function,
max m[C] (i.e. maximize the final concentration of C), the value obtained is 3
(the final concentrations obtained for A and B are 0 and 1 respectively).

3 Main features

Handling uncertain parameters. Assume that the initial concentration of
A in Fig. 1(a) is uncertain, but known to be in the interval [4, 7]. This can be
captured in the stonet dictionary above by setting ’A’: {’m0’: None} and
including a keyword modelling such constraint:

’m0cons ’: ["4 <= m0[’A ’]", "m0[’A ’] <= 7"]

4 Jorge Júlvez et al.

8A

v1 t1

s1

s1: x=a; y=

{

0.2 if a ≥ 5.0

a otherwise

t2

a

x

y v2

B

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time

0

2

4

6

8

10 evm[A]
evm[B]

(b)

Fig. 3: (a) Guarded FN modelling the activation of reaction R2 : ∅ → B when A

goes below 5.0; (b) Time trajectories of the concentrations of A and B as plotted
by fnyzer.

The optimization of the resulting net (execute “fnyzer fnexamples.py

unstonet”) yields 3.5 as the maximum final concentration for C.
Uncertain stoichiometric weights can be incorporated in a similar way. As-

sume that the reaction is R : nA+B → C where n is only partially known, e.g.
n ∈ [19, 21]. Such a reaction can be modelled by substituting in the dictionary
above ’a == 2*b’ by two inequalities ’19*b <= a’, ’a <= 21*b’.

The FN in Fig. 1(b) models a small reaction network composed of the reac-
tions reported in Table 1. Each reaction Ri is modelled by the event handler vi
(also the intensity handler s3 in the case of R3) and the net elements connected
to it. The uncertain rates of R1 and R4 are accounted for by the constraints:

’l0cons ’: ["1 <= l0[’t1 ’]", "l0[’t1 ’] <= 4", "l0[’t4 ’] <= 3"]

that are included in the dictionary (see excnet in the file fnexamples.py) that
defines the net. The completely unknown rate of R2 is modelled by absence of
transitions connected to v2. The known rate of R3 is modelled by s3 and t3.
Handling nonlinear dynamics. The rates of the reactions of the FN in
Fig. 1(b) are either constant or depend linearly on the concentration of metabo-

Reaction Modelled by Rate

R1 : ∅ → A v1 in the interval [1, 4]
R2 : ∅ → B v2 unknown
R3 : A+B → C v3 and s3 equal to the concentration of A
R4 : C → ∅ v4 in the interval [0, 3]

Table 1: Reactions modelled by the FN in Fig. 1(b).

fnyzer : Flexible Nets AnalYZER 5

lites. In order to account for the complex and nonlinear dynamics exhibited
by biological systems, FNs can associate piecewise linear functions with their
intensity handlers. Consider the FN in Fig. 3(a) which models the reactions
R1 : A → ∅ and R2 : ∅ → B. The intensity handler s1 has associated: a) a linear
function x = a which determines that the rate of t1 is equal to the concentration

of A; and b) a piecewise linear function y=

{

0.2 if a ≥ 5.0

a otherwise
which establishes

that the rate of R2 is constant and equal to 0.2 if the concentration of A is
greater than or equal to 5.0, and equal to the concentration of A otherwise. In
the Python dictionary that describes the FN, this is defined by means of two
regions (provided by the key ’regs’), and linear functions associated with them:

’regs ’: {’off’: ["m[’A ’] >= 5"], ’on’: ["m[’A ’] <= 5"]},

’shandlers ’: {

’s1’: [{’a’:(’A’,’s1’), ’x’:(’s1 ’,’t1’), ’y’:(’s1’,’t2’)},

’x == a’,

{’off’: [’y == 0.2’], ’on ’: [’y == a’]}]

},

Types of analysis. FNs can be analysed by fnyzer under 4 interpretations:
untimed [6], transient state [5], Model Predictive Control (MPC) [7], and steady
state [8]. Assume that it is desired to compute the maximum concentration of A
of the FN in Fig. 1(b) in the steady state. This can be achieved by setting the
analysis type to ’antype’: ’st’, and the objective function to:

’obj’: {’f’: "avm[’A ’]", ’sense’: ’max’}

where avm denotes average marking. The value obtained by fnyzer is 3.0. At
this concentration of A, the flux of all the reactions is 3.0. If the minimum
concentration is desired instead, then the ’sense’ of the objective function must
be set to ’min’. The resulting concentration is 1.0. These values were obtained
by executing “fnyzer fnexamples.py excnet”.

As an example of MPC, time trajectories of the concentrations of A and
B can be obtained by setting the analysis type to ’antype’: ’mpc’. In the
trajectories shown in Fig. 3(b), which were generated by “fnyzer fnexamples

.py guardnet”, 30 time intervals of length 0.1 were considered.
Importing SBML models. In order to facilitate the manipulation of existing
models, fnyzer offers the possibility of translating COBRA [2] models to FNs. As-
sume that a Systems Biology Markup Language (SBML) model, MODEL000.xml,
is available in the working directory, then the lines:

>>> from fnyzer import optimize , cobra2fn

>>> import cobra

>>> cobra_model = cobra.io.read_sbml_model (’MODEL000 .xml’)

>>> fndic = cobra2fn (cobra_model)

convert the model into the dictionary fndic that defines the corresponding FN
and that can be extended, modified and analysed.

6 Jorge Júlvez et al.

Accessing saved objects. fnyzer saves the analysis results in a file that can
be easily accessed. For instance, the following lines, read the file guardnet.pkl

generated by “fnyzer fnexamples.py guardnet”, save the results in a different
spreadsheet, plot the trajectories, and write the concentration of A over time:

>>> import pickle

>>> datafile = open ("guardnet .pkl", ’rb’)

>>> fn = pickle.load (datafile)

>>> datafile .close()

>>> fn. writexls ("new_guardnet .xls")

>>> fn.plotres ()

>>> [net.places[’A’].m for net in fn.lnets]

In the above lines, the object fn provides access to all the values of the variables
in the FN (see the online documentation for details).

4 Acknowledgments

This work was supported by the Spanish Ministry of Science, Innovation and
Universities [ref. Medrese-RTI2018-098543-B-I00], by the Biotechnology & Bio-
logical Sciences Research Council (UK) grant no. BB/N02348X/1 as part of the
IBiotech Program, and by the Industrial Biotechnology Catalyst (Innovate UK,
BBSRC, EPSRC) to support the translation, development and commercialisa-
tion of innovative Industrial Biotechnology processes.

References

1. IBM ILOG CPLEX Optimizer (2010)
2. Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: Cobrapy: Constraints-

based reconstruction and analysis for python. BMC Systems Biology 7(1), 74
(2013)

3. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2015),
http://www.gurobi.com

4. Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L., Hackebeil, G.A., Nichol-
son, B.L., Siirola, J.D.: Pyomo–optimization modeling in Python, vol. 67. Springer
Science & Business Media, second edn. (2017)

5. Júlvez, J., Dikicioglu, D., Oliver, S.G.: Handling variability and incompleteness
of biological data by flexible nets: a case study for Wilson disease. npj Systems
Biology and Applications 4(1), 7 (1 2018)

6. Júlvez, J., Oliver, S.G.: Flexible nets: a modeling formalism for dynamic systems
with uncertain parameters. Discrete Event Dynamic Systems 29(3), 367–392 (2019)

7. Júlvez, J., Oliver, S.G.: Modeling, analyzing and controlling hybrid systems by
guarded flexible nets. Nonlinear Analysis: Hybrid Systems 32, 131 – 146 (2019)

8. Júlvez, J., Oliver, S.G.: Steady State Analysis of Flexible Nets. IEEE Transactions
on Automatic Control pp. 1–1 (2019)

9. Makhorin, A.: GLPK (gnu linear programming kit) (2012),
http://www.gnu.org/software/glpk/glpk.html

10. Murata, T.: Petri Nets: Properties, Analysis and Applications. Procs. of the IEEE
77(4), 541–580 (1989)

