
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

1

Steady State Analysis of Flexible Nets

Jorge Júlvez∗ Stephen G Oliver†

Abstract—The modeling and analysis of complex dynamic
systems, such as those in manufacturing, logistics and biology,
require powerful analysis methods for their study and optimiza-
tion. A significant modeling and analysis challenge posed by
both, artificial and natural systems, is the existence of uncertain
parameters. Flexible Nets is a novel modeling formalism, inspired
by Petri nets, that can handle different types of uncertain
parameters in a natural way. This paper develops an efficient
method to analyse the evolution of a system modeled by a Flexible
Net in the long run. More precisely, the method focuses on the
computation of steady state bounds for an objective function of
interest. The method makes use of a set of constraints, expressed
as linear inequalities, that the state variables must satisfy in
the steady state. In order to account for systems that do not
reach a constant steady state, the developed constraints allow
the system state to switch among different values, i.e. the steady
state variables are not forced to be constant.

I. INTRODUCTION

Formal models play a critical role in the modeling, analysis,

optimization and control of dynamic systems in different
application domains [31], [6], [32], [28]. Despite their suc-
cess, the increasing complexity of artificial systems, and the

inherent complexity of natural systems, make the modelling
and analysis tasks challenging. A major modeling difficulty
lies in the accurate determination of the system parameters.

This can be due to the lack of precise measurement devices
or methods, to the impossibility of repeating experiments
under identical conditions, or to the inability of building or

implementing systems with absolute precision. This lack of
accuracy leads to uncertain system parameters that need to
be properly incorporated in the model of the system for its

analysis.
Flexible Nets (FNs) is a novel modeling formalism inspired

by Petri nets [24] that is able to accommodate several types
of uncertain and unknown parameters. FNs were introduced
in [20] to model the evolution of Wilson disease under

different treatment regimes and the glucose consumption by a
microbial population.

∗ J. Júlvez is with the Cambridge Systems Biology Centre, University
of Cambridge; the Department of Biochemistry, University of Cambridge,
Cambridge, UK ; and the Department of Computer Science and Systems En-
gineering, University of Zaragoza, Zaragoza, Spain. E-mail: julvez@unizar.es;
Tel: +34 976762336; Fax: +34 976761914
† Stephen G Oliver is with the Cambridge Systems Biology Centre,

University of Cambridge; and the Department of Biochemistry, University
of Cambridge, Cambridge, UK. E-mail: sgo24@cam.ac.uk

This work was supported by the European Commission 7th through a
Framework Program BIOLEDGE Contract No: 289126 to SGO, and a Marie
Curie Intra European Fellowship to JJ (FormalBio Contract No: 623995,
Call reference: FP7-PEOPLE-2013-IEF). Further support came from the
Biotechnology & Biological Sciences Research Council (UK) grant no.
BB/N02348X/1 as part of the IBiotech Program, and by the Industrial Biotech-
nology Catalyst (Innovate UK, BBSRC, EPSRC) to support the translation,
development and commercialisation of innovative Industrial Biotechnology
processes.

Similarly to Petri nets, the transitions of an FN model
processes (or events) of the system, and the places model state

variables. The value of the state variables associated with the
places is known as marking. In a dynamic system, the basic
relationships between the processes and the marking are: a)

the execution of processes produces changes in the marking;
b) the marking can modulate the speed of the processes. FNs
aim to model these relationships by means of two nets: the

event net and the intensity net. While the event net models
relationship a), the intensity net models relationship b).

The event net is a tripartite graph whose vertices are places,

transitions, and event handlers. Places are connected to event
handlers by directed edges (or simply arcs), and transitions are
connected to event handlers by undirected edges (or simply

edges). Each event handler is associated with a set of linear
inequalities that captures the potential marking changes that
the execution of a transition can produce. Thus, in contrast to

Petri nets, the marking change produced by the execution of
a transition is allowed to be nondetermistic. The marking of
an event net is a vector or real nonnegative markings. Thus,

a continuous Petri net [30] can be interpreted as a subclass
of event nets in which the marking changes produced by
the execution of transitions is deterministic. From a structural

point of view, event nets can be seen as a generalization of
classical Petri nets.

In a similar way, the intensity net is a tripartite graph

whose vertices are places, transitions, and intensity handlers.
Transitions are connected to intensity handlers by arcs, and
places are connected to intensity handlers by edges. Each

intensity handler is associated with a set of linear inequalities
that captures the potential intensities (or speeds) that the
marking can produce on the transitions. This way, the actual

speed of the transitions is allowed to be nondeterministic and
is constrained to a range of values that depends on the current
marking of the net.

An FN is composed of an event net and an intensity net that
have the same set of places and the same set of transitions.

Table I reports some popular modeling formalisms for dy-
namic systems, that are somehow related to FNs, together with
commonly desired modeling features. For the sake of brevity,

we focus on the way uncertain parameters and nonlinear
dynamics are handled by the formalisms.

Although the reported formalisms do not consider the notion

of stochasticity in their original definition, many of them
include it in well-known extensions. For instance, in the Petri
nets [24] arena, the firing of a transition in stochastic Petri

nets [3] follows a probability distribution. Similarly, stochastic
extensions [37], [38] exist of continuous [30], [2] and hybrid
Petri nets [15], [16].

The introduction of stochasticity in hybrid automata [23],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

2

Discrete Continuous
Stochasticity

Missing Nonlinear
Graphical

states states information dynamics

Petri nets *

Continuous Petri nets *

Hybrid Petri nets *

Hybrid automata *

Boolean networks *

Process algebras *

Constraint-based models

Differential equations *

Flexible nets

TABLE I: Popular modeling formalisms and some modeling features. The symbol * means that particular classes or extensions

of the basic formalism exist that support stochasticity.

[19] results in stochastic hybrid automata [11] which can
account for stochastic processes. In a similar way, probabilistic
Boolean networks [33], stochastic process algebras [13] and,

stochastic differential equations[25] are the stochastic exten-
sion of Boolean networks [40], process algebras [29], [12],
[14] and, differential equations [34], [35] respectively.

Stochasticity is often used, not only to model inherently
stochastic parts of the system, but also to account for uncertain

parameters. While stochasticity enriches the modeling power
of the formalisms, it must be noted that stochastic models
require the introduction of appropriate probability distribution

functions together with the parameters associated with them.
The acquisition or estimation of these functions can be a
challenging task. Moreover, the study of stochastic models

usually relies on exhaustive simulations or costly numerical
analysis methods that can limit their application to relatively
small systems.

In FNs, uncertain parameters are incorporated in the model
by means of linear inequalities that determine the region where

the value of the parameter is known to lie. This is rather
similar to the intervals that determine the firing times in time
Petri nets [7] and the instantaneous firing speeds in first-order

hybrid Petri nets [4]. In FNs, the parameters whose value can
be specified by linear inequalities are: initial marking, default
speeds, marking change produced by the firing of transitions

and, speeds produced by the marking. Moreover, FNs can
also accommodate missing information and parameters that
are completely unknown. For instance, a process whose speed

is unknown can be modeled by an event handler that is not
connected to any transition. This implies that the process can
proceed at any speed.

Some models can incorporate nonlinear dynamics by means
of rather general nonlinear functions, e.g. process algebra with

nonlinear dynamics [41]. This generality usually comes at the
price of computational difficulties in the analysis tasks. FNs
can also accommodate nonlinear dynamics by means of guards

associated with the arcs of the intensity net. A guard is defined
as a region in the state space, and is associated with a set of
linear inequalities. The dynamics of an FN is determined by

the sets of linear inequalities associated with active guards (a
guard is active when the state of the FN is contained in it). FNs
with guards allow the modeler to account for discrete states

and can be used, in particular, to model hybrid systems [21].

The computational cost of considering guards is that boolean
variables are introduced in the optimization methods, thus
leading to mixed-integer linear problems instead of the linear

ones associated with unguarded FNs.

In [20] computational methods were developed to study

the potential trajectories of FNs over a given time interval.
These methods are, therefore, useful for assessing the transient
state but not for studying the system in the long run, i.e.

in the steady state. In this paper, we develop an efficient
computational method to analyse the steady state of FNs (both
with and without guards).

In the area of biological systems, constraint-based mod-
els [36], [27], [9] are widely used because of the ease with
which speed bounds on reaction rates can be imposed and

also because steady state fluxes of reactions can be efficiently
computed by means of flux balance analysis [26] techniques.
A drawback of constraint-based models is that metabolite con-

centrations are not represented in the model; hence, complex
reaction rates that depend on the concentrations cannot be
modeled. This shortcoming can be alleviated in part by Petri

nets [39] in which transitions can model fluxes and places can
model concentrations. Several approaches have been proposed
to study the steady state of Petri net subclasses, e.g. free choice

nets [10], continuous mono-T-semiflow nets [22], generalized
stochastic Petri nets [8]. Most of the existing approaches focus
on particular net subclasses and aim at computing steady state

performance bounds.

A particular strength of FNs is that they can help bridge

the gap between differential equations and constraint-based
models in biological systems by accounting for all reaction
types, i.e. with known and unknown dynamics. In fact, in

the particular case of FNs in which the transition speeds do
not depend on the marking, the steady state method proposed
here is equivalent to flux balance analysis in constraint-based

models.

The computational method proposed in this paper for an-
alyzing the steady state of FNs is based on the development

of a set of constraints, expressed as mathematical inequalities,
that involve the average state variables of the system. Such
inequalities represent conditions that must necessarily hold in

the steady state.

Once the set of inequalities is obtained, steady state bounds

can be straightforwardly computed by adding an objective

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

3

function of interest and solving the resulting programming
problem. In addition to the bound given by the objective

function, the solution of the programming problem contains
the values of the steady state variables that produce that bound.
Notice that, if the uncertainties of the FN are used to model the

effect of constrained input actions, the result of the problem
would contain the value of the actions that optimize the given
objective function. The proposed approach is not constrained

to a particular net subclass, and any state variable can be
included in the objective function, i.e. the objective function
is not restricted to performance measures.

Both artificial and natural systems can exhibit complex dy-
namics over longer timescales. In particular, they do not nec-

essarily reach a steady state in which all their variables remain
constant. Instead, some of these systems can oscillate or switch
among different states indefinitely. The constraints obtained

here can account for such systems with a ”non-constant steady
state”. Interestingly, such constraints can be used to assess the
fraction of time that the system spends in each of the states

among which it is switching.

The paper is organized as follows: Section II introduces the
FNs formalism, Section III develops the set of constraints that
must be satisfied in the steady state, Section IV makes use of

the developed constraints to compute steady state bounds on
several FNs, and Section V concludes the paper.

II. FLEXIBLE NETS

This section introduces Flexible Nets (FNs) which are
composed of an event net and an intensity net. While the

event net determines how the system processes change the
state of the system, the intensity net establishes the speed of
such processes. For the sake of brevity, some concepts of FNs

are presented through examples. A detailed definition of FNs
can be found in [20]. The reader is assumed to be familiar
with Petri nets (see [24] for a gentle introduction).

A. Event nets

Definition 1 (Event net): An event net is a tuple NV =
(P, T, V, EV , A,B) where (P, T, V, EV) is a tripartite graph
determining the net structure and (A,B) are matrices deter-
mining the potential evolutions of the marking.

The vertices of the net are P , T and V , where P is a set
of |P | places, T is a set of |T | transitions and V is a set of

|V | event handlers.

Similarly to Petri nets, places are depicted as circles and
model the types of components in the system. Transitions are
depicted as rectangles and model the system processes. Such

processes need time to be performed and have the potential to
change the marking. Event handlers are depicted as dots and
model the different ways in which the transitions can change

the marking.

The vertices of the net are connected by the edges in EV .

Each pair of vertices can be connected by at most one edge.
The set EV is partitioned into two sets EP

V and ET
V . The edges

in EP
V are directed and are referred as event arcs, the edges

in ET
V are undirected and are referred as event edges:

• Every e ∈ EP
V is either an arc e = (pi, vk) from a place

pi to a handler vk, or an arc e = (vk, pi) from a handler

vk to a place pi.
• Every e ∈ ET

V is an edge e = {tj, vk} connecting a
transition tj and a handler vk.

Direct connections among places and transitions are not al-

lowed.

Example 1: The event net in Figure 1(a) has three places,

P = {pa, pb, pc}, two transitions, T = {t1, t2}, and two
event handlers V = {v1, v2}. The set of arcs is EP

V =
{(v1, pa), (pa, v2), (v2, pb), (pb, v1)}, and the set of edges is

ET
V = {{t1, v1}, {t2, v2}}.

In an event net, each place pi contains a number of tokens

(or marking), m[pi], and each transition tj contains a number
of actions σ[tj] that represent the potential of the system to
carry out the associated process. In contrast to tokens, actions

require time to be produced (the production rate of actions is
determined by the intensity net, see Section II-B). The actions
σ[tj] of a transition tj can be executed by any event handler

vk connected to tj . The number of actions of tj executed by
vk is denoted aE [{tj, vk}]. The number of actions available in
tj , denoted aT [tj], is the number of actions produced minus

the number of actions executed. For instance, in the net in
Figure 1(a), it holds that σ[t1] = aT [t1] + aE [{t1, v1}] and
σ[t2] = aT [t2]+aE [{t2, v2}]. This can be expressed in matrix

form as:
σ = aT + YσaE (1)

where Yσ is a matrix with rows indexed by T , columns indexed
by ET

V , and such that Yσ[tj , {tj , vk}] = 1 ∀ {tj, vk} ∈ ET
V

and the rest of the elements in Yσ are 0,

The execution of actions by an event handler vk produces
marking changes in the places connected to vk. The number

of tokens in pi produced by vk is denoted ∆m[(vk, pi)],
and the number of tokens in pi consumed by vk is denoted
∆m[(pi, vk)]. The relation between the number of actions

executed by vk and the marking changes is given by a set
of linear inequalities associated with each event handler.

In the net in Figure 1(a), the equation a = b = v associated
with v1 makes use of the labels a, b and c associated with the
connected edge and arcs that are shorthands for ∆m[(v1, pa)],
∆m[(pb, v1)] and aE [{t1, v1}] respectively. Such an equation
implies that the execution of one action in t1 by v1 produces
one token in pa and consumes one token in pb. The sets

of inequalities associated with all the event handlers can be
expressed in matrix form as:

A∆m ≤ BaE (2)

In the net in Figure 1(a), inequality (2) becomes:

∆m[(v1, pa)] = ∆m[(pb, v1)] = aE [{t1, v1}] and
∆m[(v2, pb)] = ∆m[(pa, v2)] = aE [{t2, v2}].

The marking of places is the result of accounting for all
marking changes produced by the event handlers, e.g. m[pa] =
m0[pa] + ∆m[(v1, pa)] − ∆m[(pa, v2)], m[pb] = m0[pb] +
∆m[(v2, pb)] − ∆m[(pb, v1)], m[pc] = m0[pc] where m0[pi]
is the initial marking of pi. This can be expressed in matrix
form as:

m = m0 + Zm∆m (3)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

4

(a) (b) (c)

papapa pbpbpb

pcpcpc

111

202020

a

a

a

a
b

b

b

b

v

v

v

v

x

x

x

x

r

r

r

r
t1t1t1

t2t2t2

v1:a=b=vv1:a=b=v

v2:a=b=vv2:a=b=v

s1:

{

r=4 if x≤0.5

r=8 otherwise
s1:

{

r=4 if x≤0.5

r=8 otherwise

s2:
4

5
x≤r≤ 5

4
x s2:

4

5
x≤r≤ 5

4
x

Fig. 1: (a) Event net. (b) Intensity net. (c) Flexible net resulting of combining the event and the intensity net.

where Zm is a matrix with rows indexed by P , columns in-
dexed by EP

V , and such that Zm[pi, (pi, vk)] = −1 ∀ (pi, vk) ∈
EP

V , Zm[pi, (vk, pi)] = 1 ∀ (vk, pi) ∈ EP
V and the rest of the

elements in Zm are 0.

Definition 2 (Event net state): The state of an event net NV

is given by the tuple (σ, aT , aE ,∆m,m) where σ[tj] is the
number of actions produced in tj , aT [tj] is the number of
actions available in tj , aE [{tj, vk}] is the number of actions

of tj executed by vk, ∆m[(pi, vk)] is the number of tokens in
pi consumed by vk, ∆m[(vk, pi)] is the number of tokens in
pi produced by vk, and m[pi] is the number of tokens in pi.

Notice that actions need time to be produced; hence, at the
initial state, it holds that σ = 0, aT = 0 and aE = 0. Equa-

tions (1), (2) and (3) can be combined to express necessary
reachability conditions for the state of an event net.

Proposition 1 (Event net state equations): Let NV be
an event net with initial marking m0 and actions in the
transitions σ, every state (σ, aT , aE ,∆m,m) reachable from

(σ, σ, 0, 0,m0) belongs to SENV
(σ,m0) where:

SENV
(σ,m0) = {(σ, aT , aE ,∆m,m)|

σ = aT + YσaE

A∆m ≤ BaE

m = m0 + Zm∆m}

(4)

where all variables are nonnegative real numbers.

B. Intensity nets

Definition 3 (Intensity net): An intensity net is a tuple

NS = (P, T, S,ES , C,D,P , ϕ) where (P, T, S,ES) is a tri-
partite graph determining the net structure, (C,D) are matrices
determining the potential intensity changes produced by the

marking, P is a set of partitions, and ϕ is a function that
associates regions with intensity arcs.

The vertices of the net are P , T and S, where P is a set
of |P | places, T is a set of |T | transitions and S is a set of
|S| intensity handlers. Places and transitions model the same

system features as in the event net. The intensity handlers are
depicted as dots and model the different ways in which the
tokens can generate intensities, or speeds, in the transitions.

The vertices of the net are connected by the edges in ES .
Each pair of vertices can be connected by at most one edge.

The set ES is partitioned into two sets ET
S and EP

S . The edges

in ET
S are directed and are referred as intensity arcs, the edges

in EP
S are undirected and are referred as intensity edges:

• Every e ∈ ET
S is either an arc e = (tj , sl) from a

transition tj to a handler sl, or an arc e = (sl, tj) from
a handler sl to a transition tj .

• Every e ∈ EP
S is an edge e = {pi, sl} connecting a place

pi and a handler sl.

As in the event net, connections among places and transitions
are not allowed.

Example 2: The intensity net in Figure 1(b) has three

places, P = {pa, pb, pc}, two transitions, T = {t1, t2},
and two intensity handlers S = {s1, s2}. The set of arcs
is ET

S = {(s1, t1), (s2, t2)}, and the set of edges is EP
S =

{{pc, s1}, {pa, s2}}.

The tokens in places can be used by the intensity handlers
to produce intensities. A token is active if it is being used

by an intensity handler, otherwise it is idle. While idle tokens
are associated with places, active tokens are associated with
edges. The number of idle tokens in a place pi is denoted

µP [pi], and the number of active tokens in an edge {pi, sl}
is denoted µE [{pi, sl}]. The number of tokens of a place is
equal to its number of idle tokens plus the number of active

tokens in its connected edges. In the net in Figure 1(b), it
holds that m[pa] = µP [pa] + µE [{pa, s2}], m[pb] = µP [pb]
and m[pc] = µP [pc] + µE [{pc, s1}]. This can be expressed in

matrix form as:
m = µP + YmµE (5)

where Ym is a matrix with rows indexed by P , columns
indexed by EP

S , and such that Ym[pi, {pi, sl}] = 1 ∀ {pi, sl} ∈
EP

S and the rest of the elements in Ym are 0.

An intensity handler determines how much intensity is
produced in its arcs as a function of the number of active
tokens in its edges. The intensity produced in an arc (sl, tj) is

denoted ∆λ[(sl, tj)]. Several sets of linear inequalities can be
associated with an intensity arc to define the relation between
the number of active tokens and the intensity produced in the

arc. If there is only one set of linear inequalities, the arc is
unguarded, otherwise it is guarded. For instance, {s1, t1} in
Figure 1(b) is associated with two sets of linear inequalities: a)

r = 4; and b) r = 8 (r and x are shorthands for the intensity in
(s1, t1) and the number of active tokens in {pc, s1}). The arc
{s2, t2} is associated with only one set of linear inequalities:

0.8x ≤ r, r ≤ 1.25x.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

5

Each set of linear inequalities is associated with a region,
Rr, of the state space. It is assumed that the regions are defined

on the state space given by the variables m, µP and µE . More
precisely, each region Rr is a convex polytope of the form:

Rr = {v | Srv ≤ Qr} (6)

where v is a vector containing m, µP and µE , i.e. v =
(m,µP , µE). The set of regions is denoted R.

The state space can be partitioned in different ways to
facilitate the modeling, the set of partitions is denoted P . In

Figure 1(b), there is only one partition, i.e. P = {P1}, that
consists of two regions which will be denoted Rlow and Rup,
i.e. P1 = {Rlow,Rup}, where Rlow is defined as x ≤ 0.5,

and Rup is defined as x > 0.5 (recall that x is shorthand for
µE [{pc, s1}]).

Regions, and in turn their associated set of linear in-
equalities, are assigned to intensity arcs through the function

ϕ : ET
S → 2R, e.g. ϕ({s1, t1}) = {Rlow,Rup}. Each region

Rr ∈ ϕ(e) is a guard of e that is denoted gr. All the regions
in ϕ(e) are assumed to be disjoint. The guard gr is active

when the state is in Rr. In the following, unguarded arcs will
be considered as guarded arcs with a single associated region
Rtrue that is equal to the whole state space. See [20] for more

details on the definition of regions and partitions.
The intensity defined in an arc (sl, tj) by a given

set with guard gr is denoted ∆λU [((sl, tj), gr)]. For

instance, in Figure 1(b), the values of ∆λU are
∆λU [((s1, t1), glow)] = 4, ∆λU [((s1, t1), gup)] = 8,
0.8µE[{pa, s2}] ≤ ∆λU [((s2, t2), gtrue] ≤ 1.25µE[{pa, s2}],
which will be expressed in matrix form as:

C∆λU ≤ DµE (7)

The value of ∆λ[(sl, tj)] is equal to ∆λU [((sl, tj), gr)]
where gr is the guard that is active, e.g. ∆λ[(s1, t1)] =
δlow∆λU [((s1, t1), glow)] + δup∆λU [((s1, t1), gup)] ,
∆λ[(s2, t2)] = ∆λU [((s2, t2), gtrue] where δlow, δup ∈ {0, 1},
δlow = 1 iff µE [{pc, s1}] ≤ 0.5 and δlow + δup = 1. In

matrix form, ∆λ is expressed as:

∆λ = δ∆λU (8)

where δ[e, (e, gr)] = δr (the pair (e, gr) is the index of the
column associated with the guard gr of e) for every e ∈ ET

S

and every guard gr of e, and the rest of the elements of δ are
0. Each δr is a binary variable in {0, 1} such that δr = 1 iff
gr is active.

Similarly to the initial marking of places, an initial, or

default intensity, λ0[tj], can be assigned to each transition
tj . The actual intensity, λ[tj], of tj is obtained by adding
the intensity of its input arcs and subtracting the intensity

of its output arcs, e.g. λ[t1] = λ0[t1] + ∆λ[(s1, t1)] and
λ[t2] = λ0[t2] + ∆λ[(s2, t2)] (in this example there are no
output intensity arcs and λ0[t1] = λ0[t2] = 0). Thus, the in-

tensity, i.e. the rate at which actions are produced, in t1 is equal
to 4 per time unit if the number of active tokens in {pc, s1} is
lower or equal to 0.5, and 8 otherwise. The intensity in t2 is

any value in the interval [0.8µE [{pa, s2}, 1.25µE[{pa, s2}].
The vector λ can be expressed in matrix form as:

λ = λ0 + Zλ∆λ (9)

where Zλ is a matrix with rows indexed by T , columns
indexed by ET

S , and such that Zλ[tj , (tj , sl)] = −1 ∀ (tj , sl) ∈
ET

S , Zλ[tj , (sl, tj)] = 1 ∀ (sl, tj) ∈ ET
S and the rest of the

elements in Zλ are 0,

Definition 4 (Intensity net state): The state of an intensity
net NS is given by the tuple (m,µP , µE ,∆λU ,∆λ, λ), where
m[pi] is the number of tokens in pi, µP [pi] is the number of

idle tokens in pi, µE [{pi, sl}] is the number of active tokens of
pi being used by sl, ∆λU [((sl, tj), gr)] is the intensity defined
in (sl, tj) by guard gr, ∆λ[(tj , sl)] is a decrease of intensity

in tj produced by sl, ∆λ[(sl, tj)] is an increase of intensity
in tj produced by sl, and λ[tj] is the intensity in tj .

Similarly to (4), Equations (5), (7), (8), (9) can be combined
to express necessary reachability conditions for the state of an

intensity net with a given marking m and default intensities
λ0.

Proposition 2 (Intensity net state equations): Let the state
of an intensity net NS be (m,m, 0, 0, 0, λ0), i.e. m idle tokens
are available and no intensity handler is working. Every state

(m,µP , µE ,∆λU ,∆λ, λ) reachable from (m,m, 0, 0, 0, λ0)
belongs to SENS

(m,λ0) where:

SENS
(m,λ0) = {(m,µP , µE ,∆λU ,∆λ, λ)|

m = µP + YmµE

C∆λU ≤ DµE

∆λ = δ∆λU

λ = λ0 + Zλ∆λ}

(10)

where δ is a matrix of binary variables, ∆λU is a vector of

real variables, and the rest of variables are nonnegative real
numbers.

C. Flexible nets

A Flexible Net (FN) consists of an event net and an intensity
net that have the same set of places and the same set of

transitions. For instance, the FN in Figure 1(c) is composed of
the event net in Figure 1(a) and the intensity net in Figure 1(b).

Definition 5 (Flexible net): A Flexible Net (FN) is
a tuple N = (P, T, V, EV , A,B, S,ES , C,D,P , ϕ)
where (P, T, V, EV , A,B) is an event net and

(P, T, S,ES , C,D,P , ϕ) is an intensity net.

While the event net of an FN determines the way actions
produce marking changes, the intensity net determines the way
tokens produce intensity changes.

In order to express the number of actions produced in the
transitions, let us first define the number of actions produced

in the intensity arcs. Let ∆σ(τ) denote the number of actions
produced in the intensity arcs until time τ (∆σ[e](τ) with
e ∈ ET

S denotes the number of actions produced in intensity

arc e). The value of ∆σ(τ) is defined as the integral of ∆λ
over time:

∆σ(τ) =

∫ τ

0

∆λ(s) ds (11)

The overall number of actions, σ[tj](τ), produced in a

transition tj until time τ can be computed by making use
of Zλ, see (9):

σ(τ) = λ0τ + Zλ∆σ(τ) (12)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

6

The state of an FN is composed of the state variables of the
event net, the state variables of the intensity net and ∆σ.

Definition 6 (Flexible net state): The state
x of an FN is given by the tuple x =
(m,µP , µE ,∆λU ,∆λ, λ,∆σ, σ, aT , aE ,∆m).

All the state variables are time dependent. For the sake
of clarity, the time dependency will be omitted when it

is clear from the context, e.g. m(τ) is shortened to m.
At time 0 it holds that ∆σ = 0, σ = 0, aT = 0,
aE = 0, ∆m = 0, i.e. the initial state can be written as:

(m,µP , µE ,∆λU ,∆λ, λ, 0, 0, 0, 0, 0).
In order to account for uncertain initial markings, m0 is

assumed to be constrained by:

Jmm0 ≤ Km (13)

where Jm and Km are real matrices of appropriate size.
Uncertain default intensities can be accounted for similarly,
i.e. λ0 is assumed to be constrained by:

Jλλ0 ≤ Kλ (14)

where Jλ and Kλ are real matrices of appropriate size.
By making use of (4), (10), (11), (12), (13) and (14), it is

possible to write a set of equations that any potential state at

time τ must satisfy.
Proposition 3 (Flexible net state equations): Let N be

an FN with initial marking m0 satisfying Jmm0 ≤ Km,
and default intensities λ0 satisfying Jλλ0 ≤ Kλ. Every
state (m,µP , µE ,∆λU ,∆λ, λ,∆σ, σ, aT , aE ,∆m) reachable

at time τ belongs to SEN (τ, Jm,Km, Jλ,Kλ) where:

SEN (τ, Jm,Km, Jλ,Kλ) =

{(m,µP , µE ,∆λU ,∆λ, λ,∆σ, σ, aT , aE ,∆m)|

m = µP + YmµE ; C∆λU ≤ DµE ; ∆λ = δ∆λU

λ = λ0 + Zλ∆λ; Jλλ0 ≤ Kλ

∆σ =

∫ τ

0

∆λ(s) ds; σ = λ0τ + Zλ∆σ

σ = aT + YσaE ; A∆m ≤ BaE

m = m0 + Zm∆m; Jmm0 ≤ Km}
(15)

where δ is a matrix of binary variables, ∆λU is a vector of

real variables, and the rest of variables are nonnegative real
numbers.

III. STEADY STATE BOUNDS

This section develops a set of constraints that the state

variables must satisfy in the steady state, i.e. the constraints are
necessary reachability conditions. Such a set can be combined
with an objective function in order to compute steady state

bounds. First, the relevant steady state variables are defined,
then state equations for such variables are obtained. These
equations are the basis for the constraints developed.

A. State variables

When analyzing the steady state, some quantities (e.g. the
number of produced actions σ) are meaningless as they might
tend to infinity as time, τ , tends to infinity. However, the rate

at which these quantities change, e.g. the average number of

actions produced per time unit, is meaningful and can be used
to determine conditions that the net must fulfill in the steady

state.
Thus, in addition to the already defined state variables, the

following ones are defined for every time τ > 0 to account

for averages per time unit:

∆στ =
∆σ

τ
; στ =

σ

τ
; aTτ =

aT
τ
; aEτ =

aE
τ
; ∆mτ =

∆m

τ
(16)

Let z be a vector defined as the fol-

lowing concatenation of variables: z =
(m,µP , µE ,∆λU ,∆λ, λ,∆στ , στ , aTτ , aEτ ,∆mτ). It
will be assumed that none of these variables can tend to

infinity.

B. Average state

The average state z̄ as time tends to infinity is defined as:

z̄ = lim
θ→∞

1

θ

∫ θ

0

z(τ) dτ (17)

We say that the net reaches a steady state if the limit defining
z̄ exists. In the following, it is assumed that such a limit exists.

Recall that δr(τ) is a binary variable associated with region

Rr that indicates whether the state is in Rr
1:

δr(τ) =

{

1 if x(τ) ∈ Rr

0 otherwise
(18)

Thus, the time ratio spent by the net in Rr is:

δ̄r = lim
θ→∞

1

θ

∫ θ

0

δr(τ) dτ (19)

Given that each Pn is a partition of the state space, the state

is always in one, and only one, region of Pn. Hence, the sum
of the ratios of the regions in a partition must be equal to 1:

∑

Rr∈Pn

δ̄r = 1 ∀ Pn ∈ P (20)

The average state in region Rr, z̄r, is defined as:

z̄r = lim
θ→∞

1
∫ θ

0 δr(τ) dτ

∫ θ

0

δr(τ)z(τ) dτ (21)

Notice that, if the system never visits a region Rr, then

δr(τ) = 0 for every τ ≥ 0 and z̄r is indeterminate. If Rr

is visited, then by (21) it holds that z̄r ∈ Rr, i.e. z̄r satisfies:

Srz̄r ≤ Qr (22)

where (22) expresses the same inequalities as (6).
Inequality (22) can be slightly modified as follows to take

into account regions that are not visited or are not reachable:

Srz̄r ≤ Qr +W (1 − αr) (23)

where W is a vector such that W ≥ Srx − Qr for every
reachable state x (see Appendix B for methods to compute

W), and αr is a binary variable αr ∈ {0, 1} that indicates if

1In (18) and (22), x and z̄r are used instead of v in (6) in order to reduce
the number of variables and, hence, the columns of Sr that correspond to
variables other than m, µP and µE are set to 0.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

7

the region Rr is visited in the steady state. More precisely,
variable αr is defined as:

αr = 0 ↔ δ̄r = 0 (24)

Expression (24) is difficult to translate and handle as a linear
expression in an exact way. Thus, it will be relaxed to αr =
0 ↔ δ̄r ≤ ǫ where ǫ > 0 is an arbitrarily small quantity, e.g.

the computer’s precision. This expression is equivalent to:

ǫ− δ̄r ≤ 2(1− αr)

ǫ− δ̄r ≥ −2αr

(25)

By making use of (17) and (21), the average state z̄ can be

expressed in terms of z̄r as:

z̄ = lim
θ→∞

1

θ

∫ θ

0

z(τ) dτ = lim
θ→∞

1

θ

∫ θ

0

∑

Rr∈Pn

δr(τ)z(τ) dτ

=
∑

Rr∈Pn

lim
θ→∞

1

θ

∫ θ

0

δr(τ)z(τ) dτ=
∑

Rr∈Pn

δ̄rz̄r ∀ Pn ∈ P

(26)

C. Average state equations

According to (15), the variables in z at time τ > 0 satisfy:

m = µP + YmµE ; C∆λU ≤ DµE ; ∆λ = δ∆λU

λ = λ0 + Zλ∆λ; Jλλ0 ≤ Kλ

∆στ =
1

τ

∫ τ

0

∆λ(s) ds; στ = λ0 + Zλ∆στ

στ = aTτ + YσaEτ ; A∆mτ ≤ BaEτ

m = m0 + Zm∆mτ τ ; Jmm0 ≤ Km

(27)

In (27), every equation, except ∆λ=δ∆λU ,
∆σ=

∫ τ

0
∆λ(s)ds and m=m0 + Zm∆mττ , is linear.

Let us integrate ∆λ=δ∆λU over time to compute the average

intensities ∆λ̄ in arcs.
By (17) and ∆λ=δ∆λU :

∆λ̄ = lim
θ→∞

1

θ

∫ θ

0

δ(τ)∆λU (τ) dτ (28)

Let us consider each component ∆λ̄[e] of ∆λ̄ separately. Then,
as in (26), by the definition of δ and the fact that the regions

in ϕ(e) are disjoint, ∆λ̄[e] in (28) can be expressed as:

∆λ̄[e] = lim
θ→∞

1

θ

∫ θ

0

∑

Rr∈ϕ(e)

δr(τ)∆λU [(e, gr)](τ) dτ

=
∑

Rr∈ϕ(e)

lim
θ→∞

1

θ

∫ θ

0

δr(τ)∆λU [(e, gr)](τ) dτ

=
∑

Rr∈ϕ(e)

δ̄r∆λ̄Ur[(e, gr)]

(29)

where λ̄Ur [(e, gr)] denotes the average intensity in e when the

system is in region Rr, and the pair (e, gr) indexes the element
associated with the guard gr of e. This can be expressed in
matrix form as:

∆λ̄ = δ̄∆λ̄G (30)

where δ̄ has the same size as δ, and it is defined as

δ̄[e, (e, gr)] = δ̄r for every e ∈ ET
S and every Rr ∈ ϕ(e),

and the rest of elements of δ̄ are 0; and ∆λ̄G is indexed by
(e, gr) and it is defined as:

∆λ̄G[(e, gr)] = ∆λ̄Ur [(e, gr)] ∀ e ∈ ET
S , ∀ Rr ∈ ϕ(e) (31)

If region Rr is not reachable (which would imply αr = 0),
then ∆λ̄Ur [(e, gr)] can be negative. In order to avoid assigning

negative values to ∆λ̄G[(e, gr)], (31) can be replaced by:

∆λ̄G[(e, gr)] = αr∆λ̄Ur [(e, gr)] ∀ e ∈ ET
S , ∀ Rr ∈ ϕ(e)

(32)
Average state equations can be obtained by computing the

integral and limit of the equations in (27) as in (17) what
results in:

m̄ = µ̄P + Ymµ̄E ; C∆λ̄U ≤ Dµ̄E ; ∆λ̄ = δ̄∆λ̄G

λ̄ = λ0 + Zλ∆λ̄; Jλλ0 ≤ Kλ

∆σ̄τ = lim
θ→∞

1

θ

∫ θ

0

1

τ

∫ τ

0

∆λ(s) ds dτ = ∆λ̄; σ̄τ = λ̄

σ̄τ = āTτ + YσāEτ ; A∆m̄τ ≤ BāEτ

m̄ = m0 + lim
θ→∞

1

θ

∫ θ

0

Zm∆mτ (τ)τ dτ ; Jmm0 ≤ Km

(33)
Average state equations in regions can be obtained by

computing the integral and limit of (27) as in (21):

m̄r = µ̄Pr + Ymµ̄Er; C∆λ̄Ur ≤ Dµ̄Er; λ̄r = λ0 + Zλ∆λ̄r

σ̄τr = āTτr + YσāEτr; A∆m̄τr ≤ BāEτr;

m̄r = m0 + lim
θ→∞

1
∫ θ

0
δr(τ) dτ

∫ θ

0

δr(τ)Zm∆mτ (τ)τ dτ

(34)
Notice that if Rr ∈ ϕ(e) then ∆λ̄r [e] = ∆λ̄Ur [(e, gr)].

That is, the value of ∆λ̄r can be easily related for those arcs

that have Rr as guard:

∆λ̄r[e] = ∆λ̄Ur [(e, gr)] ∀ e ∈ ET
S , ∀ Rr ∈ ϕ(e) (35)

As in (32), in order to avoid assigning a negative value to

∆λ̄r[e], (35) can be replaced by:

∆λ̄r[e] = αr∆λ̄Ur [(e, gr)] ∀ e ∈ ET
S , ∀ Rr ∈ ϕ(e) (36)

Equations (33) and (34) do not provide straightforward

expressions for the average markings m̄ and m̄r. However,
a condition that m̄ must necessarily satisfy can be obtained
from (15). Equation (15) states that for every reachable mark-

ing there exists σ, aT , aE ,∆m ≥ 0 such that σ = aT +YσaE ,
A∆m ≤ BaE , m = m0 + Zm∆m and Jmm0 ≤ Km.

Since m̄ and m̄r are computed as the average of a number of
reachable markings, there must exist σ, aT , aE ,∆m,m0 ≥ 0
and σr, aTr, aEr,∆mr ≥ 0 for each region Rr such that:

σ = aT + YσaE ; A∆m ≤ BaE ; m̄ = m0 + Zm∆m (37)

σr = aTr + YσaEr; A∆mr ≤ BaEr; m̄r = m0+Zm∆mr

(38)

where m0 satisfies Jmm0 ≤ Km, and variables σ, aT , aE ,∆m
and σr, aTr, aEr,∆mr are just used to express a necessary

condition for the reachability of average markings. That is, the
value of these variables is not informative about the transient
dynamics, i.e. about the evolution of the net from the initial

marking to the average marking in the steady state, e.g. aE

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

8

in (37) must not be interpreted as the number of executed
actions from the initial state to the average steady state.

D. Reachability conditions

In the steady state, the rate of tokens produced in each place
pi and the rate of tokens consumed from pi must necessarily

be the same. This yields the following necessary condition:

Zm∆m̄τ = 0 (39)

Notice that if a given region Rr is contained in a region
Rs, i.e. Rr ⊆ Rs, then it necessarily holds that δ̄r ≤ δ̄s.

This idea can be extended to sets of regions. Let V and W
be the spaces defined as the union of a set of disjoint regions,
e.g. V = . . . ∪ Rr ∪ . . ., and W = . . . ∪ Rs ∪ Then, the
following conditions must hold in the steady state:

∑

Rr∈V

δ̄r ≤
∑

Rs∈W

δ̄s if V ⊆ W (40)

∑

Rr∈V′

δ̄rz̄r =
∑

Rs∈W′

δ̄sz̄s if V ′ = W ′ (41)

In order to enhance the modelling possibilities, the average
intensities in arcs can be related by means of matrices Ec, Fc,

E and F such that the following conditions must hold in the
steady state:

Ec∆λ̄ = Fc (42)

E∆λ̄ ≤ F (43)

Recall that event handlers are not forced to fire. However,
in some cases, it is useful to consider only the states that have

executed all the actions of some transitions. Let TAv ⊆ T be
the set of transitions whose actions must have been executed,
i.e. the number of available actions of tj ∈ TAv must be 0.

Then, the following constraints must hold:

āTτ [tj] = 0 ∀ tj ∈ TAv (44)

Similarly, it is possible to consider only the states in which
all the tokens of some places are active. Let PAv ⊆ P be the

set of places whose tokens must be active, i.e. the number of
idle tokens of pi ∈ PAv must be 0. This can be modeled by:

µ̄P [pi] = 0 ∀ pi ∈ PAv (45)

The obtained conditions can be used to define a set of

constraints such that every potential steady state satisfies them.
Namely, these necessary conditions are: a) equations that relate
the overall state variables: (33), (39) and (37); b) equations

that hold for each region: (23), (34), (38), (25), (32), (36),
and the equations used to define δ̄; c) equations that hold
for each partition: (20), (26); d) equations that hold for

sets of regions: (40), (41); e) equations enforced by the
modeller: (42), (43), (44), (45).

Proposition 4: Let N be an FN with initial marking
m0 satisfying Jmm0≤Km, and default intensities λ0 sat-

isfying Jλλ0≤Kλ. In the steady state, every average state
z̄ = (m̄, µ̄P , µ̄E ,∆λ̄U ,∆λ̄, λ̄,∆σ̄τ , σ̄τ , āTτ , āEτ ,∆m̄τ) be-
longs to SCN (Jm,Km, Jλ,Kλ) where:

SCN (Jm,Km, Jλ,Kλ) =

{z̄ = (m̄, µ̄P , µ̄E ,∆λ̄U ,∆λ̄, λ̄,∆σ̄τ , σ̄τ , āTτ , āEτ ,∆m̄τ)|

m̄ = µ̄P + Ymµ̄E ; C∆λ̄U ≤ Dµ̄E ; ∆λ̄ = δ̄∆λ̄G

λ̄ = λ0 + Zλ∆λ̄; Jλλ0 ≤ Kλ

∆σ̄τ = ∆λ̄; σ̄τ = λ̄; σ̄τ = āTτ + YσāEτ

A∆m̄τ ≤ BāEτ ; Jmm0 ≤ Km

Zm∆m̄τ = 0

σ = aT + YσaE; A∆m ≤ BaE ; m̄ = m0 + Zm∆m

for every Rr ∈ R

Srz̄r ≤ Qr +W (1− αr)

m̄r = µ̄Pr + Ymµ̄Er; C∆λ̄Ur ≤ Dµ̄Er

λ̄r = λ0 + Zλ∆λ̄r

σ̄τr = āTτr + YσāEτr; A∆m̄τr ≤ BāEτr

σr = aTr + YσaEr; A∆mr ≤ BaEr

m̄r = m0 + Zm∆mr

ǫ− δ̄r ≤ 2(1− αr); ǫ − δ̄r ≥ −2αr

for every e ∈ ET
S such that Rr ∈ ϕ(e)

∆λ̄G[(e, gr)] = αr∆λ̄Ur [(e, gr)]

∆λ̄r [e] = αr∆λ̄Ur [(e, gr)]

δ̄[e, (e, gr)] = δ̄r

for every e′ ∈ ET
S such that e′ 6= e

δ̄[e′, (e, gr)] = 0

for every Pn ∈ P
∑

Rr∈Pn

δ̄r = 1

z̄ =
∑

Rr∈Pn

δ̄rz̄r

for every V ,W such that V ⊆ W
∑

Rr∈V

δ̄r ≤
∑

Rs∈W

δ̄s

for every V ′,W ′ such that V ′ = W ′

∑

Rr∈V′

δ̄r =
∑

Rs∈W′

δ̄s

∑

Rr∈V′

δ̄rz̄r =
∑

Rs∈W′

δ̄sz̄s

Ec∆λ̄ = Fc; E∆λ̄ ≤ F

āTτ [tj] = 0 ∀ tj ∈ TAv

µ̄P [pi] = 0 ∀ pi ∈ PAv}
(46)

where every variable, except ∆λ̄U and ∆λ̄Ur , is nonnegative,

and every αr ∈ {0, 1}.

The constraints (46) allow the system to visit different
regions during steady state. In other words, the system can

switch over the regions while keeping the overall average

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

9

marking constant. These constraints can be slightly modified
to forbid the switch between regions, hence focusing on steady

states that keep the same constant marking over time. If the
state of the system is forced to be only in one region during
the steady state, then δ̄r = αr for every Rr ∈ R, and (46)

can be reformulated as:

SCN (Jm,Km, Jλ,Kλ) =

{z̄ = (m̄, µ̄P , µ̄E ,∆λ̄U ,∆λ̄, λ̄,∆σ̄τ , σ̄τ , āTτ , āEτ ,∆m̄τ)|

m̄ = µ̄P + Ymµ̄E ; C∆λ̄U ≤ Dµ̄E ; ∆λ̄ = α∆λ̄G

λ̄ = λ0 + Zλ∆λ̄; Jλλ0 ≤ Kλ

∆σ̄τ = ∆λ̄; σ̄τ = λ̄; σ̄τ = āTτ + YσāEτ

A∆m̄τ ≤ BāEτ ; Jmm0 ≤ Km

Zm∆m̄τ = 0

σ = aT + YσaE ; A∆m ≤ BaE ; m̄ = m0 + Zm∆m

for every Rr ∈ R

Srz̄r ≤ Qr +W (1− αr)

m̄r = µ̄Pr + Ymµ̄Er; C∆λ̄Ur ≤ Dµ̄Er

λ̄r = λ0 + Zλ∆λ̄r

σ̄τr = āTτr + YσāEτr; A∆m̄τr ≤ BāEτr

σr = aTr + YσaEr; A∆mr ≤ BaEr

m̄r = m0 + Zm∆mr

for every e ∈ ET
S such that Rr ∈ ϕ(e)

∆λ̄G[(e, gr)] = αr∆λ̄Ur [(e, gr)]

∆λ̄r [e] = αr∆λ̄Ur [(e, gr)]

α[e, (e, gr)] = αr

for every e′ ∈ ET
S such that e′ 6= e

α[e′, (e, gr)] = 0

for every Pn ∈ P
∑

Rr∈Pn

αr = 1

z̄ =
∑

Rr∈Pn

αrz̄r

for every V ,W such that V ⊆ W
∑

Rr∈V

αr ≤
∑

Rs∈W

αs

for every V ′,W ′ such that V ′ = W ′

∑

Rr∈V′

αr =
∑

Rs∈W′

αs

∑

Rr∈V′

αrz̄r =
∑

Rs∈W′

αsz̄s

Ec∆λ̄ = Fc; E∆λ̄ ≤ F

āTτ [tj] = 0 ∀ tj ∈ TAv

µ̄P [pi] = 0 ∀ pi ∈ PAv}
(47)

where α[e, (e, gr)] = αr for every e ∈ ET
S and every guard

gr of e, and the rest of the elements of α are 0.

If the net is not guarded, i.e. all the intensity arcs are

unguarded, the above conditions reduce to:

SCN (Jm,Km, Jλ,Kλ) =

{z̄ = (m̄, µ̄P , µ̄E ,∆λ̄, λ̄,∆σ̄τ , σ̄τ , āTτ , āEτ ,∆m̄τ)|

m̄ = µ̄P + Ymµ̄E ; C∆λ̄ ≤ Dµ̄E

λ̄ = λ0 + Zλ∆λ̄; Jλλ0 ≤ Kλ

∆σ̄τ = ∆λ̄; σ̄τ = λ̄; σ̄τ = āTτ + YσāEτ

A∆m̄τ ≤ BāEτ ; Jmm0 ≤ Km

Zm∆m̄τ = 0

σ = aT + YσaE ; A∆m ≤ BaE ; m̄ = m0 + Zm∆m

Ec∆λ̄ = Fc; E∆λ̄ ≤ F

āTτ [tj] = 0 ∀ tj ∈ TAv

µ̄P [pi] = 0 ∀ pi ∈ PAv}
(48)

where C is indexed by the set of intensity arcs, and
C∆λ̄ ≤ Dµ̄E captures how active tokens produce intensity

in the intensity arcs.

IV. STEADY STATE ANALYSIS

This section demonstrates the usefulness of the bounds

derived in Section III by analyzing the potential steady states
of three FNs with different features.

A. Assessing constant steady state

Let us consider the FN in Figure 1(c) with TAv = {t1, t2}
and PAv = {pa}, i.e. the actions of both transitions are forced

to be executed at the same rate at which they are produced,
and the tokens in pa are forced to be always active. The initial
marking of pa and the default intensities of the transitions are

0 and are not written in the figure. Thus, the steady state of the
system depends on: a) the number of active tokens in {pc, s1}
and b) the intensity that s2 produces in (s2, t2) by using the

tokens in {pa, s2}. Both a) and b) can be interpreted either
as uncertain parameters, i.e. any steady state that satisfies the
system constraints is feasible, or as control actions that can

be applied on the system to achieve a given goal, e.g. the
number of active tokens in {pc, s1} is interpreted as a control
action that determines the intensity in t1. In any case, the

constraints obtained in Section III-D can be used to bound
all the potential steady states arising from a) and b). These
constraints will be combined with an objective function (this

results in a programming problem) in order to compute steady
state bounds of interest.

Recall that, in Section III-D, two sets of constraints for
guarded nets were developed. While the set (46) allows the

steady state to switch among the different regions, i.e. the
average state is the result of the average state in the regions
that are visited, the set (47) does not allow the system

to switch among regions. The net in Figure 1(c) will be
used to assess both (46) and (47). The different objective
functions considered and some of the steady state values are

summarized in Table II. The columns below “Steady state”
correspond to (46), and the columns below “Constant steady
state” correspond to (47).

The objective function in the first row in Table II is to

maximize the average marking of pa, m̄[pa]. Notice that in the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

10

Objective function and constraints
Steady state Constant steady state

m̄[pa] λ̄[t1] λ̄[t2] δ̄low m̄[pa] λ̄[t1] λ̄[t2] αlow

max m̄[pa] 10.1 8.08 8.08 0.01 10.0 8.0 8.0 0

min m̄[pa] 3.136 3.92 3.92 0.99 3.2 4.0 4.0 1

min (m̄[pa]− 6.0)2 6.0 5.56 5.56 0.59 6.4 8.0 8.0 0

max δ̄low subject to m̄[pa]=6.0 6.0 4.8 4.8 0.83 – – – –

min δ̄low subject to m̄[pa]=6.0 6.0 7.48 7.48 0.1 – – – –

TABLE II: Steady state values of the FN in 1(c) for different objective functions.

steady state it necessarily holds that λ̄[t1] = λ̄[t2] (otherwise

the markings would either increase or decrease indefinitely).
Then, given that λ̄[t2] depends on m̄[pa], the maximum value
of m̄[pa] is achieved when λ̄[t2] takes its maximum value (i.e.

8.0) which is obtained when the system is in region Rup (the
number of active tokens in {pc, s1} is higher than 0.5).

At first glance, it is surprising that the value of λ̄[t1] under
“Steady state” is 8.08. This is due to the linear approximation
of δ̄∆λ̄G and δ̄rz̄r by the constraints in Appendix A (the

values of dj in (50) were set to j/100, this implies that a
value of δ̄low equal to 0.01 allows the solver to assign 8.08
to λ̄[t1]). This numerical approximation error does not happen

under “Constant steady state” as only one region is allowed
to be visited (αlow = 0 implies αup = δ̄up = 1) and no linear
approximation of a multiplication is required. Notice that the

maximum m̄[pa] is obtained when s2 produces the minimum
possible intensity in (s2, t2) per active token in {pa, s2}.

The objective function in the second row in Table II is to
minimize the average marking of pa. This is achieved by
keeping the system in region Rlow and by producing the

maximum possible intensity in (s2, t2). As in the previous
case, numerical errors happen under “Steady state” but not
under “Constant steady state”.

From a control perspective, the maximum(minimum) aver-
age marking in pa is obtained by allocating more(less) than

0.5 tokens in {pc, s1} and producing the minimum(maximum)
possible intensity in (s2, t2) per active token in {pa, s2}.

The quadratic objective function in the third row in Table II
implies that an average marking of pa as close as possible to 6
is desired. Notice that, according to the inequalities associated

with s2, if m[pa] = 6 then λ[t2] ∈ [4.8, 7.5]. Given that
λ[t1] = 4 when the system is in Rlow and λ[t1] = 8 when it is
in Rup, a steady state that visits just one region and satisfies

m̄[pa] = 6.0 is not possible (remember that, in the steady state,
λ̄[t1] = λ̄[t2] must hold). In fact, if only one region is allowed
to be visited in the steady state, then the closest value of m̄[pa]
to 6 is 6.4 (see columns below “Constant steady state”). This
marking can be reached when the system is exclusively in
region Rup, i.e. αlow = 0.

If the system is allowed to switch between regions in the
steady state, then a state with m̄[pa] = 6.0 can be achieved
(see columns below “Steady state”). The value δ̄low = 0.59
is the time ratio spent by the system in region Rlow during
the steady state. Notice, however, that given the inequalities
associated with s2, the average marking m̄[pa] = 6.0 can be

obtained with other time ratios.

The objective functions in the last two rows in Table II are

used to compute the interval of time ratios, δ̄low, that allow

a steady state with m̄[pa] = 6.0. This interval is computed

by maximizing and minimizing δ̄low subject to the constraint
m̄[pa] = 6.0. The solutions of the resulting programming
problems state that δ̄low must be in the interval [0.1, 0.83]
so that m̄[pa] = 6.0 is achieved. Notice that the variable
δ̄low does not exist in the set (47), and hence, the proposed
objective functions in the last two rows do not make sense

under “Constant steady state”.

B. Handling uncertainties

The FN in Figure 2(a) consists of 5 places, 3 transitions,

5 event handlers, and 2 intensity handlers. For clarity, the
inequalities of handlers that make the values of all their arcs
and edges equal are omitted, e.g. the equations a = b = v of

v2 is omitted. Thus, the only equations written in the Figure
are the ones associated with s1 (see below s1). The initial
markings and default intensities that are 0 are also omitted.

The initial marking of p1 is uncertain but constrained to the
interval [1, 2]. Similarly, the default intensity of t2 is uncertain
but constrained to [1, 2]. All the tokens in places p2, p4 and

p5 are assumed to be active, i.e. PAv = {p2, p4, p5}, and all
the actions in the three transitions are forced to be executed
instantaneously, i.e. TAv = {t1, t2, t3}.

Notice that v1 is not connected to any transition, this means
that v1 can fire as soon as there are tokens in p1 and p2. This
is, however, not equivalent to an immediate transition since v1
is not forced to fire as soon as there are tokens.

Intensity handler s1 models the inhibition of t1 by p4. More
precisely, if the marking of p4 is less than or equal to 1.0, then

the rate at which actions are produced in t1 (and in turn, the
rate at which tokens from p2 are consumed) is equal to the
marking in p2. If the marking of p4 is greater than 1.0, then no

actions are produced in t1, and hence no token is consumed
from p2.

Transition t2 models a nondeterministic choice, i.e. the

actions produced in t2 can be used either to consume tokens
from p3 and produce in p1 and p5, or to consume tokens from
p4 and produce in p5.

The constraints in (47) will be used to account for all the
possible steady states that arise from the existing uncertainties
in the FN (recall that (47) focuses on steady states that do not

switch between regions). The goal is to compute upper bounds
for λ̄[t1], i.e. the objective function is max λ̄[t1].

Figure 2(b) shows the obtained upper bounds of λ̄[t1]
for different initial markings of p2. Several trends can be
appreciated in the Figure. Notice that, in the steady state, the
rate at which tokens are produced in p5 (event handlers v3 and

v4) must be equal to the rate at which tokens are consumed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

11

0 1 2 3 4 5 6 7 8 9
m0[p2]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

λ[
t 1
]

(a) (b)

p1 p2

p3 p4

p5

1 ≤ m0[p1] ≤ 2

t1

t2

t3

1 ≤ λ0[t2] ≤ 2

v1 v2
v

a

b

v3 v4

v5

s1

s1:

{

r=x if y≤1.0

r=0 otherwise

x

y

r

s2

Fig. 2: (a) FN with uncertain initial marking, uncertain default intensity and choice in the process modeled by t2. (b) Steady

state bounds of λ̄[t1] for different values of m0[p2].

from p5 (event handler v5). Thus, in the steady state, it must

hold that λ̄[t2] = λ̄[t3].

Given that λ̄[t3] = m̄[p5] (see s2) and m̄[p5] is at most
equal to m0[p2] (see net structure), the value of λ̄[t3] is upper

bounded by m0[p2]. Since λ0[t2] is required to be at least 1,
the set of constraints (47) cannot be satisfied for low values
of m0[p2]. More precisely, if m0[p2] is in the interval [0, 1),
the constraints (47) cannot be satisfied and the programming
problem becomes infeasible (infeasibility is depicted as red
stars in Figure 2(b)).

If m0[p2] = 1, the initial token of p2 can be moved to p5
in order to produce one intensity unit in t3, this results in a
feasible steady state at which λ̄[t1] = 0 and λ̄[t2] = λ̄[t3] = 1.
In general, for m0[p2] ∈ [1, 2], one token of p2 can be moved

to p5, and m0[p2] − 1 can be left in p2 to produce intensity
in t1. This leads to the linear increase of λ̄[t1] in Figure 2(b)
in the interval m0[p2] ∈ [1, 2].

If m0[p2] = 2, the steady state reached satisfies λ̄[t1] =
λ̄[t2] = λ̄[t3] = m̄[p2] = m̄[p5] = 1 and all the actions
produced in t2 are used by v4. If m0[p2] is increased further,
its tokens must be used to increase both the intensity of t1
and t3. This results in the linear increase with slope 0.5 in
Figure 2(b) in the interval m0[p2] ∈ [2, 4].

If m0[p2] = 4 then in the steady state λ̄[t1] = λ̄[t2] =
λ̄[t3] = m̄[p2] = m̄[p5] = 2 holds, i.e. the intensity of t2
is at its maximum. Hence, no steady state is possible with
λ̄[t1] > 2. If m0[p2] is increased further, 2 tokens can be
moved to p5, 2 tokens can be left in p2 and m0[p2]−4 can be

moved either to p3 or p4. Thus, in the interval m0[p2] ∈ [4, 7],
the upper bound of λ̄[t1] keeps constant at 2.

If m0[p2] = 7 then the steady state reached satisfies
m̄[p1] = 0, m̄[p2] = 2, m̄[p3] = 2, m̄[p4] = 1 and m̄[p5] = 2.

Notice, that at this point the average marking of p3 is at its

maximum (recall that 1 ≤ m0[p1] ≤ 2), thus if m0[p2] is

increased further, more than one token needs to be moved
to p4 leading to the inhibition of t1 by s1. This results in
λ̄[t1] = 0 for m0[p2] > 7.

C. Shared resources

The FN in Figure 3 models a system in which shared

resources can be used to activate the system processes. More
precisely, the tokens in X can be used to produce intensity in
t1 or t2, and the tokens in Y can be used to produce intensity

in t2 or to synchronize with tokens in C to produce intensity
in t4. Thus, while the intensity in t2 is the result of adding the
intensities in {s2, t2} and {s3, t2}, the intensity in t4 is the

minimum of the active tokens in {Y, s5} and {C, s5} (such a
minimum can be easily expressed by means of two regions).

If the FN is interpreted as a biochemical network, X and

Y would model enzymes that catalyze reactions: enzyme X
can catalyze the reactions modeled by v1 (i.e. E → A) and v2
(i.e. E → C); enzyme Y can catalyze the reactions modeled

by v2 and v4 (i.e. C → D), being the rate of this last reaction
equal to the minimum concentration of Y and C. Transition t5
together with v5 and s6 would model a reaction B+2D → 3E
with a rate equal to max(min(b, d)−4, 0) where b and d are
the concentrations of B and D involved in the reaction, i.e.
both b and d must be at least 4 for the reaction to happen, and

the rate is given by the minimum of the concentrations minus
4.

Notice that v5 imposes a synchronization between the

branch composed of A and B, and the branch composed of C
and D. In particular, the equations associated with v5 imply
that, in the steady state, the number of tokens consumed from

D per time unit has to be twice as much the number of tokens

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

12

X

Y

A

B

C

D

E

5

20

t1 t2

t3 t4

t5

v1 v2

v3
v4

v5:b=v;d=2v;e=3v

v

s1 s2

s3

s4

s5:r=min(y, c)

y

c

s6:r=max(min(b, d)−4, 0)

r

r

b

b

d

d

e

Fig. 3: FN with shared resources X and Y regulating the speeds of transitions t1, t2 and t4.

consumed from B per time unit. In other words, the intensity

of t4 in the steady state must be twice the intensity of t3.
The actions of all the transitions in Figure 3 are forced

to fire, i.e. TAv = T , and no token is forced to be active,
i.e. PAv = {}. The focus will be on constant steady states
(see (47)) that maximize the objective function λ̄[t5], i.e. the

rate or flux of the reaction modeled by t5.
Figure 4(a) shows the value of the objective function, λ̄[t5],

for initial markings of Y in the range [0, 10]. Three different

modes of operation can be distinguished in the figure that
depend on m0[Y]:

• m0[Y] ∈ [0, 10/3]: The intensities in t1 and t2 are
produced exclusively by the tokens in X (see Figure 4(b)

and (c) showing the number of active places in intensity
edges). Given the synchronization forced by v5, twice as
many active tokens are used in {X, s2} than in {X, s1}.

All the tokens in Y are used to produce intensity in t4.
• m0[Y] ∈ (10/3, 7]: All the tokens in X are active. The

ratio of active tokens between {X, s2} and {X, s1} is
now less than 2 because Y is also using some of its

tokens to produce intensity in t2.
• m0[Y] ∈ (7, 10]: If m0[Y] = 7, all the tokens in X , Y ,

and E are used to produce intensities, more precisely, in

the steady state it holds that m̄[A] = 2.4, m̄[B] = 6.4,
m̄[C] = 4.8, m̄[D] = 6.4, m̄[E] = 0.0. Thus, if
m0[Y] > 7, the tokens in m0[E] will be limiting the

intensities (namely in t3, t4 and t5) and, hence, the
objective function cannot be increased further.

All the methods to analyse the steady state of FNs
have been implemented in the software tool fnyzer

(https://bitbucket.org/Julvez/fnyzer.git)
which makes use of Pyomo [18], Gurobi [17] and CPLEX [1]
to build and solve the associated programming problems.

The CPU time to solve the most CPU-demanding problem
toghether with the computation of the required auxiliary
bounds was 0.86 seconds (Intel i7, 2.00 GHz, 8 GiB, Ubuntu

14.04 LTS).

V. CONCLUSIONS

FNs is a powerful modeling formalism that allows the incor-
poration of different types of uncertainties in a single model,

e.g. uncertainties in the initial markings, initial intensities,
marking changes produced by the processes and intensities
produced by the marking. Moreover, FNs can handle nonlinear

dynamics in a natural way by means of guards associated with
the intensity arcs.

This paper has devised and implemented a mathematical
method to analyse the steady state behavior of FNs. The

method is based on the development of a set of constraints that
the FN necessarily satisfies in the steady state. In particular,
two different sets of constraints have been developed, one of

them assumes that the system can switch among guards during
the steady state, and the other assumes that a constant steady
state is reached. These constraints, together with an objective

function on the state variables, result in a programming
problem whose solution represents a bound of the system in
the steady state. Under a control perspective, uncertainties can

be used to model input constraints, and hence, the solution of
the programming problem would contain the values of the
input actions that optimize the given objective function.

APPENDIX A

RELAXING NONLINEAR CONSTRAINTS

The equations αr∆λ̄Ur [(e, gr)], δ̄∆λ̄G, δ̄rz̄r and αrz̄r

in (46) and (47), are not linear and hence could be difficult

to handle by a solver. Such constraints can be relaxed and
approximated by inequalities containing real and binary vari-
ables [5]. This Appendix shows how such an approximation

can be carried out.

A. Linear approximations

Notice that, while αr∆λ̄Ur [(e, gr)] and αrz̄r involve the

multiplication of a binary variable and a real variable, δ̄∆λ̄G

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

13

0 1 2 3 4 5 6 7 8 9 10
m0 [Y]

0.0

0.5

1.0

1.5

2.0

2.5

λ[t5]

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6

µE[{Y,s3 }]

0 1 2 3 4 5 6 7 8 9 10
m0 [Y]

0
1
2
3
4
5
6

µE[{Y,s5 }]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4
µE[{X,s1 }]

0 1 2 3 4 5 6 7 8 9 10
m0 [Y]

0

1

2

3

4
µE[{X,s2 }]

(a) (b) (c)

Fig. 4: (a) Steady state bounds of λ̄[t5] in Figure 3. (b), (c) Allocation of resources X and Y .

and δ̄rz̄r involve the multiplication of two real variables, one
of them in the interval [0, 1].

The product y = αw where α ∈ {0, 1} and w ∈ [wl, wu]
can be linearized as:

y ≤ αwu

y ≥ αwl

y ≤ w − wl(1− α)

y ≥ w − wu(1− α)

(49)

This linearization can be used directly on the multiplications
containing binary variables and real variables. The values of
wl and wu do not need to be tight, and they can be computed

by using the methods in Appendix B. As only ∆λU , ∆λ̄U

and ∆λ̄Ur can get negative values, wl in (49) can be taken
as 0 for the multiplications not involving any of these three

variables.

Let us now focus on equations of the form v = φu where
both φ and u are nonnegative real variables and φ ∈ [0, 1]. Let

us partition the interval [0, 1] in q intervals [0, d1], [d1, d2], ...,
[dq−1, 1] and let us define q−1 binary variables βj ∈ {0, 1}
as follows:

βj = 1 ↔ φ ≥ dj ∀j ∈ {1, q−1} (50)

As in (25), such a necessary and sufficient condition can be

modeled by including in the set of constraints the following
inequalities:

dj − φ ≤ 2(1− βj) ∀j ∈ {1, q−1} (51)

dj − φ ≥ −2βj ∀j ∈ {1, q−1} (52)

In order to avoid that φ = dj can occur for several values of
φ and dj (this can imply a loss of accuracy because βj can be
either 0 or 1, see first objective function in Subsection IV-A)

uneven intervals [dj−1, dj] can be considered.

The product v = φu, where φ ∈ [0, 1] and u ≥ 0, can be

replaced and bounded by the following inequalities:

q−1
∑

j=1

βj(dj − dj−1)

 u ≤ v ∀j ∈ {1, q−1}

v ≤

1−

q−1
∑

j=1

(1− βj)(dj+1 − dj)

u ∀j ∈ {1, q−1}

(53)

where d0 and dq are defined as d0 = 0 and dq = 1.

The products of binary variables with real variables in (53)

can be linearized by using the inequalities in (49).

Note that, ∆λ̄Ur can be negative and hence the above

approach cannot be used to compute the multiplication δ̄rz̄r

corresponding to the components ∆λ̄Ur . However, as the
systems dynamics is driven by ∆λ̄Ur (and in turn by ∆λ̄G)

and not by ∆λ̄U =
∑

Rr∈Pn

δ̄r∆λ̄Ur, such multiplications

corresponding to ∆λ̄Ur can be ignored. Similarly, ∆λ̄r and
λ̄r do not play a role in the system dynamics either, and their
multiplications in δ̄rz̄r can be ignored.

B. Average variables

The relaxation δ̄rz̄r in (46) can be improved in the follow-

ing cases: a) a given variable in z̄r is known to be 0; b) a
given region Rr is not visited and hence δ̄r is 0; c) only one
region Rr of a given partition is visited.

Case a): Variables āTτ and µ̄P are 0 for those transitions that
are required to be executed instantaneously, and those places

whose tokens must always be active. Thus, equations

µ̄Pr[pi] = 0 ∀ pi ∈ PAv, ∀ Rr ∈ R

āTτr[tj] = 0 ∀ tj ∈ TAv, ∀ Rr ∈ R

can be added to (46) and (47).

Case b): If Rr is not visited then αr is 0. Hence the constraint:

δ̄rz̄r ≤ αrwu ∀ Rr ∈ R (54)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

14

can be used to improve the product δ̄rz̄r for every nonnegative
z̄r, i.e. ∆λ̄Ur is excluded from δ̄rz̄r, where wu is an upper

bound for z̄r.

Case c): If only one region Rr of a given partition is visited,

then z̄ should be equal to z̄r, and ∆λ̄[e] should be equal to
∆λ̄G[(e, gr)]. This can be achieved by defining an auxiliary
binary variable γr such that γr = 1 iff Rr is the only region

visited of its partition. The value of γr can be computed by
the following constraints:

1− ǫ ≤ δ̄r + 2(1− γr) ∀ Rr ∈ R (55)

1− ǫ ≥ δ̄r − 2γr ∀ Rr ∈ R (56)

In order to avoid numerical issues, δ̄r can be set exactly

to 0 for those regions that are not visited with the following
constraint:

δ̄r ≤ αr ∀ Rr ∈ R (57)

Then, the constraints below can be added to set z̄ = z̄r

where Rr is the only visited region of its partition:

z̄ ≤ z̄r + wu(1− γr) ∀ Rr ∈ Pn (58)

z̄ ≥ z̄r − 2wu(1− γr) ∀ Rr ∈ Pn (59)

where wu is an upper bound for z̄.

Similarly, ∆λ̄[e] = ∆λ̄G[(e, gr)] can be obtained by:

∆λ̄[e]≤∆λ̄G[(e, gr)]+wu(1 − γr) ∀ e ∈ ET
S , ∀ Rr ∈ ϕ(e)

(60)

∆λ̄[e]≥∆λ̄G[(e, gr)]−2wu(1− γr) ∀ e ∈ ET
S , ∀ Rr ∈ ϕ(e)

(61)

where wu is an upper bound for ∆λ.

APPENDIX B

AUXILIARY BOUNDS

This Appendix proposes methods to compute bounds to

linearize αr∆λ̄Ur [(e, gr)], δ̄∆λ̄G, δ̄rz̄r and αrz̄r (see Ap-
pendix A) and components of W in (46) and (47). For
simplicity, it will be assumed that ∆λU is bounded by the

constraint C∆λU ≤ DµE .

Let us consider the following set of constraints based

on (15):

Cun = {m = µP + YmµE ; C∆λU ≤ DµE

σ = aT + YσaE ; A∆m ≤ BaE

m = m0 + Zm∆m; Jmm0 ≤ Km}

(62)

The constraints in (62) can be used to computed auxiliary
bounds for the steady state. Namely, wl and wu for the

linearization of δ̄∆λ̄G and αr∆λ̄Ur [(e, gr)] can be computed
with:

wl = min
(e,gr)

e∈ET

S
,Rr∈ϕ(e)

{min{∆λU [(e, gr)|Cun}}

wu = max
(e,gr)

e∈ET

S
,Rr∈ϕ(e)

{max{∆λU [(e, gr)|Cun}}
(63)

Consider the following constraints:

Cst = {m̄ = µ̄P + Ymµ̄E ; C∆λ̄U ≤ Dµ̄E

λ̄ = λ0 + Zλ∆λ̄; Jλλ0 ≤ Kλ

∆λ̄[e] ≤ wu ∀e ∈ ET
S

σ̄τ = λ̄; σ̄τ = āTτ + YσāEτ

A∆m̄τ ≤ BāEτ ; Jmm0 ≤ Km

Zm∆m̄τ = 0

σ = aT + YσaE ; A∆m ≤ BaE

m̄ = m0 + Zm∆m}

(64)

where wu is computed according to (63).
The value w′

u for the linearization of δ̄rz̄
′
r in (46) and for

the multiplication αrz̄
′
r in (47) by (49), where z̄

′
r is the result

of removing the components ∆λ̄Ur , ∆λ̄r and λ̄r from z̄r, can

be computed by:

w′
u = max{1m̄+ 1λ̄+ 1∆m̄τ |Cst} (65)

In the objective function of (65), the terms 1m̄; 1λ̄; and 1∆m̄τ

guarantee and upper bound for m̄, µ̄P and µ̄E ; σ̄τ , āTτ and

āEτ ; and ∆m̄τ respectively. A trivial value for w′
l for the

linearization of δ̄rz̄
′
r is 0.

Finally, all the components of W in (46) and (47) can be
computed by the following linear program:

w = max{
∑

Rr∈R

∑

k

(

∑

l

|Sr[k, l]|x[l] + |Qr[k]|
)

|Cun}

(66)
where k and l are the indices for the rows and columns of Sr.

Notice that in (66), the constraint C∆λU ≤ DµE in Cun can
be removed as the columns of Sr that correspond to ∆λU ,
∆λ and λ are assumed to be 0.

REFERENCES

[1] IBM ILOG CPLEX Optimizer, 2010.
[2] A. Ahangarani and A. Dideban. Continuous-Time Delay-Petri Nets as

a new tool to Design State Space Controller. Information Technology
And Control, 45, 01 2017.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. Wiley, 1995.

[4] F. Balduzzi, A. Giua, and G. Menga. First-order hybrid Petri nets: a
model for optimization and control. IEEE Transactions on Robotics
and Automation, 16(4):382–399, Aug 2000.

[5] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35(3):407–427, March 1999.

[6] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of
Process Algebra. Elsevier Science Inc., New York, NY, USA, 2001.

[7] B. Berthomieu and M. Diaz. Modeling and Verification of Time
Dependent Systems Using Time Petri Nets. IEEE Trans. on Software
Engineering, 17(3):259–273, 1991.

[8] J. Billington and G. E. Gallasch. On Parametric Steady State Analysis
of a Generalized Stochastic Petri Net with a Fork-join Subnet. In
Proceedings of the 32Nd International Conference on Applications and
Theory of Petri Nets, pages 268–287, Berlin, Heidelberg, 2011. Springer-
Verlag.

[9] A. Bordbar, J. M. Monk, Z. A. King, and B. Ø. Palsson. Constraint-
based models predict metabolic and associated cellular functions. Nature
Reviews Genetics, 15:107–120, 2014.

[10] J. Campos, G. Chiola, and M. Silva. Properties and Performance Bounds
for Closed Free Choice Synchronized Monoclass Queueing Networks.
IEEE Transactions on Automatic Control, 36(12):1368–1382, December
1991.

[11] G. Caravagna, A. d’Onofrio, M. Antoniotti, and G. Mauri. Stochastic
hybrid automata with delayed transitions to model biochemical systems
with delays. Information and Computation, 236:19 – 34, 2014. Special
Issue on Hybrid Systems and Biology.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2931836, IEEE
Transactions on Automatic Control

15

[12] F. Ciocchetta and J. Hillston. Bio-PEPA: An Extension of the Process
Algebra PEPA for Biochemical Networks. Electron. Notes Theor.
Comput. Sci., 194(3):103–117, January 2008.

[13] A. Clark, S. Gilmore, J. Hillston, and M. Tribastone. Stochastic
Process Algebras, pages 132–179. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[14] P.J.L. Cuijpers and M.A. Reniers. Hybrid process algebra. The Journal
of Logic and Algebraic Programming, 62(2):191 – 245, 2005.

[15] R. David and H. Alla. Discrete, Continuous and Hybrid Petri Nets.
Springer, Berlin, 2004. (2nd edition, 2010).

[16] M. Dotoli, M.P. Fanti, A. Giua, and C. Seatzu. First-order hybrid Petri
nets. An application to distributed manufacturing systems. Nonlinear
Analysis: Hybrid Systems, 2(2):408 – 430, 2008. Proceedings of the In-
ternational Conference on Hybrid Systems and Applications, Lafayette,
LA, USA, May 2006: Part II.

[17] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2015.
[18] W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff. Pyomo–

Optimization Modeling in Python, volume 67. Springer Science &
Business Media, 2012.

[19] T. A. Henzinger. The Theory of Hybrid Automata. In Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science, LICS
’96, pages 278–, Washington, DC, USA, 1996. IEEE Computer Society.

[20] J. Júlvez, D. Dikicioglu, and S. G. Oliver. Handling variability and
incompleteness of biological data by flexible nets: a case study for
Wilson disease. npj Systems Biology and Applications, 4(1):7, 1 2018.

[21] J. Júlvez and S. G. Oliver. Modeling, analyzing and controlling hybrid
systems by Guarded Flexible Nets. Nonlinear Analysis: Hybrid Systems,
32:131 – 146, 2019.

[22] J. Júlvez, L. Recalde, and M. Silva. Steady-state performance evaluation
of continuous mono-T-semiflow Petri nets. Automatica, 41(4):605 – 616,
2005.

[23] N. Lynch, R. Segala, and F. Vaandrager. Hybrid i/o automata. Informa-
tion and Computation, 185(1):105 – 157, 2003.

[24] T. Murata. Petri Nets: Properties, Analysis and Applications. Procs. of
the IEEE, 77(4):541–580, 1989.

[25] B. Øksendal. Stochastic Differential Equations: An Introduction with
Applications (Universitext). Springer, Berlin, Heidelberg, New York,
6th edition, sep 2010.

[26] J. Orth, I. Thiele, and B.Ø. Palsson. What is flux balance analysis?
Nature biotechnology, 28:245–248, 03 2010.

[27] J. D. Orth, T. M Conrad, J. Na, J. A Lerman, H. Nam, A. M Feist,
and B. Ø. Palsson. A comprehensive genome-scale reconstruction of
Escherichia coli metabolism–2011. Molecular Systems Biology, 7(1),
2011.

[28] O. Pourret, P. Naı̈m, and B. Marcot. Bayesian Networks: A Practical
Guide to Applications. Statistics in Practice. Wiley, 2008.

[29] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of
a stochastic name-passing calculus to representation and simulation of
molecular processes. Information Processing Letters, 80(1):25 – 31,
2001. Process Algebra.

[30] L. Recalde and M. Silva. Petri Nets Fluidification revisited: Semantics
and Steady state. APII-JESA, 35(4):435–449, 2001.

[31] W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis
Methods, Case Studies. Springer Publishing Company, Incorporated,
2013.

[32] I. Shmulevich and E. R. Dougherty. Probabilistic Boolean Networks:
The Modeling and Control of Gene Regulatory Networks. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009.

[33] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic
Boolean networks: a rule-based uncertainty model for gene regulatory
networks. Bioinformatics, 18(2):261–274, 2002.

[34] J. J. Tyson, W. T. Baumann, C. Chen, A. Verdugo, I. Tavassoly, Y. Wang,
L. M. Weiner, and R. Clarke. Dynamic modelling of oestrogen signalling
and cell fate in breast cancer cells. Nature reviews. Cancer, 11 7:523–32,
2011.

[35] R. van den Berg, E. Lefeber, and K. Rooda. Modeling and control of
a manufacturing flow line using partial differential equations. Control
Systems Technology, IEEE Transactions on, 16:130 – 136, 02 2008.

[36] A. Varma and B. Ø. Palsson. Metabolic Flux Balancing: Basic Concepts,
Scientific and Practical Use. Nature Biotechnology, 12(10):994–998,
October 1994.

[37] C. R. Vázquez and M. Silva. Stochastic Continuous Petri Nets:
An Approximation of Markovian Net Models. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans,
42(3):641–653, May 2012.

[38] C. R. Vázquez and M. Silva. Stochastic Hybrid Approximations
of Markovian Petri nets. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(9):1231–1244, Sep. 2015.

[39] K. Voss, M. Heiner, and I. Koch. Petri nets for steady state analysis
of metabolic systems. Studies in health technology and informatics,
162:56–76, 01 2011.

[40] R. Sheng Wang, A. Saadatpour, and R. Albert. Boolean modeling in
systems biology: an overview of methodology and applications. Physical
Biology, 9(5):055001, 2012.

[41] T. Wright and I. Stark. The bond-calculus: A process algebra for
complex biological interaction dynamics. CoRR, abs/1804.07603, 2018.

Jorge Júlvez is associate professor at the Depart-
ment of Computer Science and Systems Engineering
in the University of Zaragoza. Jorge received his
M.S. and Ph.D. degrees in computer science engi-
neering in 1998 and 2005 from the University of
Zaragoza. His Ph.D. was related to the study of qual-
itative and quantitative properties of continuous Petri
nets. In 2005 he joined, as a PostDoc researcher, the
Department of Software in the Technical University
of Catalonia, where he spent three years. As a re-
searcher, he has visited the Department of Electrical

and Electronic Engineering in the University of Cagliari, the Department of
Information Engineering in the University of Siena, the SYSTeMS Research
group in the University of Ghent, and the Computing Laboratory in the
University of Oxford. In 2014, Jorge moved to the Cambridge Systems
Biology Centre were he spent four years, two of them as a Marie Curie fellow.
Jorge’s research interests are in the development of modeling formalisms and
computational methods to model, analyse and optimize biological systems.

Steve Oliver is Emeritus Professor of Systems Biol-
ogy at the University of Cambridge and was Director
of the Cambridge Centre for Systems Biology. His
research involves both experimental and bioinfor-
matics approaches to understanding the workings of
the eukaryotic cell. Steve Oliver led the European
team that sequenced the first chromosome, from any
organism, yeast chromosome III. He continued to
play a major role in the Yeast Genome Sequencing
Project, and went on to become Scientific Coordina-
tor of EUROFAN, which pioneered a wide range of

approaches to the systematic analysis of gene function, using S. cerevisiae. His
current work employs a range of comprehensive, high-throughput analytical
techniques transcriptomics, proteomics, metabolomics, and rapid pheno-
typing. He exploited genome-wide metabolic models to identify functional
modules within the yeast metabolic network and predict epistatic interactions
between genes. Steve collaborated with Ross King to develop the Robot Sci-
entist closed-loop machine-learning system for functional genomic hypothesis
generation and experimentation, and re-engineered the genome configuration
of yeast to provide a direct test of the chromosomal theory of evolution.

Steve Oliver is a member of EMBO, and a Fellow of: the American Associa-
tion for the Advancement of Science, the American Academy of Microbiology,
the Academy of Medical Sciences, and the Royal Society of Biology. He is an
Honorary Member of both the Hungarian Academy of Sciences and the British
Mycological Society. Prof. Oliver was the Kathleen Barton-Wright Memorial
Lecturer of the Institute of Biology & Society for General Microbiology in
1996, won the AstraZeneca Award of the Biochemical Society in 2001, the
Marjory Stephenson Prize of the Microbiology Society in 2016, and was the
2018 recipient of the Genetics Society of America Yeast Genetics Meetings
Lifetime Achievement Award.

