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Abstract: Fluidization is a classical technique to overcome the state explosion problem, which
consists in relaxing its behaviour, dealing with hybrid or continuous systems. In the Petri nets
framework, continuous net systems are the result of removing the integrality constraint in the
firing of transitions. This relaxation may highly reduce the complexity of analysis techniques
but may not approximate some properties of the original system, such as its throughput. This
paper deals with the basic operation of fluidization of discrete timed Petri nets. More precisely,
the “bound reaching problem” is identified, which points out the differences between discrete
and continuous behaviour in a case in which the probability of a transition to be enabled is low
in the discrete case. An approach denoted ρ-semantics is proposed to tackle this problem and
compared with other methods.
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1. INTRODUCTION

Petri nets (PN) are a well known formalism for the analysis
of Discrete Event Systems (DES). Continuous Petri nets
are the result of removing the integrality constraint in the
firing of transitions. This process is known as fluidization
being its result a continuous Petri net in which both the
firing amounts of transitions and the marking of places are
non-negative real quantities (David and Alla, 2010; Silva
et al., 2011). In this work we will focus on timed systems.

At first glance, the simple way in which the basic defini-
tions of discrete models are extended to continuous ones
may make us naively think that their behaviour will be
similar. However, the behaviour of the continuous model
can be completely different just because the integrality
constraint has been dropped. Some works have been pro-
posed to improve the accuracy of the original fluid approx-
imation, such as Vázquez and Silva (2012), Lefebvre and
Leclercq (2012).

When the population of the system is high, the continuous
PN system often approximates adequately the behaviour
of the discrete one (see Section 2.3). Unfortunately, this
is not the case in systems in which the population is
“relatively small” in a part of the system (if a place has a
big population, but also a big amount of tokens is required
for its output transition, we can say that it is “relatively
small”). This paper focuses on the approximation of timed
discrete PN by means of continuous PN in the cases in
which the maximum marking of a place is equal to the
weight of one of its output arcs. It is what is denoted here
as the “bound reaching problem” (BRP).

⋆ This work has been partially supported by CICYT - FEDER
project DPI2010-20413, by the grant IT/27 to the GISED research
group and the predoctoral grant B174/11 of the Gobierno de Aragón.

The BRP is a challenging problem that appears in many
practical cases. It can arise in systems in which very low
and very high populations are combined. In particular,
it also appears when inhibitor arcs of a bounded system
are removed and simulated with regular arcs and places,
because the complementary place that is added presents
exactly this problem: its marking bound is equal to the
weight of at least one of its output arcs.

Among the different concerns related to the BRP, we will
concentrate on the approximation of the mean throughput
of a stochastic PN system by its continuous counterpart.

The rest of the work is organized as follows. Section 2
recalls some definitions that will be used in the rest of
the paper. In Section 3, we introduce the bound reaching
problem and we describe two preliminary approaches to
address it. Section 4 proposes a continuous approach to
tackle the bound reaching problem, the ρ-semantics. Two
case studies are discussed in Section 5. Section 6 concludes
the paper.

2. PRELIMINARY CONCEPTS AND DEFINITIONS

This section defines some of the concepts used in the
rest of the paper. First, discrete stochastic Petri nets and
continuous Petri nets are introduced. Then, the relation-
ship between them as the system size tends to infinity is
established. In the following, it is assumed that the reader
is familiar with Petri nets (see Murata (1989); DiCesare
et al. (1993) for a gentle introduction).

2.1 Stochastic Petri nets

A Petri net (PN) is a tuple N = 〈P, T,Pre,Post〉 where
P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are disjoint
and finite sets of places and transitions, and Pre, Post
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are |P |×|T | sized, natural valued, incidence matrices. The
preset and postset of a node X ∈ P ∪ T are denoted by
•X and X•, respectively. A discrete PN system is a tuple

〈N ,M 0〉 where N is the structure and M 0 ∈ N
|P |
≥0 is the

initial marking (denoted in upper caseM for the discrete).

The enabling degree of transition ti at marking M is de-
fined as Enab(ti,M) = minpj∈•ti⌊M [pj ]/Pre[pj, ti]⌋. The
firing of a transition ti in a certain natural amount α ≤
Enab(ti,M ) leads to a new markingM ′, which is denoted

asM αti−→ M ′, and it that satisfiesM ′ = M + α ·C[P, ti],
whereC = Post−Pre is the token flowmatrix (incidence
matrix if N is self-loop free) and C[P, ti] denotes the
ith column C. Hence, M = M0 + C · σ, the state (or
fundamental) equation summarizes the way the marking
evolves; where σ is the firing count vector associated to
the fired sequence.

The set of all the markings reachable in 〈N ,M 0〉 is
defined as: RS(N ,M0) = {M | ∃σ = α1t1 . . . αktk s.t.

M0
α1t1−→ M1

α2t2−→ M2 · · ·
αktk−→ Mk = M}.

A Markovian stochastic Petri net system (SPN) is a dis-
crete PN system in which the transitions fire at indepen-
dent exponentially distributed random time delays (see
Molloy (1982)). Hence, the firing time of each transition
is characterized by its firing rate. More formally, a SPN is

a tuple 〈N ,M0,λ〉, where λ ∈ R
|T |
>0 is the vector of rates

associated to the transitions. In this paper, infinite-server
semantics is assumed for all transitions, and therefore,
the system evolves as a jump Markov process where the
time to fire a transition ti, at a given marking M , fol-
lows an exponentially distributed function with parameter
λi ·Enab(ti,M).

Assuming the SPN system is bounded and ergodic, the
steady state throughput of a transition ti, denoted as χ(ti),
is the limit average number of times ti fires per time unit
when the time tends to infinity.

2.2 Continuous Petri nets

The main difference between continuous and discrete PNs
is in the firing amounts and consequently in the marking,
which in discrete PNs are restricted to be in the naturals,
while in continuous PNs are relaxed into the non-negative
real numbers. Thus, a continuous PN system is understood
as a relaxation of a discrete one.

A continuous PN system is a tuple 〈N ,m0〉C where N
is the net structure (as defined for discrete PNs) and

m0 ∈ R
|P |
≥0 is the initial marking. In a continuous PN, the

enabling degree of transition ti at marking m is defined

as enab(ti,m) = minpj∈•ti{
m[pj ]

Pre[pj ,ti]
}. The firing of a

transition ti in a certain real amount α ≤ enab(ti,m) leads
to a new marking m′ that satisfies m′ = m+ α ·C[P, ti].
Notice that in contrast to discrete PNs, a continuous
transition can fire if all its input places are positively
marked, i.e., enab(ti,m) > 0, regardless of the arc weights.

As in discrete PNs the state equation m = m0 +C · σ
summarizes the system evolution. The derivative of this
equation with respect to time is ṁ = C · σ̇ where σ̇ = f is
the vector of instantaneous continuous flows of transitions.

Different semantics exist to define the flow f of transitions,
the two most important being infinite server and finite
server semantics (David and Alla, 2010; Silva et al., 2011).
Here, infinite server semantics (ISS) will be considered.

A Timed Continuous Petri Net (TCPN) is a continuous

PN together with a vector λ ∈ R
|T |
>0 defining the speed

associated to transitions. Similarly to purely markovian
discrete net models, under ISS, the flow through a con-
tinuous timed transition ti is the product of the speed,
λi, and the instantaneous enabling of the transition, i.e.,
fi = λi · enab(ti,m).

For the flow to be well defined, every transition must have
at least one input place, hence in the following we will
assume that |•ti| ≥ 1 for each transition ti. Thus, the time
evolution of a TCPN can be expressed by the following
system of differential equations:

ṁ = C · f (1)

where the ith component of f is fi = λi · enab(ti,m).

If there exists a steady state in a TCPN system, the
throughput of ti, denoted as χ(ti), is equal to its flow fi.

2.3 Deterministic limit of SPN

In population dynamics, the deterministic limit (Jacod
and Shiryaev, 2002) describes the trajectory towards which
the population densities of a discrete stochastic system
converge as its size tends to infinity. Let us consider a SPN

with initial marking M 0 = k · x0 ∈ N
|P |
≥0 where x0 ∈ R

|P |
≥0

represents the initial marking density of the system, and
k ∈ R represents the system size (or volume).

Let us define the vector field for place pj as Fj(x) =
∑

ti∈(•pj∪pj
•) C[pj , ti]·fi, where fi = λi ·enab(ti,x) (notice

that Fj is a nonnegative function of real arguments on
the system densities). Let F (x) be a vector composed
of the vector field functions Fj(x) of every place pj.
The two following conditions can be easily checked: a)
F (x) is Lipschitz continuous, i.e., ∃H ≥ 0 such that
|F (x)− F (y)| ≤ H · |x− y|; b)

∑

ti∈(•pj∪pj
•) |C[pj , ti]| ·

fi(x) < ∞. Then, the deterministic limit behaviour of the
marking densities x of the SPN when k tends to infinity is
given by the following set of differential equations (Ethier
and Kurtz, 1986; Jacod and Shiryaev, 2002): ẋ = F (x) =
C · f .

Thus, the deterministic limit of a SPN matches with
the time evolution defined for TCPN, and therefore a
TCPN captures faithfully the behaviour of a SPN with
high markings. However, in order to obtain a suitable
continuous approximation for SPN with low markings,
further manipulations are required on the TCPN.

3. THE BOUND REACHING PROBLEM

The “bound reaching problem” (BRP) studies a particular
situation in which the continuous approximation does not
approximate correctly the behaviour of the discrete PN.

As previously pointed (Section 2.3), TCPN approximate
reasonably well the behaviour of SPN when the popula-
tions are relatively high. However, when “relatively small”
populations are also considered it is not the case.
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Table 1. χ(t1) in the PN in Fig. 1, with λ = (10, 1, 1); considered as SPN and as TCPN.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
SPN 0.833 0.417 0.242 0.144 0.085 0.049 0.028 0.016 0.008 0.005
TCPN 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833

This lack of accuracy is related to the fact that synchro-
nizations are strongly relaxed when the net is fluidified.
Consider a transition t and a place p such that •t =
{p}, P re[p, t] = k (for example, t1 and p1 in Fig. 2(a)).
Considered as a discrete system, t is only enabled when
M [p] ≥ k, and the probability of that transition to be
enabled can be low. However, as continuous, t is enabled
for any positive amount of tokens m[p] > 0, regardless
of the arc weight k. An extreme case occurs when the
maximum possible amount of tokens in p is equal to k.
Then, this place p needs to “reach its bound” in order to
enable transition t. This lack of accuracy and the search
of alternative fluid schemes to improve it the BRP.

We identify that a system 〈N ,M 0〉 suffers from the BRP
when the maximum number of tokens in a place is k, and
the arc from that place to a transition has weight k. More
formally, there exists BRP if ∃p, t, s.t. M [p] ≤ Pre[p, t],
∀M ∈ RS(N ,M0). If the inequality is strict, i.e., M [p] <
Pre[p, t], ∀M ∈ RS(N ,M0), then t is a transition which
will never be enabled in the net system, and consequently
the system is not live. We will not consider this case along
this work, because it would be enough to remove t.

Let us define the set of places which suffer from the bound
reaching problem as bound reaching set (BRS):

BRS = {p|M [p] ≤ Pre[p, t], ∀M ∈ RS(N ,M0)}

Equivalently, the set of transitions which suffer the BRP
is defined as the bound reaching transition set (BRTS):

BRTS = {t|∃p ∈ •t,M [p] ≤ Pre[p, t], ∀M ∈ RS(N ,M 0)}

In this paper, we focus on the relatively frequent particular
case of the BRP affecting only one transition t, and t
has only one input place (i.e., it is not a join transition):
|BRTS| = 1 and |•BRTS| = 1.

p1

p2

t1

t2

t3

k

k

k

Fig. 1. PN system in which place p1 and transition t1 suffer
from the BRP, λ = (10, 1, 1).

Consider the PN example in Fig. 1. Apparently, it has four
parameters (λ1, λ2, λ3 and k). However, one of the firing
rates can be fixed (here, λ2 = 1), which seen just as a
time scale: we can consider three parameters, without lost
of generality. Here, In which the BRP appears in p1, t1.
Transitions t1 and t3 are enabled at M 0 = (k, 0). Suppose
t1 is fired first. Then, all the tokens are moved to p2,
and only t2 is enabled. After one or more firings of t2,
transitions t2, t3 are enabled an can fired. Transition t3 is
enabled when M [p1] ≥ 1. However, t1 can only fire when

M [p1] = k. Consequently, transition t1 is not fired very
often and its throughput is low.

Moreover, if k grows, then the probability of having
k tokens in p1 decreases, and hence the steady state
throughput χ(t1) of the SPN decreases. It can be seen
in Table 1, in which the steady state throughput of t1 for
different values of k is shown in the first row for SPN.
The steady state throughput also depends on the ratio
among the firing rates λi. Assuming λ2 a scale constant,
χ(t1) increases monotonically with λ1, and χ(t1) decreases
when λ3 increases.

However, in the case of the TCPN, χ(t1) is independent
of k, as it can be seen in the second row in Table 1.

The schema of this example is important in practice. It
appears when an inhibitor arc is removed by the system
with the addition of a complementary place which usually
has this structure.

3.1 A basic schema in which BRP may appear

In order to tackle the BRP, we will start with the the
simple but representative example in Fig. 2(a), in which
p1 has only one input transition, |p1•| = 1. In other words,
transition t3 is dropped from Fig. 1.

p1

p2

t1

t2

k
k

k

(a)

p1

p2

t1

t2

k
q

q

(b)

Fig. 2. (a) SPN system in which p1 and t1 suffer from the
BRP, its firing rates are λ = (10, 1). (b) Hybrid PN
system in which t1 is discrete (black transition) and
t2 is continuous, arc weights are modified to q.

In the steady state, the total cycle time Θ from M0 =
(k,0) is the addition of the average time to fire t1 from M0

(which happens with a mean value of 1
λ1

), the mean time

to fire t2 when M [p2] = k (which is 1
k·λ2

), the one when

M [p2] = k − 1 (which is 1
(k−1)·λ2

), etc. Thus, the average

cycle time is Θ = 1
λ1

+ 1
λ2

·
∑k

i=1
1
i . The throughput of t1

is equal to 1
Θ (see row “SPN” in Table 2):

χ(t1) =
λ1 · λ2

λ1 ·
∑k

i=1
1
i + λ2

= λ2
1

∑k
i=1

1
i +

λ2

λ1

(2)

χ(t1) is the product of a dimensionless coefficient depend-

ing on k and λ2

λ1

, multiplied by λ2 that defines a time
scale. Thus, we can normalize λ2 = 1. Consequently, the
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Table 2. χ(t1) in the PN in Fig. 2(a), with λ = (10, 1), for different methods.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k=10 k=50 k=100
SPN 0.909 0.625 0.517 0.458 0.420 0.392 0.371 0.355 0.341 0.330 0.217 0.189
TCPN 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909
Meth1 0.909 0.729 0.607 0.522 0.459 0.412 0.374 0.343 0.318 0.296 0.090 0.051
Meth2, 2τ 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475
Meth2, 3τ 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324

normalized χ(t1) depends on two parameters: k (in N and
m0) and λ1 (which depends on the relative firing rates).

3.2 First approaches to the BRP

After identifying the BRP, our aim is to find methods or
techniques to approach it, i.e., to fluidify the net system to
obtain a good approximation to the original discrete one.
The techniques can range from fully continuous to hybrid.

Let us describe two very basic methods which can be
used to approach the BRP. The first one is a continuous
approximation with a firing semantics different from the
usual ISS. The second one is a hybrid PN in which the
transitions are continuous or discrete, but some arc weights
must be modified. This kind of methods are also described
in Zarnay and Silva (2010). They will be compared with
the ρ-semantics proposed in Section 5.

• (Meth1)Ad hoc continuous flow estimation.
It is based on the heuristic idea that the k tokens
are considered to be independent. The probability

of M [p1] = 1 is “considered” to be m[p1]
k , while the

probability of M [p1] = k would be (m[p1]
k )k. Based

on this heuristic reasoning, a marking-dependent flow
approximation for transition t1 is defined as follows:

f(t1) = λ1

(

m[p1]

k

)k

With this semantics, the enabling degree of t1 is not
linear (see Fig. 5(b)). The flow given by this tech-
nique has the advantages of getting continuous fully
differentiable models. However, with this semantics,
some properties of ISS are lost, for example the flow
evolution is not marking homothetic (given f the flow
in 〈N ,m0,λ〉, the one in 〈N , k ·m0,λ〉 is not k · f).
A drawback of this approach is that although

it provides a reasonable approximation of the SPN
throughput for small (see k between 1 and 10 in
Table 2), it is not so good for higher values of k (see
k=50 or k=100 in Table 2).

• (Meth2) Hybrid (with scaled arc weights). Let
us consider that every transition is continuous except
the one which suffers from the BRP (in this case,
t1 discrete and t2 continuous). Thus, a hybrid model
is obtained. The time simulation of this hybrid net
over time shows that filling place p1 up to capacity k
“lasts forever”, so t1 will never be enabled again after
the first firing. It is a first order time invariant linear
system without zero; for example, it corresponds to
the loading of a capacitor in an electrical RC-circuit,
described by a negative exponential function. This
exponential is characterized by a parameter τ , which
here is τ = λ2. It is a classical result that the 95%
of k (the response time at 5%) is reached at time
3τ . Using this idea, we modify the arc weight of the

input and output arcs of the hybrid transition from
k to q = 0.95 · k (Fig. 2(b)). The enabling degree
of the transition is modified to the one in Fig. 3(c).
Equivalently, the 86.7% is reached at time 2τ and the
98.2% is reached at time 4τ .
Due to the fact that q depends proportionally on

k, what is defined is a response time independent of
the aptitude (k): at 5% if q = 0.95 ·k (3τ), at 13,3% if
q = 0.867 ·k (2τ) or at 37,7% if q = 0.623 ·k (τ). This
is shown in Table 2. Another characteristic of this
approach is the fact that the flow is discontinuous,
being a hybrid net in the classical sense.

These two approaches are interesting, but just a first
approach to the BRP. Hence, different techniques should
be investigated.

0 k

1

enab(t1)

m[p1]

(a)

0 k

1

enab(t1)

m[p1]

(b)

0 q k

1

enab(t1)

m[p1]

(c)

Fig. 3. Enabling degree of transition t1 in Fig. 2 with dif-
ferent semantics: (a) TCPN under ISS; (b) Meth1; (c)
Meth2. (a) and (b) are continuous and differentiable,
(c) is discontinuous, a hybrid net in the classical sense.

4. A NEW SEMANTICS TO APPROACH THE
BOUND REACHING PROBLEM

In this section, a new semantics for transitions is pro-
posed to approach the BRP, denoted ρ-semantics. The
preliminary idea which inspires this semantics is to try
to simulate the “wait until there are enough tokens to
fire” of the discrete net. This behaviour can be obtained
with timed and immediate transitions and some additional
places (Section 4.1). An immediate transitions which has
some tokens in its input places, fires “immediatelly” (in 0
time units). Then, the desired behaviour is obtained by the
definition of the new firing semantics for the transition, as
explained in Subsection 4.2.
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4.1 Simulating discrete behaviour with immediate transitions

Considering the PN in Fig. 2(a), a key difference between
the behaviour of the SPN and the TCPN is that in the
SPN, t1 can fire only when the k tokens are in p1; while
in the continuous case, it is not needed to “wait until the
k tokens” are in p1 to fire t1.

p′1 p2

pa pb

t′1

t2

timm

k

k

k-ρ

k-ρ
k-ρ

ρ

Fig. 4. Transformation of the PN in Fig. 2(a), as explained
in Section 4. White transitions are continuous under
ISS, while the thin black transition is immediate.

This is the idea exploited in this approach: to simulate the
“wait” of t1 until it has k tokens. As explained, waiting
until p1 has k tokens would last infinite time in a TCPN.
Hence, it has no sense to wait until k, but until some other
smaller value, such as k − ρ (where ρ comes from “the
rest”). This behaviour can be obtained by transforming
p1, t1 (see Fig. 2(a)) to a subnet composed of p′1, t

′
1, pa,

pb, timm (see Fig. 4), such that t′1 is not enabled for “the
first” k − ρ tokens, and it is enabled for higher amounts.

Immediate transitions are difficult to handle in TCPN
(Recalde et al., 2006). A first approximation can be to
consider immediate transitions as timed transitions which
are several orders of magnitude faster than the other
transitions (for example, λimm = 10000 in the TCPN in
Fig. 4). However, this has some disadvantages: If λimm is
relatively not very high, then the steady state might not be
the desired one (because for high populations, timm could
be part of the bottleneck); while for very high values of
λimm, stiffness problems can appear when integrating (1).

4.2 Defining the ρ-semantics

In this concrete construction, we can abstract the structure
given by p′1, t

′
1, pa, pb, timm by a unique transition with a

new semantics, which compacts the desired behaviour.

Let us detail the marking of the new structure (places p′1,
pa, pb) and the enabling degree of t′1, with respect to the
possible marking of p1 in the original net, i.e., m[p1]:

• m[p1] ≤ k − ρ. Then transition timm is enabled,
the marking is moved immediately to pb and there
is no remaining token at p′1. Hence, m[p′1] = 0,
m[pa] = k − ρ−m[p1], m[pb] = m[p1] and
enab(t′1) = 0.

• k − ρ < m[p1] ≤ k. Then pa is empty, transi-
tion timm is disabled, and there is some remain-
ing token at p′1. Hence, m[pa] = 0, m[pb] = k − ρ,
m[p′1] = m[p1]− (k − ρ) and

enab(t′1) = min{m[pb]
k−ρ ,

m[p′

1
]

ρ } =
m[p′

1
]

ρ = m[p1]−(k−ρ)
ρ .

The difference between the enabling of t1 and t′1 is depicted
in Fig. 3 and Fig. 5: t1 is enabled for m[p1] > 0, but t′1 is
enabled for m[p1] > k − ρ.

The new transition t′1 has a specific firing semantics,
different from ISS (f1 = λ1 · enab(t1)), obtained from
λ1 · enab(t′1). The flow of a transition t1 under the ρ-
semantics is given by the following formula:

f1=







0 if m[p1] ≤ Pre[p1, t1]-ρ

λ1
m[p1]-(Pre[p1, t1]-ρ)

ρ
otherwise

(3)

The transient flow of t1 is still a continuous function, but
it is piecewise defined, introducing certain “hybridization”
in the behaviour of the transition. The computation done
by this approach is local t1 and it is simple and fast.

0 k-ρ k

1

enab(t1)

m[p1]

Fig. 5. Enabling degree of transition t1 in Fig. 2(a) with the
ρ-semantics. Certain “hybrid” behaviour is obtained
in the firing of t1, the flow is a piecewise function.

4.3 Selection of the appropriate ρ

With the proposed ρ-semantics, the throughput of the
system can be “tuned” from 0 (when ρ ∼ 0) to the
throughput of the TCPN (when ρ is equal to Pre[p1, t1]).

The challenge is how to select ρ to approximate the steady
state throughput of the SPN. Here we compute ρ first for
the PN in Fig. 2(a), and then apply that heuristics on any
PN system in which the transition t1 which suffers from
the BRP has the same structure: t1 has only one input
place, which has only one input and one output transition,
|•p1| = |p1•| = 1.

Considering the ρ-semantics for t1, and ISS for t2, the
throughput of t1 at the steady state is (see the Appendix
for a detailed explanation):

χρ(t1) = λ2 ·
ρ

k + ρ · λ2

λ1

(4)

Given (4) for the ρ-semantics and (2) for the SPN, forcing
χ(t1) = χρ(t1), an analytical formula for the value of ρ is
obtained, which is dependent on k (see the value of ρ for
different values of k in Table 3):

ρ =
k

∑k
i=1

1
i

(5)

Interestingly, the value of ρ given by (5) is independent
of λ. We can think about the PN in Fig. 2(a) as a
simplification of any net with analogous structure. Hence,
it will be possible to use the formula of ρ calculated here
as a heuristics for ρ in any system with the same structure.

Table 3. Optimal value of ρ, obtained from (5).

k 1 2 3 4 5 10 50
ρ 1 1.33 1.64 1.92 2.19 3.41 11.9
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5. CASE STUDIES

In this section, the proposed ρ-semantics is applied to two
case studies. It will be compared with Meth1 and Meth2,
the two methods described in Section 3.2.

5.1 Example 2. A manufacturing system

Consider the PN in Fig. 6, which represents a manufactur-
ing system in which tables are assembled and painted, in
which cooperation and synchronization relations appear.
Every transition has the same speed, λ = 1.
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Fig. 6. Example 2. PN system modelling a manufacturing
system, derived from Recalde and Silva (2001).

In this PN system, BRS = {p8}, and BRTS = {t7}.
Hence, transition t7 suffers from the BRP, and which
the structure identified in Section 3.1. Applying the
ρ-semantics to transition t7. From (5), we set ρ =

4
1+1/2+1/3+1/4 = 1.92. The obtained throughput is shown

in the last row in Table 4: χ(t7) = 0.6443, which in com-
parison with the other methods, is the best approximation
of the original SPN system.

Table 4. Throughput of t7, χ(t7), in Fig. 6 with
λ = 1. Comparative of different methods.

Method throughput(t7)
SPN 0.6573
TCPN 1.1429
Meth1 0.6030
Meth2, q = 0.623 · k 0.4409
Meth2, q = 0.867 · k 0.2636
Meth2, q = 0.95 · k 0.1514
ρ-semantics 0.6443

Other methods can be also applied to the example as
seen in Table 4. Meth1 and Meth2 for τ , 2τ and 3τ
(with t7 discrete and all the other transitions continuous,
and weight arcs equal to 0.623 · k, 0.867 · k and 0.95 · k
respectively) are better than a TCPN.

5.2 Example 3. A logic controller

The PN example in Fig. 7(a) is obtained after the de-
colourization of a net which models a Multi-Computer
Programmable Logic Controller (MCPLC) in Zarnay and
Silva (2010). It is a Generalized Stochastic PN (GSPN)
(Balbo et al., 1987), which is a SPN enriched with imme-
diate transitions (represented as thin black transitions).

As said, an interesting issue is how to model immediate
transitions when a GSPN system is fluidified. Using the
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Fig. 7. Example 3. (a) Discrete GSPN system which
models a MCPLC (Zarnay and Silva, 2010). (b)
TCPN system obtained after the fluidization of (a).
(c) Reduced TCPN system.

rules defined in Recalde et al. (2006), the immediate
transitions in Fig. 7(a) can be reduced: First, transitions
ta, tb, tc and td, being in topologically equal conflict
relation are merged into a fork transition. Then, that
transition and the timed transition t2 are transformed
into a single transition, t2 in Fig. 7(b). Moreover, the
three symmetric branches can be merged (Meyer and Silva,
2012), obtaining the TCPN system in Fig. 7(c).

Table 5. Throughput of t2, χ(t2), of the PN in
Fig. 7. Comparative of different methods.

Method throughput(t2) throughput(t2)
λ=(2,10,5,5,5) λ=(100,1,10,10,10)

GSPN 4.666 1.525
TCPN 7.693 2.796
Meth1 4.756 2.427
Meth2, q=0.623 · k 5.18 0.727
Meth2, q=0.867 · k 3.86 0.607
Meth2, q=0.95 · k 2.97 0.499
ρ-semantics 5.085 1.527

Let us first consider this example with the following vector
of transition rates: λ = (2, 10, 5, 5, 5). For this λ, the values
of χ(t1) are illustrated in the first column in Table 5. In
this net system, BRTS = {t3}, so the ρ-semantics is
applied to t3. It can be seen that the throughput when
using ρ-semantics, in which ρ = 3

1+1/2+1/3 = 1.6364, is

not as good as the one of Meth1.

WODES 2014
Cachan, France. May 14-16, 2014

147



However, for different combinations of λ, for example
λ = (100, 1, 10, 10, 10), the results are different (see the
second column in Table 5). The throughput of t2 for
GSPN is equal to 1.525. In this case, Meth1 and Meth2
do not provide a good approximation for the GSPN.
Nevertheless, the ρ-semantics, obtains good results for
the approximation of the throughput of the system at the
steady state, it is χ(t2) = 1.527.

6. CONCLUSIONS

This paper deals with a challenging problem which appears
in the fludization of discrete PN with a localized part of
not very high populations, which is denoted bound reaching
problem: although the steady state throughput of a SPN
system with high populations is well approximated by its
TCPN counterpart, it is not the case for low populations.
It is due to the relaxation of the integrality constraints
of the original PN, which is specially relevant when the
marking bound of a place coincides with the weight of one
of its output arcs.

Different approaches for the (partial) fluidization of this
kind of systems have been described. In particular, a new
semantics has been proposed, the ρ-semantics, in which
the transition suffering the BRP is enabled only if it
has a certain amount of tokens in its input place. The
ρ-semantics is discussed, and it is compared with the
other methods. We are conscious of the fact that this is
a first and partially heuristic consideration of a difficult
problem that is essential to improve the quality of fluid
approximation of discrete event systems.

The bound reaching problem may appear in more general
schemas than the one addressed here, such as net systems
in which the transition which suffers from the problem
has several input places (i.e., it is a join), its input place
has several output transitions (i.e., a choice) or the BRP
appears in several points in the net system. Moreover,
other probability distribution functions different from ex-
ponential can be considered for the firing of transitions of
the discrete system. Future work will explore new meth-
ods, based on the ρ-semantics or in other continuous or
partially hybrid ideas, to avoid the bound reaching problem
in those cases.
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Appendix A. ANALYTICAL COMPUTATION OF THE
STEADY STATE THROUGHPUT WITH THE

ρ-SEMANTICS

Some notions for the analytical computation of equality
(4) are presented here, i.e., χρ(t1) for the PN in Fig. 2(a).
In that net system, t1 has a ρ-semantics, while t2 is a
usual continuous transition, with ISS semantics.

Let fss = (fss1, fss2) = (χρ(t1), χρ(t2)) denote the steady
state throughput of t1 and t2, and let mss denote the
steady state marking. At steady state,mss keeps constant,
and hence from (1) it holds C · fss = 0. In this example:

fss2 = k · fss1 (A.1)

Given that the net system is live, it holds that fss > 0.
Then, by (3), the steady state throughput of t1 is:

fss1 = λ1 ·
mss[p1]− (Pre[p1, t1]− ρ)

ρ
(A.2)

And by the ISS semantics, the steady state throughput of
t2 is:

fss2 = λ2 ·
mss[p2]

Pre[p2, t2]
(A.3)

From the net structure, the following relation is obtained:

mss[p1] +mss[p2] = k (A.4)

From (A.1), (A.2), (A.3) and (A.4), the value of χρ(t1) is:

fss1 =
λ1 · λ2 · ρ

λ1 · k + λ2 · ρ
= λ2 ·

ρ

k + ρ · λ2

λ1

(A.5)
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