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a b s t r a c t

Petri Nets (PNs) constitute a well known family of formalisms for the modelling and analy-
sis of Discrete Event Dynamic Systems (DEDS). As general formalisms for DEDS, PNs suffer
from the state explosion problem. A way to alleviate this difficulty is to relax the original
discrete model and deal with a fully or partially continuous model. In Hybrid Petri Nets
(HPNs), transitions can be either discrete or continuous, but not both. In Hybrid Adaptive
Petri Nets (HAPNs), each transition commutes between discrete and continuous behaviour
depending on a threshold: if its load is higher than its threshold, it behaves as continuous;
otherwise, it behaves as discrete. This way, transitions adapt their behaviour dynamically
to their load. This paper proposes a method to compute the Reachability Graph (RG) of
HPNs and HAPNs.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The state explosion problem is a crucial drawback in the analysis of Discrete Event Dynamic Systems (DEDS). An interesting
technique to alleviate this difficulty is to relax the original discrete model and deal with a continuous approximation. Such
a relaxation aims at computationally more efficient analysis methods, but at the price of losing some fidelity. Unfortunately,
the fluidization of themodelmaynot always preserve important properties of the original discretemodel. For instance, in the
context of Petri Nets (PNs), the relaxation from discrete to continuous [1,2] does not preserve, in general, deadlock-freeness,
liveness or reversibility [3,4].

This paper focuses on untimed and bounded Hybrid (HPNs) and Hybrid Adaptive Petri Nets (HAPNs). In HPNs, a static
partial fluidization over the discrete PN formalism is done: some of the transitions of the PN system are continuous, while
some others remain discrete. This fact makes HPNs a useful formalism for the modelling and analysis of real systems (see,
for example, [1,5–8]).

In HAPNs, the partition between continuous and discrete transitions is not static but dynamic: each transition of a HAPN
can behave as discrete or as continuous depending on its load, i.e., on its enabling degree. An adaptive transition has two
different modes: continuous and discrete, continuousmode for high transition load (in this case, enabling degree higher than
a given threshold) and discrete in other case. The HAPN formalism provides a common framework that includes three well
known formalisms: Discrete (DPN), Continuous (CPN) and Hybrid PN (HPN). Thus, the modelling power of HAPN subsumes
the modelling power of the other formalisms, and any analysis technique applicable to HAPN can also be applied to the
others. It captures in a compactway the fact that the behaviour of a highly loaded system can be approximated by continuous
dynamics while the behaviour of a system with low loads usually requires explicit discrete dynamics. The HAPN formalism
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Fig. 1. A S3PR system [13] that is deadlock-free as discrete, but it deadlocks as continuous (md = (3, 0, 0, 1, 0, 3, 0, 0, 1, 0, 0, 0, 1)). It is deadlock-free
as HAPN with µ = 1.

is intended to solve the existing trade-off between the high complexity and accuracy of DPN and the low-complexity but
potential loss of accuracy associated to CPN. Moreover, it allows to preserve some properties of the discrete PN systems that
are difficult to be preserved by CPN.

In this work, algorithms to compute the reachability graph of HPNs and HAPNs respectively are proposed. The algorithm
for HPN can be obtained as a particular case of the one for HAPN, however they are presented in this order for easiness of
the presentation.

In contrast to [9], in this work HAPNs will be generalized to the untimed framework, allowing full non determinism. The
introduction of time in a given system would constrain the possible behaviours, producing some system trajectories that
are also achievable in the untimed one. Thus, some results for properties as deadlock-freeness in the untimed framework
can be almost straightforwardly applied on timed systems. In the following, it is assumed that the reader is familiar with
Petri nets (see [10,11] for a gentle introduction).

Let us motivate the HAPN formalismwith Example 1, in which the PN in Fig. 1 is considered, which is a System of Simple
Sequential Processes (S3PR) [12].

Example 1. The PN in Fig. 1 models a system in which two processes Pr1 and Pr2 share resources r1, r2 and r3. The PN
system is deadlock-free as discrete. However, when the PN system is fluidified, i.e., transitions can be fired in non negative
real amounts, the system can reach a deadlock: from the initial markingm0, wherem0[r1] = m0[r2] = m0[v] = 1,m0[q0] =

m0[p0] = 4 and the other places are empty, the firing sequence σ =
1
2 s1

1
2 t1

1
2 s2

1
2 t2

1
2 s3

1
2 t3

1
2 s1

1
2 t1

1
2 s2

1
2 t2

1
2 s3

1
2 t3 can be fired,

reaching the deadlock marking md, where md[v] = md[q3] = md[p3] = 1,md[q0] = md[p0] = 3 and the other places are
empty. Therefore, the continuous PN system does not preserve the deadlock-freeness of the discrete PN system. However,
this property will be preserved by the HAPN system with appropriate thresholds.

Related work

Some works in the literature deal with timed elements of very different orders of magnitude, for example in the study
of manufacturing systems, chemical reactions, biological systems, etc. In this kind of systems, there are very fast and very
slow reactions, leading to stiffness problems [14]. Moreover, in these systems (e.g. a genetic network) there are some species
with very small populations (e.g. a gene), or with very large ones (e.g. proteins). In those cases, small populations should be
modelled as discrete stochastic processes [15], while large populations can be well approximated with ordinary differential
equations [16]. In the field of PNs, small populations could be modelled with discrete (Markovian) PNs [17], while large
populations could be modelled with (timed) continuous PNs [1,4].

An important issue in this context is the partition of the populations into large ones and small ones (and hence, the
transitions in continuous and discrete). With static partitions, each element of the system is modelled either as continuous
or as discrete, but not both, dealing to hybrid PN [1]. With dynamic partitions, the elements are split during the evolution
of the system. Inspired in fuzzy logic theory, the fuzzy multimodel is proposed in [18], where the partition is determined
by a fuzzy function, i.e., a dynamic partition which allows some uncertainty. Another alternative is to adapt dynamically
the partitions with a crisp function which uses a threshold associated to the transitions. HAPNs, proposed in [9] in a timed
context and studied in [19] as untimed, deal with this modelling feature. Dynamic adaptation to the workload has been also
considered for hybrid simulation in [20,21].

The rest of the paper is organized as follows: In Section 2, HAPNs are formally defined, and discrete, continuous and
hybrid PNs are derived as a particular case of HAPN. Section 3 presents an algorithm to compute the reachability graph of
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HPNs, and it is compared to other method in the literature. It is used to check some properties of the net system, and it is
applied to three examples. Section 4 extends the algorithm to compute the reachability graph of HAPN, how to exploit the
reachability graph and how to preserve some system properties with HAPN is also discussed. The algorithm is applied to
two examples. Conclusions and future work are presented in Section 5.

2. Formal definitions

HAPNs are a wide formalismwhich includes other known formalisms: discrete, continuous and hybrid PNs. This point of
view allows us to have an integrated view about them. Furthermore, methods and properties on HAPNmay also be suitable
for the particular formalisms.

First, HAPNs are defined in Section 2.1. Based on this general definition, the other mentioned PN formalisms are defined
in the following subsection, as particular cases.

2.1. Hybrid Adaptive Petri Nets: definitions

The formalism of HAPNs is formally introduced in this section. The structure of a HAPN has the same elements of the
discrete one and a threshold vector, which associates a threshold µj to each transition tj ∈ T .

Definition 2. A HAPN is a tuple N = ⟨P, T , Pre, Post, µ⟩ where:
• P = {p1, p2, . . . , pn} and T = {t1, t2, . . . , tm} are disjoint and finite sets of places and transitions
• Pre and Post are |P| × |T | sized, natural valued, incidence matrices
• µ ∈ {R≥0 ∪ ∞}

|T | is the threshold vector.

Given a place (or transition) v ∈ P (or T ), its preset, •v, is defined as the set of its input transitions (or places), and its postset
v• as the set of its output transitions (or places). We assume all transitions have at least one input place: ∀t ∈ T , |•t| ≥ 1.

Amarking m of a HAPN is defined as a |P| sized, non negative, real valued vector:m ∈ R|P|

≥0. A HAPN system is defined as
follows:

Definition 3. A HAPN system [19] is a tuple ⟨N ,m0⟩A, where:
• N is a HAPN
• m0 ∈ R|P|

≥0 is the initial marking.

The enabling degree of a transition tj at a markingm is defined as:

enab(tj,m) = min
p∈•tj


m[p]

Pre[p, tj]


. (1)

The threshold µj of a transition tj determines the values of the enabling degree for which the transition behaves in con-
tinuous or in discretemode:

mode(tj,m) =


continuous if enab(tj,m) > µj
discrete otherwise. (2)

If a transition tj is in continuousmode, i.e., enab(tj,m) > µj, then tj is enabled as continuous and it can fire. On the other
hand, if tj is in discretemode, i.e., enab(tj,m) ≤ µj, then it is enabled iff ⌊enab(tj,m)⌋ ≥ 1.

A transition tj that is enabled can fire. The admissible firing amounts depend on its mode:
• Ifmode(tj,m) is continuous, tj can fire in any non negative real amount α ∈ R>0 that does not make the enabling degree

cross the threshold µj, i.e., 0 < α ≤ enab(tj,m) − µj.
• If mode(tj,m) is discrete, tj can fire as a usual discrete transition in any natural amount α ∈ N such that 0 < α ≤

enab(tj,m).

The maximal value which can reach the enabling degree of a transition t is denoted enabling bound, which can be
computed as: eb(t) = max{k|m ≥ k · Pre[p, t],m = m0 + C · σ,m, σ ≥ 0}.

The firing of tj frommarkingm in a certain amount α leads to a newmarkingm′, and it is denoted asm
αtj

−→ m′. It holds
m′

= m + α · C[P, tj], where C = Post − Pre is the token flow matrix (incidence matrix if N is self-loop free). Hence, as
in discrete systems,m = m0 + C · σ, the state (or fundamental) equation summarizes the way the marking evolves, where
σ is the firing count vector of the fired sequence. Right and left natural annullers of the token flow matrix are called T- and
P-semiflows, respectively.When ∃y > 0 s.t. y ·C = 0 the net is said to be conservative, andwhen ∃x > 0 s.t. C ·x = 0 the net
is said to be consistent. The support of a vector v ≥ 0 is ∥v∥ = {vi|vi > 0}, the set of positive elements of v. The reverse net
of N is defined as N −1

= ⟨P, T , Post, Pre, µ⟩, in which places, transitions and thresholds coincide, and arcs are inverted.
A PN system ⟨N ,m0⟩A is bounded if ∃b ∈ R+ such that ∀m ∈ RSA(N ,m0), ∀p ∈ P,m[p] ≤ b. The systems considered in

this work are assumed to be bounded. Notice that boundedness is a requirement in most real systems. Moreover, structural
boundedness,which is a sufficient condition for boundedness, can be checked in polynomial time (as it is checked for discrete
PN [22]).
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2.2. Discrete, continuous and hybrid PN as HAPN

In general, an adaptive transition has both discrete and continuous behaviours, depending on its threshold and its
workload. However, if very high or very low thresholds are chosen, the transition can exhibit only discrete or only continuous
behaviours.

Specifically, a transition tj whose threshold is equal to ∞ (or equal to its enabling bound), behaves always in discrete
mode (because its enabling degree will be always lower than ∞). It will be enabled at a marking m iff enab(tj,m) ≥ 1, and
it can fire a natural amount α smaller or equal to its enabling degree: 0 < α ≤ enab(tj,m).

On the other hand, the transition tj whose associated threshold is equal to 0, behaves always in continuous mode. It will
be enabled at a marking m when enab(tj,m) > 0, and it can fire in any real amount α smaller than or equal to its enabling
degree: 0 < α ≤ enab(tj,m).

Using these properties, the formalisms of discrete, continuous and hybrid PNs can be obtained within the formalism of
HAPNs.

• Discrete Petri Net (DPN) systems [10,11] (denoted as ⟨N ,m0⟩D in this work) are HAPN systems inwhich all the thresholds
are equal to ‘‘∞’’, i.e., all transitions fire in discrete amounts. In the case of bounded PNs, it will be enough to have a
threshold equal to eb(t) for every transition t .

• Continuous Petri Net (CPN) systems [1,4] (denoted as ⟨N ,m0⟩C in thiswork), which represent the full fluidization of DPNs,
are a particular case of HAPNs in which all the thresholds are equal to 0.

• Hybrid Petri Net (HPN) systems [1] (denoted as ⟨N ,m0⟩H in this work) are partially fluidified Petri nets in which the set
of transitions T is partitioned into two sets, T c and T d, such that if tj ∈ T d then tj always behaves as discrete (as HAPN, its
threshold µj is equal to ∞), and if tj ∈ T c then tj always behaves as continuous (as HAPN, its threshold µj is equal to 0).

In conclusion, µ defines a DPN if µ = ∞; µ defines a CPN if µ = 0; and µ defines a HPN if µ ∈ {0, ∞}
|T |.

3. On the computation of a Reachability Graph for HPNs

In this section, amethod for the computation of a Reachability Graph (RG) for HPNs is introduced. First, some reachability
concepts on discrete, continuous and hybrid PNs are recalled. Then, the algorithm to compute the RG is presented. It is
explained with an example and it is compared with another technique from the literature. The stopping condition of the
algorithm is motivated with another example. It is used to obtain the RG of a HPN which models a production system, and
finally the RG is exploited to check some system properties.

3.1. Basic reachability concepts on discrete, continuous and hybrid PN

The Reachability Set (RS) of a PN system is the union of all the markings which are reachable by the system from the
initial one. The RS of a DPN system is a set of disjoint points in the N|P| space. By contrast, the RS of a CPN system is a convex
set in R|P|

≥0 [3]. Because HPN combines discrete and continuous transitions, its RS is a union of certain disjoint sets (due to
the combination of discrete and continuous firings). These sets are defined as follows (where tγi denotes the ith transition
of the sequence σ ):

Definition 4. • RSD(N ,m0) = {m|∃σ , σ = tγ1 · · · tγk , s.t. mi−1
tγi

−→ mi ∀i ∈ {1..k} and mk = m}

• RSC (N ,m0) = {m|∃σ , σ = α1tγ1 · · · αktγk , s.t. mi−1
αitγi
−→ mi, αi ∈ R>0 ∀i ∈ {1..k}, andmk = m}

• RSH(N ,m0) = {m|∃σ , σ = α1tγ1 · · · αktγk , s.t. mi−1
αitγi
−→ mi, where αi ∈ R>0 if µγi = 0, while αi = 1 if µγi = ∞,

∀i ∈ {1..k}, and mk = m}.

An interesting concept which is used in the characterization of the set of markings due to continuous firings is denoted
as Fireable Set (FS), and it is a set composed of the sets of transitions for which a continuous firing sequence exists. The FS
is defined for a CPN system ⟨N ,m0⟩C [23], and it can be defined and computed similarly for a HPN system ⟨N ,m0⟩H if only
continuous transitions are considered. FSC (N ,m0) ⊆ 2T and FSH(N ,m0) ⊆ 2T , where 2T denote the set of all possible
subsets of T , are defined as follows:

Definition 5. • FSC (N ,m0) = {θ|∃σ fireable fromm0, such that θ = ∥σ∥}

• FSH(N ,m0) = {θ|∃σ fireable fromm0, such that θ = ∥σ∥, and ∀ti ∈ ∥σ∥, µi = 0}.

Consider the PN example in Fig. 2(a). It is a HPN in which t1, t2 are discrete and t3, t4 are continuous (µ = {∞, ∞, 0, 0}).
Its fireable set is FSH(N ,m0) = {∅, {t4}, {t4, t3}}.

A general characterization of the set of reachable markings in CPNs is presented in [23,24]:

Theorem 6 ([24]). Given ⟨N ,m0⟩C , m ∈ RSC (N ,m0) iff there exists a vector σ s.t.
• m = m0 + C · σ, m ≥ 0, σ ≥ 0
• ∥σ∥ ∈ FSC (N ,m0) ∩ FSC (N −1,m).
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Fig. 2. (a) HPN system [1]. (b) Its Reachability Set. (c) Its Reachability Graph.

Condition ∥σ∥ ∈ FSC (N ,m0) is needed to ensure that every transition is fireable from m0, and condition ∥σ∥ ∈

FSC (N −1,m) is needed to ensure thatm is reachable with a finite sequence [24].
Finally, a RG for a HPN is defined. It is a directed graphwhich consists of nodes, and arcs connecting the nodes. The nodes

correspond with the sets of markings obtained by the continuous firings of transitions, while the arcs represent the firing of
a discrete transition in an amount equal to 1. Given a HPN system ⟨N ,m0⟩H , its RGH(N ,m0) is defined as:

Definition 7. RGH(N ,m0) = ⟨setofNodes, setofArcs⟩ is a directed graph of nodes setofNodes = {R1, R2, . . . , Ri, . . .} and
directed arcs setofArcs = {A1, A2, . . . , Ak, . . .}:

• Each Ri ∈ setofNodes is a set which belongs to the RS, i.e., Ri ⊆ RSH(N ,m0). It holds that ∪
|setofNodes|
i=1 Ri = RSH(N ,m0).

• Each Ak ∈ setofArcs is defined as a tuple Ak = ⟨Ri, Rj, t⟩:
– Ri, Rj ∈ setofNodes are the source and target nodes of the arc.
– t ∈ T is the discrete transition which is fired to move from Ri to Rj.

– It holds that ∀mj ∈ Rj, ∃mi ∈ Ri and a continuous sequence σ such thatmi
1t·σ
−→ mj, and ∀tz ∈ ∥σ∥, µz = 0.

R0 ∈ setofNodes is the initial node of the graph, wherem0 ∈ R0.

The set of markings Ri can be describedwith linear inequalities over R|P|, as it can be seen along the examples. In contrast
with the RG of discrete PN systems, in which every firing of a transition is explicitly denoted, the RG of HPN compacts the
firings of the continuous transitions inside the nodes. It can be identified as two levels of description, in which nodes are
not states, but sets of markings inside which transitions can be fired. The firing of the transitions can be directly seen in the
RG, but the evolution of the continuous part of the marking takes place inside the nodes and it is not explicitly seen in the
RG. It has the advantage of compacting the continuous behaviour inside the nodes.

3.2. Algorithm to compute the Reachability Graph

In this section, an algorithm to calculate the RG defined in the previous section is presented. The general idea of the
algorithm is to build the RG of the HPN system recursively in two steps: given a reachable marking or set of markings
(initially, m0); (1) calculate the set of markings that are reachable considering only continuous firings, which constitute a
node of the RG; and (2) consider the discrete firing of each discrete transition, which generates an arc of the RG from that
node to a new one, which is explored in the same way.

Algorithm 1 initializes the set of nodes and the set of arcs, and calls the recursive algorithm exploreH (Algorithm 2) with
the initial marking, which is the first set to be ‘‘explored’’.

Algorithm 2 takes a set of markings, R, and calculates the RG from it (unless R was already considered, or a stopping
condition holds, as explained after Example 9). First, the markings which are reachable considering only continuous firings
(in any possible fireable amount) are calculated, which constitute a set. This is done with the function continuousMH (see
Theorem 6):

continuousMH(N , R) = {m|m = m0 + C · σ,m0 ∈ R,m ≥ 0, σ ≥ 0, ∥σ∥ ∈ FSH(N ,m0) ∩ FSH(N −1,m)}. (3)

Then, for every possible discrete transition tj, i.e., µj = ∞, the markings due to its discrete firing in an amount equal to
1 are calculated with the function discreteMH :

discreteMH(N , R, tj) = {m|m = m0 + C[P, tj],m0 ∈ R, enab(tj,m0) ≥ 1}. (4)

Once the markings due to the discrete firing, d, are calculated, an arc of the RG is created. This arc goes from the current
node which is being explored to a new node which will be created when exploreH will be recursively called with the new
set of markings d.

Reachability set computation. The RS of a HPN system, RSH(N ,m0), is the union of all the homogeneous regions
included in RGH(N ,m0) which have been computed with Algorithms 1 and 2.
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Algorithm 1 calculateRGH

Input PN (N ), initialMarking (m0 ∈ R|P|

≥0)
Output Reachability Graph (RG)
1: setofNodes = ∅

2: setofArcs = ∅

3: R0 = exploreH (N , {m0})
4: RG = ⟨setofNodes, setofArcs⟩
5: return RG

Algorithm 2 exploreH
Input PN (N ), setOfMarkings (R ⊆ R|P|

≥0)
Output setOfMarkings (n)
1: if R /∈ setofNodes ∧ not stoppingCond(R, setofNodes) then
2: n = continuousMH (N , R)
3: setofNodes = setofNodes ∪ n
4: for all tj ∈ T s.t. µj = ∞ do
5: d = discreteMH (N , n, tj)
6: if d ≠ ∅ then
7: setofArcs = setofArcs ∪ ⟨n, exploreH (N , d), tj⟩
8: end if
9: end for

10: end if
11: return n

Example 8. Let us first apply the algorithm to an example, and then compare the algorithm proposed here with other
technique proposed in the literature for the computation of the RG of HPN. The HPN depicted in Fig. 2(a) is taken from [1],
in which transitions t1 and t2 are discrete and t3 and t4 are continuous (i.e., µ = (∞, ∞, 0, 0)) and the initial marking is
m0 = (2, 0, 0, 3).

First, calculateRGH(N ,m0) is called. Then, in the algorithm, exploreH is called with this initial marking: exploreH(N ,m0).
The RG obtained by the algorithm is depicted in Fig. 2(c).

The union of all the sets of the RG gives the RS (see Fig. 2(b)). Its RS is represented in the axes m[p1],m[p3], because the
marking of the other places can be calculated from them:m[p2] = 2 − m[p1] andm[p4] = 3 − m[p3].

The RG obtained with Algorithm 1 (Fig. 2(c)) has three nodes, each of them containing a set defined in R|P|

≥0. The firings of
the discrete transitions make the marking move from one set to another. Notice that, as specified by continuousMH(N ,m0),
an arc labelled with discrete transition t1 can be taken from those markings at which t1 is enabled. This corresponds with
the guard [m[p3] = 1] on the arc. Moreover, the firings of the continuous transitions are codified inside the reachable sets.

Using the technique proposed by David and Alla [1], the RG of this HPN (Fig. 4.21, p. 140) consists of 9 nodes together
with the interactions of discrete and continuous transitions among those nodes. An arc labelled with a discrete transition in
the graph represents that it has been fired (an amount of 1). However, the firing of continuous transitions is not measured
explicitly in the arcs of the RG. In our method, the firing of discrete transitions is also explicit, but the firing of continuous
transitions is compacted inside the marking sets.

The RG of bounded DPN has a finite number of nodes. An interesting question is to consider if it is also true in the RG
of HPN. Example 9 shows a bounded HPN whose RG has an infinite number of nodes. In the cases in which the RG has an
infinite number of steps, the algorithm has to detect this situation and stop the computation of those nodes. This stopping
condition is motivated with Example 9 and discussed after the example.

Example 9 (A Bounded HPN with Infinite Reachability Graph). Consider the HPN in Fig. 3, in which t1, t2 are discrete and t3, t4
are continuous (i.e., µ = (∞, ∞, 0, 0)).

Let us consider the computation of its RG fromm0 = (1, 0, 2, 0). Atm0, transitions t1 and t3 are enabled. The first node, R0,
is obtained considering every possible firing of continuous transitions (in this case, any firing of t3) fromm0. It corresponds
to lines 2–3 in Algorithm 2, and it results the segment between (1, 0, 2, 0) and (1, 0, 0, 1), see node R0 in Fig. 4.

From R0, the firings of discrete transitions are considered to calculate its adjacent nodes. Consider the firing of t1, which
is the only enabled discrete transition. First, the set of markings obtained by the firing of t1 from the markings in R0 is
calculated, d in line 5 in Algorithm 2. If t1 is fired, m[p3] and m[p4] do not change, m[p1] = 0 and m[p2] = 1, hence d
is a segment between (0, 1, 2, 0) and (0, 1, 0, 1). Once calculated d, it is recursively explored, and the arc from R0 to R1
is obtained (line 7 in Algorithm 2). In the recursive call to exploreH(N , d), the process is repeated: first the firings of the
enabled continuous transition t4 are considered (and the triangle in R1 is obtained), and then the possible arcs are calculated.

Themarking of p3 and p4 (considerm[p3]+m[p4]) is decreasing when t3, t4 are successively fired. Notice that transitions
t1 and t2 have to be fired every time that the marking of p3, p4 is divided by 2 (for example, to move from (1, 0, 0, 1) to
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Fig. 3. HPN whose RG has an infinite number of nodes.

Fig. 4. RG of the PN in Fig. 3. It has an infinite number of nodes.

(1, 0, 0, 0.5)). It means that after firing successively t1 and t2 the marking would approachmarking (1, 0, 0, 0), but it would
require an infinite number of firings of the discrete transitions, which creates an infinite number of nodes in the RG.

Stopping condition. As discussed in Example 9, the RG of a HPN systemmay have an infinite number of nodes. This can
be due to two kinds of situations: (a) the marking of a place tends to infinity (so, the net system is unbounded), which is not
possible because only bounded nets are considered in this work; or (b) the difference among the new node and a previous
one tends asymptotically to 0, which would generate infinite nodes, even in bounded net systems. The occurrence of this
situation is checked by the stopping conditionwhen a new region R is going to be explored (line 1 in Algorithm 2). If it holds,
R is not explored further to avoid an infinite execution of the procedure. In this situation, R contains the samemarkings than
a previously created node R′ except a small difference (an increment, decrement of markings, or both) which tends to 0. Sets
R and R′ are very similar (hence, R ∩ R′

≠ ∅), and the difference between them (which is (R ∪ R′) \ (R ∩ R′)) is as small as
desired, measured as its n-dimensional volume. The n-dimensional volume of a set S, denoted as λ(S), is a generalization of
the concept of area in R2 or volume in R3 to a n-dimensional S ⊆ Rn (here, n = |P|). Hence, the condition to be checked is:
∃R′

∈ setofNodes s.t. R ∩ R′
≠ ∅ and λ((R ∪ R′) \ (R ∩ R′)) < ε, where ε is a very small value, e.g., ε = 10−3. This stopping

condition, included in Algorithm 2 (line 1), is expressed as follows:

stoppingCond(R, setofNodes) = ∃R′
∈ setofNodes s.t. (R ∩ R′

≠ ∅ ∧ λ((R ∪ R′) \ (R ∩ R′)) < ε).

The above stopping condition guarantees the termination of the algorithm for bounded HPN systems. The computation
of the RG of a HPN system which models a production system is considered in Example 10.

Example 10 (A Production System). TheHPN in Fig. 5 is a simplifiedmodel of an example in [1], inwhich p1, p2, p3 model one
production line, and p4, p5, p6 model another one. Both lines share a resource, modelled by p8 (marked when the resource
is idle), p7 and p9.

From the initial marking m0 = (500, 0, 0, 700, 0, 0, 0, 1, 0), continuous transitions t1 and t4 are enabled; considering
their possible firings, the set of markings represented in node R0 is obtained (see Fig. 6). From R0, discrete transitions t7 or t8
can be firedwhen their guards are satisfied. If the firing of t7 is considered, the arc from R0 to R1 is created. R1 contains the set
of markings reachable after firing t7, considering the possible firing of continuous transitions. The algorithm is recursively
called from the new created nodes, and the complete RG is obtained, which is depicted in Fig. 6. In the figure,mi represents
m[pi], markings are non negative values, andmarkingswhich equal to 0 are not shown. Every arc is labelledwith the discrete
transition which is fired.
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Fig. 5. HPN which models a production system in which two production lines share a resource.

Fig. 6. RG of the HPN system in Fig. 5;mi representsm[pi], zero markings are not shown.

3.3. Exploiting the Reachability Graph

The main goal of the algorithm is to compute the set of reachable markings. As in DPN, the set of reachable markings can
be exploited to check some properties of the system. Some general considerations can be done on the obtained RG. First, it
can be seen that the nodes computed by the algorithm are not disjoint (in contrast with the RG of DPN, in which each node
corresponds to a marking). For instance, R0 ∩ R3 ≠ ∅ in Example 10 (Fig. 6). Moreover, the nodes of the RG of the HPN do
not directly correspond to nodes of a subjacent discrete RG.

Because the representation of the continuous behaviour is contained inside the nodes but not explicitly seen in the arcs,
the RGs from two markings m and m′ mutually reachable can be different, although they describe the same reachability
sets. For instance, the RG in Fig. 6 is obtained from m0 = (500, 0, 0, 700, 0, 0, 0, 1, 0), but the RG obtained from m′

0 =

(0, 0, 500, 0, 0, 700, 0, 1, 0) would start from an initial node {m3 = 500,m6 = 700,m8 = 1}, which is not a node itself
in Fig. 6 but it is included in node R11. Nevertheless, both RGs describe the same reachable markings. As an unfortunate
consequence, the reachability of a marking m′ from a marking m ∈ RSH(N ,m0) cannot be ‘‘directly’’ checked over
RGH(N ,m0), but it should be checked over RGH(N ,m).

Fortunately, the computed RG can be exploited to check ‘‘directly’’ certain safety (nothing bad may happen) properties
of ⟨N ,m0⟩H , by checking every obtained node Ri (if node Rj is a subset of Ri, checking Rj is not needed):

• The bound of a place, defined as B(p) = max{m[p]|m ∈ RSH(N ,m0)} can be easily computed by calculating the following
linear programming problem (LPP) in each node Ri : zi = max m[p] s.t.m ∈ Ri, where B(p) = max{zi}. For instance,
B(p2) = 500 in the example.
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• Mutual exclusion property can also be checked by examining each node of the RG. In the example, places p7, p8 and p9
are in mutual exclusion.

• In order to check deadlock-freeness, the deadlock condition (no transition is enabled) [4] has to be checked in each node.
In the example, the markingmd = (0, 50, 450, 0, 50, 650, 0, 1, 0) is a deadlock (no transition is enabled atmd) and it is
reachable in node R16 (even if this node has some descendent ones: R5 (by t8), R12 (by t7), R15 (by t3) and R17 (by t6)).

• The deviation bound [25] of two transitions t and t ′,DB(t, t ′), denotes the maximal amount that t can be fired without
firing t ′; and it can be checked in the RG if t ′ ∈ T d. In case t ∈ T d, it can be checked by looking at the arcs of the RG, as in
discrete RGs. In case t ∈ T c,DB(t, t ′) can be calculated with the following LPP over each node Rz which is reachable from
R0 without considering the arcs labelled by t ′ : dz = max{σ(t) s.t.m+ C · σ ≥ 0,m ∈ Rz}. Once dz is computed for each
node Rz , the deviation bound is obtained as


dz . Considering the deviation bounds between two discrete transitions,

B-fairness [25] can be checked.

The RG obtained with the technique proposed in [1] can also be used to check deadlock-freeness, boundedness, mutual
exclusion, and deviation bound properties in an analogous way, by checking every node of the RG. However, the basic
reachability property (given a markingm, is it reachable in ⟨N ,m0⟩H?) requires more computation.

4. On the computation of a Reachability Graph for HAPNs

The method proposed to compute the RG which is presented in the previous section for HPNs is extended in this section
for HAPNs. First, some reachability concepts from Section 3.1 are redefined in the context of HAPNs. Then, the algorithm to
compute the RG is presented and illustrated with an example. Some considerations about exploiting the RG and about how
to preserve deadlock-freeness property of the original discrete PN system are discussed. Finally, the technique is applied to
an example.

4.1. Some reachability concepts

Let us denotemode(tj,m) = D the discrete mode andmode(tj,m) = C the continuous mode.
The set of reachable markings of a HAPN system ⟨N ,m0⟩A is denoted as RSA(N ,m0):

Definition 11. RSA(N ,m0) = {m|∃σ , σ = α1tγ1 · · · αktγk , s.t. mi−1
αitγi
−→ mi, αi ∈ R>0 if mode(tγi ,mi−1) = C; and αi = 1

ifmode(tγi ,mi−1) = D, ∀i ∈ {1..k}, and mk = m}.

The Fireable Set FSA of HAPNs can be defined in a similar way to the FSH of HPNs. For a HAPN, FSA(N ,m0) is the set of
sets of transitions which are enabled as continuous inm0, and those which are exactly at its threshold atm0 but can become
continuous by the firing of other transition in continuous mode.

Definition 12. FSA(N ,m0) = {θ|∃σ = α1tγ1 · · · αktγk s.t. mi−1
αitγi
−→ mi, αi ∈ R>0, ∀i ∈ {1..k} mode(tγi ,mi−1) = C and

enab(tγi ,m0) ≥ µγi , and θ = ∥σ∥}.

Intuitively, FSA(N ,m0) can be computed by firing transitions which are enabled as continuous in m0, or that are in the
threshold and will be enabled as continuous by the continuous firing of other transitions. It can be computed with Algo-
rithm 3.

Algorithm 3 Fireable SetA
Input PN (N ), initial marking (m0)
Output Fireable Set (FSA)

1: V = {tj|tj ∈ T , enab(tj,m0) > µj} % transitions enabled as continuous atm0
2: FSA = {v|v ⊆ V } % all the subsets of V
3: while not every element of FSA has been taken do
4: Take f ∈ FSA that has not been taken yet
5: V = {tj|enab(tj,m0) = µj∧ (∀p ∈

•tj,
m0[p]

Pre[p,tj]
> µj ∨

•p ∩ f ≠ ∅)}

6: FSA = FSA ∪ {f ∪ v|v ⊆ V }

7: end while

To illustrate how the set FSA(N ,m0) is computed, consider theHAPN system in Fig. 2, inwhich every transition is adaptive
with thresholdµ = (1, 1, 1, 1) and initial markingm0 = (2, 0, 1, 2). Its FSA is, after step 2, FSA(N ,m0) = {∅, {t4}}, because
t4 is the only transition enabled as continuous. At line 5 of Algorithm 3, with f = {t4} the set V results {t1, t3}, thus three new
sets can be added to the set: FSA(N ,m0) = {∅, {t4}, {t1, t4}, {t3, t4}, {t1, t3, t4}}. Nomore transition is enabled as continuous,
and the algorithm stops.

Let us now define a homogeneous region as a set of markings for which the enabling degree of each transition is either
over (or equal to) the threshold for every marking, or below (or equal to) the threshold for every marking.
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Definition 13. Let ⟨N ,m0⟩A be a HAPN system. A set R ⊆ R|P|

≥0 is a homogeneous region of markings if:

• R ⊆ RSA(N ,m0).
• For each tj ∈ T , (∀m ∈ R, enab(tj,m) ≤ µj) ∨ (∀m ∈ R, enab(tj,m) ≥ µj).

The RG of a HAPN can be defined similarly to the RG of a HPN. The RG of HAPN systems consists of nodes, that correspond
with homogeneous regions obtained by the continuous firings of transitions, and arcs connecting the nodes. In this case, the
arcs are of two different types, corresponding either with the fact that a transition mode has changed (ε-arcs) or with the
discrete firing of a transition (D-arcs). Given a HAPN system ⟨N ,m0⟩A, we define RGA(N ,m0) as a labelled directed graph
with two types of arcs, whose nodes are homogeneous regions defined over RSA(N ,m0):

Definition 14. RGA(N ,m0) = ⟨setofNodes, setofEarcs, setofDarcs⟩, where:

• Each Ri ∈ setofNodes is a homogeneous region, Ri ⊆ RSA(N ,m0).
It holds that ∪

|setofNodes|
i=1 Ri = RSA(N ,m0).

• Each Aε
k ∈ setofEarcs is defined as a tuple Aε

k = ⟨Ri, Rj, tz⟩:
– Ri, Rj ∈ setofNodes are the source and target nodes of the arc.
– tz ∈ T indicates the transition whose mode changes when the marking moves from Ri to Rj.
– It holds that ∀mj ∈ Rj, ∃mi ∈ Ri s.t. enab(tz,mi) = µz , a fireable sequence σ exists s.t.mi

σ
−→ mj, and σ contains only

continuous firings.
• Each AD

k ∈ setofDarcs is defined as a tuple AD
k = ⟨Ri, Rj, guard, tz⟩:

– Ri, Rj ∈ setofNodes are the source and target nodes of the arc.
– guard ⊆ R|P|

≥0 gives a set of conditions over Ri.
– tz ∈ T is the transition which is fired as discrete to move from Ri to Rj.

– It holds that ∀mj ∈ Rj, ∃mi ∈ Ri ∩ guard, a fireable sequence σ exists s.t. mi
1tz ·σ
−→ mj, and σ contains only continuous

firings.

R0 ∈ setofNodes is the initial node of the graph, wherem0 ∈ R0.

4.2. Algorithm to compute the Reachability Graph

In this section, a procedure based on Algorithms 1 and 2 to compute the RG of a HAPN is proposed. Algorithm 4 initializes
some global variables (setofNodes, setofEarcs, setofDarcs), and calls the recursive function exploreA (Algorithm 5) with the
initial marking of the system. As in the case of HPN, exploreA is a recursive function that, given amarking or a set ofmarkings,
calculates the markings reachable from it due to continuous firings, and calculates its adjacent nodes (reached with ε-arcs
or D-arcs). Function exploreA will be recursively called until the full RG has been calculated.

Function exploreA takes a homogeneous region R as input parameter. After checking if it has been considered before or
the stopping condition holds (line 1), the markings which are reachable from R due to continuous firings (i.e., considering
only firings of the transitions of the FS) are computed, with the condition that no transition traverses its threshold. This
set of markings can be mathematically characterized with (5), obtained from Theorem 6 where FSA(N ,m0) is calculated as
specified in the previous subsection. This function is called in line 2 in Algorithm 5:

continuousMA(N , R) = {m|m = m0 + C · σ, m0 ∈ R,m ≥ 0, σ ≥ 0, ∥σ∥ ∈ FSA(N ,m0) ∩ FSA(N −1,m),

∀ti ∈ T , enab(ti,m) ≥ µi ⇔ enab(ti, R) ≥ µi} (5)

where enab(ti, R) is the enabling degree of ti at any arbitrary markingm′ in the homogeneous region R.
Then, the ε-arcs, those due to mode changes, are calculated (lines 4–9). This is done in three steps: First, the set of

markings in which transition tj changes its mode is characterized. This set is characterized with (6), which just adds an
additional constraint to (5), and which is used in line 5:

frontierMA(N , R, tj) = {m|m = m0 + C · σ, m0 ∈ R,m ≥ 0, σ ≥ 0, ∥σ∥ ∈ FSA(N ,m0) ∩ FSA(N −1,m),

enab(tj,m) = µj, ∀ti, enab(ti,m) ≥ µi ⇔ enab(ti, R) ≥ µi}. (6)

Algorithm 4 calculateRGA

Input PN (N ), initial marking (m0 ∈ R|P|

≥0)
Output Reachability graph (reachGraph)
1: setofNodes = ∅

2: setofDarcs = ∅

3: setofEarcs = ∅

4: R0 = exploreA(N , {m0})
5: RGA = ⟨setofNodes, setofDarcs, setofEarcs⟩
6: return RGA
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Second, once the frontier markings f are calculated, the recursive algorithm exploreA is called with f . Third, an ε-arc is
created from the current node to the node obtained by exploreA (the second and third steps are done in line 7). This ε-arc is
labelled with the transition tj which changes its mode, which indicates that this ε-arc can only be taken from the markings
of R which hold enab(tj) = µj.

Algorithm 5 exploreA
Input PN (N ), markingSet (R ⊆ R|P|

≥0)
Output set of markings (n)
1: if R /∈ setofNodes ∧ not stoppingCond(R, setofNodes) then
2: n = continuousMA(N , R)
3: setofNodes = setofNodes ∪ n
4: for all tj ∈ T do
5: f = frontierMA(N , R, tj)
6: if f ≠ ∅ then
7: setofEarcs = setofEarcs ∪ ⟨n, exploreA(N , f ), tj⟩
8: end if
9: end for

10: for all tj ∈ T do
11: neighbT = (•tj)• ∪ (tj•)•

12: for each Tcn ∈ 2neighbT do
13: d = discreteMA(N , n, tj, neighbT , Tcn)
14: if d ≠ ∅ then
15: setofDarcs = setofDarcs ∪ ⟨n, exploreA(N , d), [m0|m0 = m − C[P, tj],m ∈ d], tj⟩
16: end if
17: end for
18: end for
19: end if
20: return n

Finally, the D-arcs from node R are created (lines 10–18), considering the possible discrete firing of each transitions from
R. A transition tj can only be fired as discrete if 1 ≤ enab(tj,m0) ≤ µj. In principle, the set of markings reached by the
discrete firing of tj an amount equal to 1 is:

dFM = {m|m = m0 + C[P, tj],m0 ∈ R, 1 ≤ enab(tj,m0) ≤ µj}.

The preliminary idea would be to consider dFM as the target node of the D-arc. Unfortunately, dFM might not be a homo-
geneous region, in fact the discrete firing of tj canmodify themode of the transitionswhose input places are in •tj (because its
marking is decreased) or tj• (because its marking is increased). In the algorithm, these transitions are denoted as neighbour
transitions: neighbT = (•tj)• ∪ (tj•)• (line 11).

The nodes of the RG have to be homogeneous regions. Hence, the algorithm has to partitionate dFM before adding new
nodes to the RG. Notice that in each target homogeneous region Rj, for every tn ∈ neighbT it must hold∀m, enab(tn,m) ≥ µn
or ∀m, enab(tn,m) ≤ µn.

In order to take into account every possible combination of transitions tn above and below the threshold, we define Tcn as
the subset of transitionswhose enabling degree is forced to be higher or equal to the threshold (‘‘≥’’) in a given homogeneous
region, Tcn = {tcn ∈ neighbT |enab(tcn, R) ≥ µcn}. The rest of transitions, tdn ∈ neighbT \ Tn, are forced to have its enabling
degree lower or equal to µdn.

Then, to consider all the possibilities, the algorithm iterates over Tcn ∈ 2neighbT . Given neighbT and a subset Tcn, the set of
markings d which are reached from Rwith the discrete firing of tj is obtained with (7), see line 13:

discreteMA(N , R, tj, neighbT , Tcn) = {m|m = m0 + C[P, tj],m0 ∈ R,m ≥ 0, 1 ≤ enab(tj,m0) ≤ µj,

∀tcn ∈ Tcn, enab(tcn,m) ≥ µcn,

∀tdn ∈ neighbT \ Tcn, enab(tdn,m) ≤ µdn}. (7)

Once d is obtained, the arc from R to d is computed (line 15), where the guard [m0|m0 = m−C[P, t],m ∈ d] is specified.
If the set of markings dFM has been divided in several homogeneous regions dealing to different nodes, then there will be
several D-arcs from R with different guards and with different target nodes (see Example 15). Functions continuousMA and
frontierMA force explicitly themarkings to be either over (or equal to) or below (or equal to) the threshold for every transition
(i.e. ∀tj ∈ T , enab(ti,m) ≥ µi ⇔ enab(ti, R) ≥ µi), and function discreteMA forces the markings to be over (or equal to) the
threshold for the transitions in Tcn and below (or equal to) the threshold for the rest of the transitions. This guarantees that
all the computed nodes are homogeneous regions.
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Fig. 7. (a) Example of a HAPN system. (b) Its Reachability Set, with µ = (1, 1, 5) and m0 = (5, 0). It is represented in the axes m[p1] and m[p2], because
m[p3] is linearly dependent, more preciselym[p3] = 10 − 2m[p1] − m[p2].

Fig. 8. RG of the HAPN system in Fig. 7(a), with µ = (1, 1, 5) andm0 = (5, 0). The homogeneous regions of the nodes correspond with the ones depicted
in Fig. 7(b).

Example 15. Let us illustrate the algorithm with the PN in Fig. 7(a), with thresholds µ = (1, 1, 5) and initial marking
m0 = (5, 0). Notice that with this m0, the marking of p1 will be never higher than 5, thus for any reachable marking m,
enab(t3,m) = min{m[p1],m[p2]} ≤ 5 = µ3, and hence t3 will be always in discrete mode.

At the initial marking m0 = (5, 0), only transition t1 is enabled and it is in continuous mode (m[p1] > µ1). When t1 is
fired as continuous (and t2, t3 remain discrete and not enabled) all the markings contained in the segment from (5, 0) to
(4, 1) can be reached. This segment is the starting set of the RG (see node R0 in Fig. 8).

Let us show how ε-arcs are created (lines 4–9). When p2 (see R1 in Fig. 8) reaches a marking higher to 1, the enabling
degree of t2 is higher than its threshold, and t2 becomes continuous (enab(t2,m) > µ2). This mode change is represented in
the RG as an ε-arc, in which no transition firing is considered. The transition which changes its node, t2, is indicated in the
ε-arc. This arc can only be taken from R1 ∩ [enab(t2) = µ2], which corresponds with the mode change.

In the example, frontierMA(N , R0, t2) calculates the set {(4, 1)}, that is the marking from R0 at which the mode of t2
changes. Given this set, an ε-arc is created (see Fig. 8) labelled with t2, from R0 to R1. The node R1 (see Figs. 7(b) and 8)
is created from m = (4, 1) in the same way as before: considering the continuous markings of t1, t2 from (4, 1), i.e., by
computing continuousMA(N , {(4, 1)}).

In order to illustrate the creation of the D-arcs, let us consider node R1, in which transition t3 is enabled as discrete for
every marking m ∈ R1, because 1 ≤ enab(t3,m) < 5 = m3. The firing of t3 from R1 would reach the triangle obtained by
the union of R6 ∪ R7 ∪ R8 ∪ R9. However, it would not be a homogeneous region, for example ∀m ∈ R6, enab(t1,m) ≤ µ1,
while ∀m ∈ R8, enab(t1,m) ≥ µ1. In this case, neighbT = {t1, t2, t3}, but t3 will never be in continuous mode, as explained
before. Four nodes R6, R7, R8, R9 are obtained, which are reached from R1 through D-arcs (lines 12–17 in Algorithm 5). For
example, when Tcn = ∅, node R6 is obtained, which is reached with the D-arc ⟨R1, R6, [m[p1] ≤ 2,m[p2] ≤ 2], t3⟩. It means
that when transition t3 is fired from R1 ∩ [m[p1] ≤ 2,m[p2] ≤ 2], the homogeneous region R6 is reached, at which the
modes of all the transitions are discrete (forced by Tcn = ∅). Node R7 (resp. R8 and R9) is obtained when Tcn = {t2} (resp. {t1}
and {t1, t2}).
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Fig. 9. Equal Conflict net system. As DPN, it is deadlock-free. As HAPN, with µ = 1, given the initial marking m0 = (6, 0, 0), it can reach a deadlock
md = (0, 1.5, 1.5) by firing the following firing sequence: 0.5t10.5t21t11t2 . Hence, deadlock-freeness is not preserved.

Due to the fact thatHAPN includesHPN, andHPN includesDPN, the complexity of building theRGofHPNandHAPNcanbe
at least the one of building the RG of a DPN. It is reachedwhen the thresholds are high enough tomake transitions to behave
always in mode D. Consequently, in the worst case the complexity of the proposed algorithm is at least exponential in the
number of places of the PN. By contrast,when every threshold is equal to 0, the resultingRGhas only onenode, corresponding
with the RS of the CPN. The complexity of obtaining this unique node is equal to applying the function continuousMA once.
Between these two situations (very high thresholds or thresholds equal to 0) a trade off between high and low complexity
should be obtained. This high complexity is not only a characteristic of the proposed algorithm, but a property of the RG
itself.

Stopping condition. As discussed for HPN, the RG of a HAPN system may also have an infinite number of nodes. It can
be due to the same situation identified for HPN, hence the same stopping condition stoppingCond(R, setofNodes) is checked
in the HAPN algorithm.

Reachability set computation. The RS of a HAPN system, RSA(N ,m0), is the union of all the homogeneous regions in
RGA(N ,m0) which have been computed with Algorithms 4 and 5. The RS of the HAPN in Fig. 8 is depicted in Fig. 7(b).

4.3. Exploiting the Reachability Graph and property preservation

The RG of HAPN can also be used to check some system properties, with the techniques explained in Section 3.3 for HPN:
bound of a place, mutual exclusion property, deadlock-freeness or the deviation bound of two transitions.

Moreover, in the particular case of HAPN, it is interesting to consider under which conditions a property of the original
discrete PN system is preserved by its hybrid adaptive counterpart.

Some results can be obtained for specific system subclasses, such as ordinary (i.e., nets in which arc weights are equal to
1) and Choice Free (i.e., ∀p ∈ P, |p•

| ≤ 1) (thus ofMarked Graphs, ordinary PNs in which ∀p ∈ P, |•p| = |p•
| = 1, a particular

case of ordinary and Choice Free). It has been proved in [19] that deadlock-freeness property of an ordinary Choice Free PN
system ⟨N ,m0⟩D is a necessary and sufficient condition for deadlock-freeness of ⟨N ,m0⟩A with µ ∈ N|P|.

However, this condition is not true when more general net subclasses are considered such as Equal Conflict (see a coun-
terexample in Fig. 9). Then, the thresholds have to be selected ad hoc for each system, following different criteria.

An interesting criterion is to identify which transitions are involved in a bad behaviour that might happen in the CPN but
not in the DPN. Then, the thresholds of the transitions related to such bad behaviour should be higher than 0, to preserve
some discrete behaviour, while the rest of the transitions can be continuous (i.e., threshold equal to 0).

A bad behaviour can be the existence of a spurious deadlock which becomes reachable by the emptying of a trap (see [4]),
such as in the PN considered in the example in Section 4.4. In that case, the undesired deadlocks occur in the limit, when the
firings of the transitions can be as small as desired. This can be avoided by setting any positive threshold for the transitions,
as it is illustrated in the example.

Appropriate thresholds have been selected for the examples considered in this work. However, a general method to
obtain the thresholds for any net system requires more investigation.

4.4. An example. A signal transduction network modelled with HAPN

Here, an example in which HAPNs are used for the partial fluidization of DPN is presented. Selecting the appropriate
threshold values, deadlock-freeness is preserved. The RG and RS of the obtained HAPN are computed, and compared with
the discrete and continuous ones.

Fig. 10 presents a signal transduction network that can be appropriately modelled by HAPN. In such a network, three
different reactions can occur (Fig. 10(a)). This behaviour is sketched in Fig. 10(b). If the places (transitions) with the same
label are merged into one place (transition), the net system in Fig. 10(c) is obtained.
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Fig. 10. (a) Signal transduction network. (b) Sketch of its behaviour. (c) PN modelling the signal transduction network.

Fig. 11. RS of the PN system in Fig. 10 with m0 = (2, 2, 2). It is represented in the axes m[p1] and m[p2], because m[p3] is linearly dependent on m[p1]
and m[p2], more preciselym[p3] = 6 − m[p1] − m[p2]. (a) Considered as DPN. (b) Considered as CPN. (c) Considered as HAPN with µ = 1.

This PN system is deadlock-free as discrete (see its RS in Fig. 11(a)). However, when considered as continuous, it reaches
in the limit a marking1 that is a deadlock (see its RS in Fig. 11(b)). Given the initial marking m0 = (2, 2, 2); the following
infinite firing sequence can be fired in the CPN: σ = t2t3t2t31t11t21t21t30.5t10.5t20.5t20.5t30.25t10.25t20.25t20.25t3 . . . .
When σ is fired, the deadlock markingmd = (0, 6, 0) is reached in the limit (see more examples in [3]).

In this example, thresholds equal toµ = (1, 1, 1) are considered, with the aim of avoiding the potential deadlocks in the
limit. Such HAPN system behaves as continuous while the enabling degree of the places is greater than 1, and it avoids the
potential deadlocks,md = (0, 6, 0),m′

d = (6, 0, 0) and m′′

d = (0, 0, 6), as it can be seen in its RG (and in its RS).
The RS of the HAPN system with µ = 1 and m0 = (2, 2, 2) is shown in Fig. 11(c). Its RG, computed with Algorithm 4,

is depicted in Fig. 12. At the initial marking, the three transitions are in continuous mode, and they can fire as continuous
within the homogeneous region R0.

Consider the markings of R0 at whichm[p1] = 1. From those markings, t3 is enabled as discrete, and it can fire, emptying
p1. Exploring the resulting set ofmarkings, the obtained homogeneous region is R18 (the trapezoid composed by the union of
R7, R8 and R9 in Fig. 11(c)). At R18 (indeed, at any region R6–R9 and R19), the only transition which is enabled as continuous is
t2. When t2 is fired, themarking of p1 increases, and it can reachm[p1] = 1 again. At themarkings of R18 in whichm[p1] = 1,
two things can happen: either the marking moves to node R0 again, through the ε-arc ⟨R18, R0, t3⟩ (also with the analogous
arc ε-arc ⟨R18, R0, t1⟩, although it is not shown in the figure for simplicity); or transition t3 is fired as discrete, leading to R19
(see the D-arc ⟨R18, R19, [m[p1] = 1], t3⟩). Notice that the guards in the D-arcs are not shown in the figure for simplicity.

Moreover, in region R18 (and also in R19, R9 and R10), from the markings in which m[p3] = 1 (the segment from (0, 5) to
(1, 4)) transition t2 is fireable as discrete, as indicated by the D-arc ⟨R18, R11, [m[p3] = 1], t2⟩. This behaviour is analogous
for the three places.

Consider this PN system with a parametrized initial marking m0 = (c, c, c) where c ∈ N>0. If considered as a discrete
system, the number of reachablemarkings can be calculated as

3c+1
i=1 i−3 =

(3c+1)(3c+2)
2 −3 =

9
2 c

2
+

9
2 c−2, i.e., quadratic

with respect to c. If considered as a continuous system, the set of markings that can be reached with a finite or infinite firing
sequence is characterized by the single convex {m|m = m0 +C ·σ ≥ 0}. Unfortunately, this set contains deadlockmarkings
that are not reachable by the original discrete system. Let us finally consider the system as HAPN with µ = 1. For c = 1,
the system behaves as discrete, and the number of reachable markings is 7. For c > 1, the system exhibits some continuous
behaviour, and the number of homogeneous regions computed by Algorithm 4 is 1 + 3


(3c − 2) + (3c − 3)


= 18c − 14,

i.e., the number of reachable regions grows linearly with respect to c. Thus, the HAPN system represents an interesting

1 Notice that it is a spurious marking: a solution of the state equation which is not reachable by the DPN system.
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Fig. 12. RG of the PN system in Fig. 10 as HAPN, with thresholds µ = 1.

trade-off between the quality of the approximation (it avoids the spurious deadlocks) and the computational cost of state
space exploration.

5. Conclusions

As general formalisms for DEDS, PNs suffer from the state explosion problem. Here, we consider hybrid (HPNs) and hybrid
adaptive PNs (HAPNs), which aim to alleviate this problem by partially relaxing the firing of transitions. In HPNs, some
transitions are continuous and the rest of the transitions remain discrete. InHAPNs, a threshold is defined for each transition:
It behaves as continuous when its enabling degree is higher than its threshold; and as discrete otherwise.

HAPNs can be seen as a conceptual framework which includes discrete (DPN), continuous (CPN) and hybrid PN (HPN).
Moreover, by selecting the appropriate thresholds, HAPNs offer the chance of preserving important properties of discrete
event systems, as deadlock-freeness, that are not always retained by fully continuous approximations.

This paper proposes a recursive algorithm to compute a Reachability Graph (RG) for autonomousHPNs, and it is compared
with an existingmethod. The algorithm compacts themarkingswhich are due to continuous firings of transitions into nodes
of the RG, while the firings of discrete transitions are explicitly represented with arcs connecting the nodes. Then, a more
general algorithm is proposed to calculate a RG for HAPNs. The nodes of the RG for HAPNs are homogeneous regions, what
means that for each transition, its enabling degree is either higher or equal to its threshold, or lower or equal to its threshold.
The RG has two types of arcs: ε-arcs, due tomode changes; andD-arcs, due to discrete firings of transitions. Given amarking,
the proposed recursive algorithm characterizes the markings reachable due to continuous firings, and the possible ε-arcs
and D-arcs from it. These algorithms integrate some reachability concepts and definitions about DPNs, CPNs, and HPNs. The
Reachability Set (RS) of both HPNs or HAPNs can be straightforwardly obtained from the obtained RG.
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