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a b s t r a c t

The analysis of Discrete Event Dynamic Systems suffers from thewell known state explosion
problem. A classical technique to overcome it is to relax the behavior by partially removing
the integrality constraints and thus to deal with hybrid or continuous systems. In the
Petri nets framework, continuous net systems (technically hybrid systems) are the result
of removing the integrality constraint in the firing of transitions. This relaxation may
highly reduce the complexity of analysis techniques but may not preserve important
properties of the original system. This paper deals with the basic operation of fluidization.
More precisely, it aims at establishing conditions that a discrete system must satisfy so
that a given property is preserved by the continuous relaxation. These conditions will
be mainly based on the marking homothetic behavior of the system. The focus will be on
logical properties as boundedness, B-fairness, deadlock-freeness, liveness and reversibility.
Furthermore, testing homothetic monotonicity of some properties in the discrete systems
is also studied, as well as techniques to improve the quality of the fluid relaxation by
removing spurious solutions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Petri nets [1,2], as other formalisms for Discrete Event Dynamic Systems (DEDS), suffer from the state explosion problem.
Such a problem may render analysis techniques based on exhaustive enumeration computationally infeasible, particularly
for large population systems. A promising approach to overcome this difficulty is to relax the original discrete model by
explicitly removing the integrality constraint in the firing of transitions. This process is known as fluidization, being its result
a continuous Petri net (PN) in which both the firing amounts of transitions and the marking of places are non-negative real
quantities (see [3,4]).

Continuous PNs allow the use of some polynomial time complexity techniques for several analysis purposes [4]. Unfor-
tunately, continuous nets may not always preserve important properties of the discrete model (first pointed out in [5]). For
this reason, it is crucial to study which discrete PN systems can be ‘‘successfully’’ fluidified and which ones not. Moreover,
some techniques can be used to improve the fluidization.

At first glance, the simple way in which the basic definitions of discrete models are extended to continuous ones may
make us naively think that their behavior will be similar. However, the behavior of the continuous model can be completely
different just because the integrality constraint has been dropped. In otherwords, not all DEDS can be satisfactorily fluidified.
Consider, for instance, the net system in Fig. 1(a). If considered as discrete, the system is deadlock-free: from m0 = (3, 0),
both t2 and t1 can be fired alternatively, and no deadlock can be reached. However, if considered as continuous, transition
t2 can be fired in an amount of 1.5 from m0, leading to a deadlock markingmd = (0, 1.5).

✩ This work has been partially supported by CICYT - FEDER project DPI2010-20413, by the grant IT/27 to the GISED research group and the predoctoral
grant B174/11 of the Gobierno de Aragón.
∗ Corresponding author. Tel.: +34 976762472; fax: +34 976761914.

E-mail addresses: efraca@unizar.es (E. Fraca), julvez@unizar.es (J. Júlvez), silva@unizar.es (M. Silva).

1751-570X/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.nahs.2013.11.002

http://dx.doi.org/10.1016/j.nahs.2013.11.002
http://www.elsevier.com/locate/nahs
http://www.elsevier.com/locate/nahs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2013.11.002&domain=pdf
mailto:efraca@unizar.es
mailto:julvez@unizar.es
mailto:silva@unizar.es
http://dx.doi.org/10.1016/j.nahs.2013.11.002


4 E. Fraca et al. / Nonlinear Analysis: Hybrid Systems 12 (2014) 3–19

Fig. 1. (a) Not homothetically deadlock-free PN system [5]; (b) homothetic deadlock-free PN system.

Notice that deadlock-freeness of the discrete system in Fig. 1(a) highly depends on its initial marking. In fact, if the initial
marking is doubled, i.e., if we considerm′

0 = (6, 0), then the system deadlocks by firing t2 an amount of 3.
Let us now consider the PN in Fig. 1(b), which exhibits a different behavior. Considered as discrete, it is deadlock-free for

m0 = (2, 1, 0, 0, 0). Moreover, it is deadlock-free for any initial marking proportional tom0, i.e.,m′

0 = k ·m0, with k ∈ N>0.
When the PN system is fluidified, i.e., the PN system in Fig. 1(b) is considered as a continuous system, it preserves

deadlock-freeness. We will exploit this idea to extract conditions for the preservation of properties.
The present paper explores the kind of features that a discrete net system must exhibit so that a given property is

preserved when it is fluidified. It focuses on classical properties as boundedness, B-fairness, deadlock-freeness, liveness
and reversibility. The main ideas used here are: (a) the property of homothecy of continuous firing sequences (needed for
Lemma 16); (b) the fact that every real number could be approximated by a rational number (used in Lemma 17). Properties
preservation is built over these two ideas. Furthermore, homothetic monotonicity of boundedness, B-fairness and deadlock-
freeness properties in discrete Petri nets is studied, as well as property preservation for some net system subclasses. Some
techniques to improve the fluidization are also considered, where the spurious deadlocks are removed with the addition of
some implicit places.

This work is organized as follows. Section 2 recalls some definitions that will be used in the rest of the paper. Section 3
sets the main results concerning homothetic properties in a discrete net system and its relations with the fluid counterpart.
In Section 4, some results about homothetic boundedness and homothetic B-fairness of discrete PN are presented. Section 5
studies whether a discrete PN is homothetically deadlock-free and some techniques for the elimination of spurious
deadlocks. Finally, an application example is presented in Section 6, while Section 7 deals with some conclusions.

2. Preliminary concepts and definitions

Some concepts used in the rest of the paper are defined here. In the following, it is assumed that the reader is familiar
with discrete Petri nets (see [1,2] for a gentle introduction).

2.1. Petri nets

Definition 1. A PN is a tuple N = ⟨P, T , Pre, Post⟩ where P = {p1, p2, . . . , pn} and T = {t1, t2, . . . , tm} are disjoint and
finite sets of places and transitions, and Pre, Post are |P| × |T | sized, natural valued, incidence matrices.

Given a Petri net and a marking, the discrete Petri net system is defined.

Definition 2. A discrete PN system is a tuple ⟨N ,m0⟩D where N is the structure andm0 ∈ N|P| is the initial marking.

In discrete PN systems, a transition t is enabled at m if for every p ∈
•t , m[p] ≥ Pre[p, t]. An enabled transition t can be

fired in any amount α ∈ N such that 0 < α ≤ enab(t,m), where enab(t,m) = minp∈•t⌊
m[p]

Pre[p,t]⌋.
The main difference between discrete and continuous PNs is in the firing amounts and consequently in the marking,

which in discrete PNs are restricted to be in the naturals, while in continuous PNs are relaxed into the non-negative real
numbers [3,4]. Thus, a continuous PN system is understood as a relaxation of a discrete one.

Definition 3. A continuous PN system is a tuple ⟨N ,m0⟩C where N is the structure andm0 ∈ R|P|

≥0 is the initial marking.

In continuous systems, a transition t is enabled at m if for every p ∈
•t , m[p] > 0. It can be fired in any amount α ∈ R

such that 0 < α ≤ enab(t,m), where enab(t,m) = minp∈•t{
m[p]

Pre[p,t] }.
In both discrete and continuous PN systems, the firing of t in a certain amount α leads to a new marking m′, and it is

denoted as m αt
−→ m′. It holds m′

= m + α · C[P, t], where C = Post − Pre is the token flow matrix (incidence matrix if
N is self-loop free) and C[P, t] denotes the column t of the matrix C . The state (or fundamental) equation,m = m0 + C · σ,
summarizes the way the marking evolves, where σ is the firing count vector (also known as the Parikh vector) associated
with the fired sequence σ .
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Right and left natural annullers of the token flow matrix are called T- and P-semiflows, respectively. When ∃y > 0,
y · C = 0, the net is said to be conservative, and when ∃x > 0, C · x = 0, the net is said to be consistent. A set of places Θ is a
trap if Θ•

⊆
•Θ , while a set of places Σ is a siphon if •Σ ⊆ Σ•. Finally, let us define ∥v∥ as the infinite norm (or maximum

norm) of the vector v: ∥v∥ = max{|v1|, . . . , |vn|}. It will be used to compare two markings.
The set of all the reachable markings of a discrete system ⟨N ,m0⟩D is denoted as the reachability set, RSD(N ,m0).

Definition 4. RSD(N ,m0) = {m | ∃σ = tγ1 · · · tγk such thatm0
tγ1

−→ m1
tγ2

−→ m2 · · ·
tγk

−→ mk = m}.

A spuriousmarkingm of a discrete system ⟨N ,m0⟩D is a solution of the state equation, i.e., ∃σ ∈ N|T | s.t.m = m0 + C · σ
but is not reachable in the discrete system: @σ fireable in ⟨N ,m0⟩D. Notice that m could be reachable in the continuous
system.

In continuous PN systems, two sets of reachable markings are considered: one denoted as RSC (N ,m0), that contains all
the markings that are reachable with finite firing sequences, and the lim-reachability set, denoted as lim-RSC (N ,m0), that
contains all the markings that are reachable either with a finite or with an infinite firing sequence.

Definition 5. RSC (N ,m0) = {m | ∃σ = α1tγ1 . . . αktγk s.t. m0
α1tγ1
−→ m1

α2tγ2
−→ m2 · · ·

αktγk
−→ mk = m where αi ∈ R>0,

∀i ∈ {1..k}}.

Definition 6. lim-RSC (N ,m0) = {m | ∃σ = α1tγ1 . . . αitγi . . . s.t. m0
α1tγ1
−→ m1

α2tγ2
−→ m2 · · · mi−1

αitγi
−→ mi · · · and limi→∞

mi = m where αi ∈ R>0, ∀i > 0}.

Notice that it holds RSD(N ,m0) ⊆ RSC (N ,m0) ⊆ lim-RSC (N ,m0). An immediate consequence of the definition of
continuous firings is the following homothetic property [5].

Proposition 7. If m ∈ RSC (N ,m0) then α · m ∈ RSC (N , α · m0), ∀α ∈ R>0.

2.2. Petri net properties

Some interesting properties, often required for real systems, are recalled below. They are well known in discrete sys-
tems [1,2], and redefined here for continuous systems. First, two safety properties ΠS : boundedness (B) and B-fairness (BF),
which is chosen as a representative of synchronic properties [6,7], and then some other classical behavioral properties ΠL:
deadlock-freeness (DF), liveness (L) and reversibility (R) are defined. Their lim-counterparts are also defined: lim-B, lim-BF,
lim-DF, lim-L and lim-R.

Definition 8 ((lim-)boundedness (B)).

• A place p is (lim-)bounded if ∃b ∈ R>0 such that for allm ∈ (lim-) RSC (N ,m0), m[p] ≤ b.
• A system ⟨N ,m0⟩C is (lim-)bounded if every p ∈ P is (lim-)bounded.

Definition 9 ((lim-)B-fairness (BF)).

• Two transitions t, t ′ are in (lim-)B-fair relation if ∃b ∈ R>0 such that for all m ∈ (lim-)RSC (N ,m0), for every finite
(infinite) firing sequence σ fireable fromm, it holds that if σ[t] = 0 then σ[t ′] ≤ b, and if σ[t] = 0 then σ[t] ≤ b.

• A system ⟨N ,m0⟩C is (lim-)B-fair if every pair of transitions t, t ′ ∈ T is in (lim-)B-fair relation.

Definition 10 ((lim-)deadlock-freeness (DF)). A system ⟨N ,m0⟩C is (lim-)deadlock-free if ∀m ∈ (lim-)RSC (N ,m0), ∃t ∈ T
such that t is enabled atm.

Definition 11 ((lim-)liveness (L)). A system ⟨N ,m0⟩C is (lim-)live if for every transition t and for every marking m ∈

(lim-)RSC (N ,m0) there existsm′
∈ (lim-)RSC (N ,m) such that t is enabled at m′.

Definition 12 ((lim-)reversibility (R)). A system ⟨N ,m0⟩C is (lim-) reversible if for any marking m ∈ (lim-)RSC (N ,m0) it
holds thatm0 ∈ (lim-)RSC (N ,m).

Due to the fact that RSC (N ,m0) ⊆ lim-RSC (N ,m0), a direct implication is that if ⟨N ,m0⟩C is lim-bounded (resp. lim-B-
fair, lim-deadlock-free), then it is also bounded (resp. B-fair, resp. deadlock-free) [5].

A net N is structurally bounded (resp. structurally B-fair) if ∀m0, ⟨N ,m0⟩ is bounded (resp. B-fair). A net N is structurally
deadlock-free (resp. structurally live; resp. structurally reversible) if ∃m0 s.t. ⟨N ,m0⟩ is deadlock-free (resp. live; resp.
reversible).

Finally, marking monotonicity and marking homothetic monotonicity are defined below for Π (where Π represents one
of the defined properties: B, BF, DF, L or R). In this work, we will limit ourselves to the use of those concepts with respect
to the marking. However, monotonicity with respect to other properties of interest are considered in other works, such as
performance monotonicity w.r.t. the firing rates in timed PN systems [8].
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Fig. 2. Non-monotonic deadlock-free PN system.

Definition 13 (Monotonicity). Given a system ⟨N ,m0⟩D, a property Π is monotonic w.r.t.m0 if:
Π holds in ⟨N ,m0⟩D H⇒ Π holds in ⟨N ,m′

0⟩D for everym′

0 ≥ m0.

For example, in the PN system in Fig. 2, DF is not monotonic for k = 1, because it is deadlock-free for k = 1, k = 3, and
k ≥ 5; but it deadlocks for k = 2 and for k = 4. Moreover, it is live for k ≥ 6.

Definition 14 (Homothetic Monotonicity). Given a system ⟨N ,m0⟩D, a property Π is homothetically monotonic (for short,
homothetic) w.r.t.m0 if:

Π holds in ⟨N ,m0⟩D H⇒ Π holds in ⟨N , k · m0⟩D, ∀k ∈ N>0.

Homothetic monotonicity of DF can be illustrated with the example in Fig. 1(b). The discrete net system is DF for
m0 = (2, 1, 0, 0, 0), and for any proportional initial marking k · m0, i.e., it is homothetically DF. Nevertheless, the system is
notmonotonically DF form0, for example, for m′

0 = (2, 2, 0, 0, 0) it deadlocks, wherem′

0 ≥ m0.
Notice that monotonicity is more restrictive than homothetic monotonicity, i.e., if Π is monotonic then Π is also

homothetically monotonic. Some classical results on studying monotonicity of certain properties such as liveness are the
rank theorems [9], which give necessary or sufficient conditions from the structure of the net (with polynomial complexity),
or the siphon–trap property [10], which gives a necessary and sufficient condition for the behavioral property (with higher
complexity).

3. Homothetic monotonicity and property preservation by fluidization

The aim of this section is to set certain conditions that a discrete PN system has to fulfill to preserve a certain property
after being fluidified to a continuous PN system. It will be proved that, given a property Π which exhibits homothetic
monotonicity in ⟨N ,m0⟩D, Π is preserved by fluidization (i.e. in ⟨N ,m0⟩C ). We will focus on the well-known properties
considered in Section 2.2. First, two technical results (Lemmas 16 and 17) about reachability are presented.

3.1. Reachability

Let us introduce an additional reachability set to be used in this work, the rational reachability set (RSQ (N , m0)): the
set of markings that can be reached from m0 considering only firings in the set of rational numbers (Q). We will denote as
⟨N ,m0⟩Q the net system in which only rational amounts are fired by the transitions.

Definition 15. RSQ (N ,m0) = {m | ∃σ = α1tγ1 · · · αktγk s.t. m0
α1tγ1
−→ m1 · · ·

αktγk
−→ mk = mwhere αi ∈ Q>0, ∀i ∈ {1..k}}.

The following lemma states that for anymarkingm reachable in ⟨N ,m0⟩Q , there exists a k ∈ N such that a scaledmarking
k · m is reachable in ⟨N , k · m0⟩D.

Lemma 16. Given a PN structure N and an initial marking m0 ∈ N|P|,m ∈ RSQ (N ,m0) H⇒ ∃k ∈ N>0 such that
k · m ∈ RSD(N , k · m0).

Proof. Let us suppose m ∈ RSQ (N ,m0), i.e., m0
σ ′

−→ m, where σ ′
= α′

1tγ1 · · · α′
ntγn , and α′

i ∈ Q, ∀i ∈ {1 · · · n}. Because
each α′

i is a rational amount, it can be considered as its irreducible fraction: α′

i =
ni
di
.

We can multiply the rational sequence σ ′ by the l.c.m. (least common multiple) of the denominators of the irreducible
fractions, to obtain a sequence σ ′′ in the naturals: σ ′′

= k · σ ′, where k = l.c.m.(di |
ni
di

= α′

i , ∀α′

i ∈ σ ′).
For every firing amount α′′

i which appears in the sequence σ ′′, it holds that α′′

i ∈ N. Because of the properties of the
continuous PN (see Proposition 7), the initial marking (m0), the firing sequence (σ ′) and the resulting marking (m) can be

scaled by k in the continuous PN: k ·m0
k·σ ′

−→ k ·m. Because it is a natural sequence fireable in the continuous PN, σ ′′
= k ·σ ′

is also fireable from k · m0 in the discrete system: k · m0
σ ′′

−→ k · m. �

Now it is proved that, for anymarkingm reachablewith a real firing sequence, anothermarkingm′ exists that is reachable
with rational firings, such that it is as close tom as desired, and the set of empty places coincide.
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Lemma 17. For every σ = α1tγ1 . . . αitγi , with αj ∈ R>0, j ∈ 1..i, s.t.m0
σ

−→ m, withm0 ∈ N|P|,m ∈ RSC (N ,m0), and every

ε, ε′ > 0, there exists σ ′
= α′

1tγ1 . . . α′

i tγi s.t.m0
σ ′

−→ m′, with m′
∈ RSQ (N ,m0) such that:

• ∥m′
− m∥ < ε

• m′
[p] = 0 ⇔ m[p] = 0

• ∀j ≤ i, |α′

j − αj| < ε′.

Proof. Given that σ = α1tγ1 . . . αitγi , with αj ∈ R>0, ∀j ∈ {1..i} such that m0
σ

−→ m, for any ε, ε′ > 0, we will build the

firing sequence σ ′
= α′

1tγ1 . . . α′

i tγi , α
′

j ∈ Q, ∀j ∈ {1..i}, such that m0
σ ′

−→ m′, where ∥m′
− m∥ < ε, |α′

j − αj| < ε′ and
(m′

[p] = 0 ⇔ m[p] = 0). It will be proved by induction on the length of the sequence σ : |σ | = i.

• Base case (|σ | = 1).
Let σ = α1tγ1 . Then, α

′

1 ∈ Q has to be chosen. The firing of α1tγ1 yields m = m0 + C[P, tγ1 ]α1, and the firing of a
given α′

1tγ1 yields m′
= m0 + C[P, tγ1 ]α

′

1. Subtracting both equations and considering its norm, we obtain ∥m′
− m∥

= ∥C[P, tγ1 ] (α′

1 − α1)∥. Since all the elements in C are finite numbers, a rational α′

1 ∈ Q close enough to α1 can be
chosen to satisfy ∥m′

− m∥ < ε and |α′

1 − α1| < ε′. Moreover, since m0 ∈ N|P|, if the firing of α1 emptied some places,
then α1 ∈ Q and α′

1 = α1 can be chosen. Otherwise (if no place has been emptied), then α′

1 ∈ Q as close as desired to α1
can be chosen that does not empty places.

• Inductive hypothesis (|σ | = i)
Given σ = α1tγ1 . . . αitγi , such that m0

σ
−→ mi, there exists σ ′

= α′

1tγ1 · · · α′

i tγi , such that α′

j ∈ Q, ∀j ∈ {1..i} and

m0
σ ′

−→ m′

i , where ∥m′

i − mi∥ < ε, |α′

i − αi| < ε′ and (m′

i[p] = 0 ⇔ m[p] = 0).
• Inductive step (|σ | = i + 1)

Let us consider the i + 1 firing. We can distinguish two cases:
(a) The firing of αi+1tγi+1 does not empty places in •tγi+1 . Then, it holds that m = mi + C[P, tγi+1 ]αi+1, and m′

=

m′

i + C[P, tγi+1 ]α
′

i+1. Again, subtracting both equations and considering its norm, we obtain ∥m′
− m∥ = ∥(m′

i − mi) +

C[P, tγi+1 ](α
′

i+1 − αi+1)∥.
We have to force that ∥m′

− m∥ < ε and |α′

i+1 − αi+1| < ε′. Given that mi and m′

i fulfill the inductive hypothesis,
the quantity ∥m′

i − mi∥ can be as small as desired. Moreover, since the elements of the matrix C are finite numbers, a
rational α′

i+1 close to αi+1 can be chosen such that ∥C[P, tγi+1 ](α
′

i+1 − αi+1)∥ is as small as desired and no places in •tγi+1
are emptied.

(b) The firing of αi+1tγi+1 empties places in •tγi+1 . Then, α
′

i+1 = enab(tγi+1 ,m
′

i) is chosen, in order to empty the same
input places. The amount α′

i+1 is in Q, because m′

i (and hence the enabling degree) is rational. Since mi and m′

i fulfill the
inductive hypothesis, they can be as close as desired. Thus, the firing of α′

i+1 empties the same places than αi+1, andmi+1
and m′

i+1 can be as close as desired, as well as αi+1 and α′

i+1. �

Lemmas 16 and 17 will help to prove some properties related to the preservation of B, BF; and DF, L, and R.

3.2. Synchronic properties: boundedness and B-fairness

Some properties are included in the general concept of synchronic properties [6], which are considered here. For a
continuous PN system ⟨N ,m0⟩C in which every transition can be fired (i.e., there are no empty siphons at m0), behavioral
and structural synchronic relations coincide, as noticed in [11]. Moreover, here it is proved (Propositions 18 and 19) that in
any PN system ⟨N ,m0⟩D, a synchronic property ΠS (boundedness or B-fairness) is equivalent in the homothetic discrete
system ⟨N , k ·m0⟩D and in the continuous PN system ⟨N ,m0⟩C . The corresponding properties in the limit (i.e., with infinite
sequences) are considered in Section 4.

Proposition 18. ⟨N ,m0⟩D is homothetically bounded ⇐⇒ ⟨N ,m0⟩C is bounded.

Proof. (H⇒) Let us suppose that the ⟨N ,m0⟩C is unbounded, i.e., ∀b ∈ R>0∃p ∈ P∃m ∈ RSC (N ,m0) s.t. m[p] > b. If
m is not in RSQ (N ,m0), but m[p] > b, because of Lemma 17, ∀ε > 0, ∃m′ s.t. ∥m′

− m∥ < ε, so we can find another
m′

∈ RSC (N ,m0) as near to m as desired, such that also m′
[p] > b. And because of Lemma 16, if m′

∈ RSQ (N ,m0), then
∃k ∈ N>0 s.t. k · m′

∈ RSD(N , k · m0). Hence, in the discrete PN, ∀b ∈ R>0, ∃k · m ∈ RSD(N , k · m0) s.t. k · m[p] > b.
Consequently, ∃k ∈ N>0 s.t. the discrete system ⟨N , k · m0⟩D is unbounded.

(⇐H) Let us suppose ∃k ∈ N>0 s.t. the discrete system ⟨N , k · m0⟩D is unbounded. It means ∀b ∈ R+, ∃p ∈ P ∃m ∈

RSD(N , k ·m0) s.t. b < m[p]. Ifm ∈ RSD(N , k ·m0), then alsom ∈ RSC (N , k ·m0). Because of Proposition 7, for eachmarking
m ∈ RSC (N , k ·m0), the markingm′

=
m
k is reachable in ⟨N ,m0⟩C . For every c ∈ R>0 s.t. it holds, also for c ·k it holds (since

it holds for every real): ∃p ∈ P ∃m ∈ RSD(N , k · m0) s.t.m[p] > c · k. Consequently, for every real c , it holds that ∃p ∈ P s.t.
m[p] > c · k. And it implies m′

[p] =
m[p]
k > c , wherem′

[p] ∈ RSC (N ,m0). Hence, ⟨N ,m0⟩C is unbounded. �

Using similar arguments, the following result considers B-fairness.
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Fig. 3. PN system which deadlocks as discrete for any k. It is deadlock-free as continuous, but it lim-deadlocks (md = (0, 0) is lim-reachable).

Proposition 19. ⟨N ,m0⟩D is homothetically B-fair ⇐⇒ ⟨N ,m0⟩C is B-fair.

Proof. (H⇒) Let us suppose that ⟨N ,m0⟩C is not B-fair; then ∃m ∈ RSC (N ,m0), ∃t, t ′ s.t. ∀b ∈ R>0, ∃σ fireable from m
s.t. σ[t] = 0 and σ[t ′] > b. By Lemma 17, if m (or the firing amounts in σ ) is not in Q|P|, then there exists another m′ (or
other σ ′) in Q|P| with the properties shown in the lemma. Then, by Lemma 16, ∃k ∈ N>0 s.t. k ·m′

∈ RSD(N , k ·m0). And, by
applying again Lemma 16, from k ·m′ it is also possible to fire σ ′′

= k ·σ ′ such that σ ′′
[t] = 0 and it makes σ ′′

[t ′] > k ·b ≥ b,
∀b ∈ R>0. Consequently, ∃k ∈ N>0 s.t. the discrete system ⟨N , k · m0⟩D is not B-fair.

(⇐H) Let us suppose ∃k ∈ N>0 s.t. the discrete system ⟨N , k · m0⟩D is not B-fair. It means ∃m ∈ RSD(N , k · m0), ∃t, t ′
s.t. ∀b ∈ R>0, ∃σ fireable from m s.t. σ[t] = 0 and σ[t ′] > b. Due to the fact that m ∈ RSD(N , k · m0), then a marking
m′

=
1
km is reachable in ⟨N ,m0⟩C , from which σ ′

=
σ
k can be fired. It holds that σ ′

[t] =
σ[t]
k = 0 and σ ′

[t ′] =
σ[t ′]
k > b

k .
This reasoning can be done for every b ∈ R>0. Hence, ⟨N ,m0⟩C is not B-fair either. �

3.3. Deadlock-freeness

Some results about the preservation of a homothetic property ΠL (deadlock-freeness, liveness and reversibility) when
the system is fluidified are presented in the sequel. The results and their proofs are analogous for deadlock-freeness, liveness
and reversibility. For a didactic purpose, in this section the results are explained for DF, and in the following section they
are extended to liveness and reversibility.

As previously defined (Section 2.2), DF in continuous PNs only considers the markings that are reachable with finite
firing sequences (reachability), while lim-DF considers also infinite firing sequences (lim-reachability). Both concepts will
be considered here.

A technical result is presented first. It sets that, given a reachable deadlockmarkingmd (the subscript d denotes deadlock)
in RSC (N ,m0), either its firing sequence is in Q (so it is in RSQ (N ,m0)) or it is in RrQ and then there exists another ‘‘close’’
deadlock that is in Q (also in RSQ (N ,m0)). In summary, ⟨N ,m0⟩C is DF if and only if ⟨N ,m0⟩Q is DF.

Lemma 20. md ∈ RSC (N ,m0) is a deadlock ⇐⇒ ∀ε > 0, ∃m′

d ∈ RSQ (N ,m0) s.t. ∥m′

d − md∥ < ε andm′

d is a deadlock.

Proof. (H⇒) Assume thatmd ∈ RSC (N ,m0)rRSQ (N ,m0). Because of Lemma 17, ∀ε > 0 anotherm′

d ∈ RSQ (N ,m0) exists
such that ∥m′

d − md∥ < ε, and ∀p s.t. md[p] = 0, also m′

d[p] = 0. Since ∀t ∈ T , t is not enabled in md, then also ∀t ∈ T , t is
not enabled inm′

d. Hence, ∃m
′

d ∈ RSQ (N ,m0) that is a deadlock in the continuous system.
(⇐H) It trivially holds: if ∃m′

d ∈ RSQ (N ,m0), then m′

d is also reachable in RSC (N ,m0) and it is also a deadlock. �

Let us now prove that, if a discrete PN is homothetically DF, it will also be DF as continuous.

Proposition 21. ⟨N ,m0⟩D is homothetically DF H⇒ ⟨N ,m0⟩C is DF.

Proof. Let us suppose ⟨N ,m0⟩C deadlocks. It means ∃m ∈ RSC (N ,m0) that is a deadlock. Because of Lemma 20, if m is
a deadlock, then there exists m′

∈ RSQ (N ,m0) that is a deadlock. Because of Lemma 16, ∃k ∈ N s.t. m′′
= k · m′, where

m′′
∈ RSD(N , k · m0). Since ∀t ∈ T , ∃p ∈

•t,m′
[p] = 0, then also ∀t ∈ T , ∃p ∈

•t, k · m′′
[p] = 0, and consequently m′′ it is

also deadlock: ⟨N , k · m0⟩D deadlocks. �

Proposition 21 can be illustrated by the example in Fig. 1(b). However, in general, ⟨N ,m0⟩C is DF ⟨N ,m0⟩D is
homothetically DF, as the PN in Fig. 3 shows. The net system is DF when considered as continuous (illustrated in [5]); but
⟨N , k · m0⟩D deadlocks for every kwhen considered as discrete.

The previous results deal with DF. What happens if lim-DF is considered?
A continuous systemwhich is lim-DF could be homothetically DF as discrete.When this is not the case, a minimum value

of k can be considered for homothetic monotonicity. We will denote that a property ΠL is homothetic from n if ∃n ∈ N, s.t.
∀k ≥ n, with k ∈ N, ΠL holds in ⟨N , k · m0⟩D. Now, the implication can be formulated (in ‘‘some sense’’ it is the inverse of
Proposition 21).

Proposition 22. ⟨N ,m0⟩C is lim−DF H⇒ ∃n ∈ N s.t. ⟨N ,m0⟩D is homothetically DF from n.

Proof. Let us suppose that ∀n ∈ N ∃k ≥ n, k ∈ N, such that the discrete system ⟨N , k · m0⟩D deadlocks. It means there
exists an infinite ordered set A = {a1, a2, a3 . . .}, such that ∀ai ∈ A, ai < ai+1 and ⟨N , ai · m0⟩D deadlocks.
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Fig. 4. PN system which is live as discrete for any k · m0 , with k ∈ N>0 (homotheticallydeadlock-free). It is deadlock-free as continuous, but not lim-
deadlock-free (md = (0, 0, 0, 0, 2) is lim-reachable).

Fig. 5. Relations w.r.t. a property ΠL ∈ {DF, L, R}.

For each ai for which it deadlocks, ∃md ∈ RSD(N , ai · m0) s.t. md is a deadlock. It holds that ∀t ∈ T , ∃p ∈
•t,md[p] <

Pre[p, t]. Because of the definitions of continuous firings (Proposition 7), marking md
ai

is reachable in ⟨N ,m0⟩C .
Given that ai tends to infinity, making ai → ∞, then md

ai
[p] → 0, and it will reach a deadlock in the limit. Consequently,

the continuous ⟨N ,m0⟩C is not lim-deadlock-free. �

An interesting topic is to compute which is the minimal n s.t. ⟨N ,m0⟩D is homothetically DF from n. This value depends
on the net structure and on the initial marking of the system. Initially, it could seem that it is similar to a minimum initial
marking problem inwhichDF is required. However, in thementioned problem there are two important differences: (1) there
are |P| degrees of freedom, one per place, while in our case m0 is fixed and the only parameter is n; (2) monotonicity w.r.t.
DF of the obtained m0 is not guaranteed, which is essential here. Notice that the second difference does not appear in
net subclasses in which DF is monotonic w.r.t. m0 (for example, equal conflict nets). This is an interesting problem to be
considered as future work.

The reverse proposition is not true (the stated Proposition 21 does not hold for lim-DF): ⟨N ,m0⟩D is homothetically
DF; ⟨N ,m0⟩C is lim-DF. Considered as discrete, the net system in Fig. 4 is homothetically DF for m0 = (1, 0, 0, 0, 0).
Even more, it can easily be proved that the discrete system is fully monotonic DF for m0 because every siphon contains a
marked trap (see, for example, [10]). However, when the net system is considered as continuous, the infinite firing sequence
σ = t1 t2 1

2 t3
1
2 t4

1
2 t2

1
4 t3

1
4 t4

1
4 t2

1
8 t3

1
8 t4 . . . can be fired, leading to the deadlockmarkingmd = (0, 0, 0, 0, 2): the continuous

system reaches a deadlock in the limit (as already noticed in [5]).
Observe that md empties the trap and siphon {p1, p2, p3, p4}. Emptying a trap in a continuous net system can only be

done considering an infinitely long firing sequence. A trap cannot be emptied in a discrete system, and thusmd is a spurious
solution in the discrete net system; it is a deadlock, and hence it is a killing spurious solution.

3.4. Liveness and reversibility

The lemmas and properties presented here are analogous to the ones presented for DF (Section 3.3); even the proofs are
technically analogous. Fig. 5 summarizes the relations among a certain property ΠL (DF, L or R), when considered in the
discrete system (homothetically ΠL), in the continuous system (ΠL) and in the limit (lim-ΠL).

Analogously to Lemma 20:

Lemma 23. ⟨N ,m0⟩C is ΠL ⇐⇒ ⟨N ,m0⟩Q is ΠL.

The proof of this lemma when ΠL = L is similar to the one of Lemma 20, but instead of considering a markingmd which
is a deadlock, a markingml fromwhich ∃t s.t. t cannot be enabled fromml must be considered. In the lemma when ΠL = R,
a marking mr from which the initial marking is not reachable must be considered.

Given these lemmas, a general result about the preservation of a homothetic property by fluidization can be formulated
(similar to Proposition 21).
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Fig. 6. If k ≥ 2, non-reversible, non-live discrete PN system. It is reversible and live as continuous.

Theorem 24. ⟨N ,m0⟩D is homothetically ΠL H⇒ ⟨N ,m0⟩C is ΠL.

The proofs of the theorem for liveness (ΠL = L) and for reversibility (ΠL = R) would be similar to the proof of
Proposition 21. The lemmas obtained from Lemma 23 for ΠL = L and ΠL = Rwould also be used in these proofs.

As an illustrative example, consider the Petri net example in Fig. 1(b). It is homothetically live and homothetically
reversible. Thus it preserves these properties when fluidified.

If the opposite implication is considered, again, even in the case of considering not every k but a big enough k, the impli-
cation is not true.

⟨N ,m0⟩C is ΠL ∃n ∈ N such that ⟨N ,m0⟩D is homothetically ΠL from n. Let us consider the example in Fig. 6. As
continuous, it is live and reversible for m0 = (1, 0, 0): the marking can decrease by firing t1 and t2, but it can also be
increased in the same amount by firing t3 and t4. However, if the net system is discrete, it is neither live nor reversible for
m0 = (1, 0, 0), for any proportional initial marking k · m0. This is true because for any value of k, transitions t1 and t2 can
be fired untilm[p1] < 2. Then, no transition is enabled; it is deadlocked and the system is neither live nor reversible.

Let us now consider the properties in the limit, i.e., lim-ΠL. In this case, it holds (similar to Proposition 22).

Theorem 25. ⟨N ,m0⟩C is ΠL H⇒ ∃n ∈ N s.t. ⟨N ,m0⟩D is homothetically ΠL from n.

The proofs of Theorem 25 for ΠL = L and for ΠL = R would be analogous to that of Proposition 22, in which also
Lemma 16 would be used.

Analogously to lim-DF, the reverse is not true:
⟨N ,m0⟩D is homothetically ΠL ⟨N ,m0⟩C is lim-ΠL.
Again, the PN system in Fig. 4 is live and reversible form0 = (1, 0, 0, 0, 0) if it is considered as discrete. However, when

considered continuous, the infinite firing sequence σ = t1 t2 1
2 t3

1
2 t4

1
2 t2

1
4 t3

1
4 t4

1
4 t2

1
8 t3

1
8 t4 . . . would reach the deadlock

markingmd = (0, 0, 0, 0, 2) in the limit, so the system is not lim-live and not lim-reversible frommd.

4. Homothetic boundedness and homothetic B-fairness in discrete PN systems

The aim of this brief section is to propose a characterization (necessary and sufficient condition) of homothetic bound-
edness and homothetic B-fairness for discrete PN systems.

By definition, if a net N is structurally bounded (structurally B-fair), then ⟨N ,m0⟩D is homothetically bounded (homo-
thetically B-fair).

However, the opposite is not true: ⟨N ,m0⟩D is homothetically bounded ; N is structurally bounded. For instance,
if there is an empty siphon in ⟨N ,m0⟩D, some transitions can never be fired. Thus, the system can be bounded and
homothetically bounded for thatm0, but N can be unbounded for a different initial marking.

Furthermore, if @ empty siphon in m0 (a very reasonable condition for real systems), then every transition can be fired
sooner or later from m0 or from a given k · m0, and then homothetic boundedness implies structural boundedness. It is
analogous when B-fairness is considered.

Theorem 26. Let N be a net system and m0 be a marking in which every siphon of the net is marked. The following statements
are equivalent:

(1) N is structurally bounded
(2) ⟨N ,m0⟩D is homothetically bounded
(3) ⟨N ,m0⟩C is bounded
(4) ⟨N ,m0⟩C is lim-bounded

Proof. (2) ⇔ (3). Because of Proposition 18.
(1) ⇔ (3). Proved in [5].
(3) ⇔ (4). Stated in [5]. �

Theorem 27. Let N be a net system and m0 be a marking in which every siphon of the net is marked. The following statements
are equivalent:
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(1) N is structurally B-fair
(2) ⟨N ,m0⟩D is homothetically B-fair
(3) ⟨N ,m0⟩C is B-fair
(4) ⟨N ,m0⟩C is lim-B-fair

Proof. (2) ⇔ (3). Because of Proposition 19.
(1) ⇔ (3). Only (3) ⇒ (1) needs to be proven. If every siphon is initially marked, a strictly positive marking can be

reached, then every T-semiflow can be fired. From the fireability of the minimal T-semiflows, it is deduced that behavioral
and structural relations coincide [5]. Hence B-fairness in ⟨N ,m0⟩C is equivalent to structural B-fairness in N .

(3) ⇔ (4). Only (3) ⇒ (4) needs to be proven. This result is analogous to the equivalence between boundedness and
lim-boundedness. Every pair t, t ′ ∈ T is in B-fair relation, i.e., for every m ∈ RS(N ,m0), for every finite firing sequence
σj = α1tγ1 . . . αjtγj of length j which is fireable from m, it holds that ∃b ∈ R>0 s.t. if σ j(t) = 0 then σ j(t ′) ≤ b and if
σ j(t ′) = 0 then σ[t]j ≤ b. Then, considering an infinitely long sequence, σ = α1tγ1 . . . αjtγjαj+1tγj+1 . . ., it holds that for
every finite subsequence of σ as long as desired it is also true. Hence, if σ[t] = 0, then σ[t ′] converges to limj→∞ σ j(t ′) ≤ b,
and if σ[t ′] = 0, then σ[t] converges to limj→∞ σ j(t) ≤ b. Hence, t , t ′ are in lim-B-fair relation. �

The existence of empty siphons at a given marking, structural boundedness, and structural B-fairness of a PN system can
be checked in polynomial time (see [4,9,7]). Consequently, boundedness and B-fairness of a continuous system ⟨N ,m0⟩C
can be checked in polynomial time.

5. Homothetic deadlock-freeness in structurally bounded discrete systems

The aim of this section is to characterize homothetic deadlock-freeness for structurally bounded Petri nets.
A first method to check homothetic DF of ⟨N ,m0⟩D can be to check monotonic DF, which implies homothetic DF. As

already said, monotonic DF can be checked with the siphon–trap property [10,12]: if every siphon of N contains a marked
trap which is marked at m0, then ⟨N ,m0⟩D is monotonic DF (with some marking restrictions in the case of non-ordinary
PNs). However, checking this property is NP-complete, even for ordinary nets [13].

In this section, a linear technique is presented to provide a sufficient condition for homothetic DF. For this purpose, a
technique for the study of DF in discrete PN systems considered in [9] is recalled. It will allow us to analyze not only DF of a
given system ⟨N ,m0⟩D, but also homothetic DF (for any scaled initial marking k · m0).

5.1. Towards a linear characterization of DF in discrete net systems

The following general sufficient condition for DF, based on the state equation, exploits the definition: ‘‘a deadlock
corresponds to a marking in which no transition is fireable’’.

Let ⟨N ,m0⟩D be a PN system. If there does not exist any solution (m, σ) to the following system, then ⟨N ,m0⟩D is
deadlock-free.

m = m0 + C · σ
m ≥ 0, σ ≥ 0,
p∈•t

m[p] ≤ Pre[p, t] − 1, ∀t ∈ T
(1)

Nevertheless, notice that the system above contains |T | ‘‘complex conditions’’ (one for each transition) which are non-
linear, due to the ‘‘∨’’ connective. Thus, (1) can be handled by solving independently a set of


t∈T |

•t| systems of linear
inequalities, a quantity that grows exponentially: the number of linear systems is multiplied by |

•t| for each join transition.
Let us illustrate the key idea with the example in Fig. 1(b). Initially, the system that characterizes the sufficient condition

for DF is: if there does not exist a solution to the following system, then the net system is DF (thus 23
= 8 linear systems

should be explored):

m = m0 + C · σ,
m ≥ 0, σ ≥ 0,
(m[p1] = 0 ∨ m[p2] = 0), {t1 is not enabled}
(m[p1] = 0 ∨ m[p3] = 0), {t2 is not enabled}
(m[p4] = 0 ∨ m[p5] = 0) {t3 is not enabled}

(2)

In [9], some transformation rules are considered in order to reduce the number of systems generated by (1). Furthermore,
in Theorem 34 of [9], it was proved that the system (1) can be rewritten as a single system of linear inequalities for every
structurally bounded PN system. The structural bound of a place p, SB(p), can be computed as SB(p) = max{m[p] | m =

m0 + C · σ,m, σ ≥ 0}.
System (2) is not linear; however, by applying the transformation and the reduction rules in [9], it is converted to the

single linear system (3). First, the PN is transformed to a PN in which every transition has at most one input place whose SB
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Fig. 7. PN system obtained from the transformation of the PN system in Fig. 1(b) in order to study DF with a single linear system.

is larger than the weight of its input arc. Then, the following rule from [9] is applied, which preserves the solutions of the
original system.

Reduction rule. Let t be a transition s.t. •t = π ∪ {p′
}, where SB(p) > 0 and SB(p) ≤ Pre[p, t] for every p ∈ π . Then, the

set of integer solutions is preserved of (2) is preserved if the disabledness condition corresponding to t is replaced by the
following one:

SB(p′) ·


p∈π

m[p] + m[p′
] ≤ SB(p′) · Pre[p, t] + Pre[p′, t] − 1.

The PN system (Fig. 1(a)) is first transformed to the one in Fig. 7, a transformation that preserves the reachable sequences
(hence, it preserves DF): place p1 is transformed to ‘‘p1, tp, pa, pb’’. Then, a term related to transition tp needs to be added
in order to express a deadlock: m[p1] = 0 ∨ m[pb] = 0. Now, the rule can be applied to t1 (with p′

= p1 and π = {pb})
because SB(p1) = 2 and SB(pb) = 1. The term is transformed to SB(p1) ·m[pb]+m[p1] ≤ SB(p1) · Pre[pb, t]+ Pre[p1, t]−1,
i.e.,m[p1] + 2 ·m[pb] ≤ 2. Moreover, SB(pa) = SB(p2) = 1 and non-enabledness of t1, (m[p1] = 0∨m[p2] = 0), is reduced
tom[pa] + m[p2] ≤ 1. The other terms are analogously reduced.

The resulting system is:

m = m0 + C · σ,
m ≥ 0, σ ≥ 0,
m[pa] + m[p2] ≤ 1, {t1 is not enabled}
m[pa] + m[p3] ≤ 1, {t2 is not enabled}
m[pc] + m[p4] ≤ 1, {t3 is not enabled}
m[p1] + 2 · m[pb] ≤ 2, {tp is not enabled}
m[pd] + m[p5] ≤ 1 {tq is not enabled}

(3)

In this example, (3) has no solution, so the PN system is DF. In general, if a solution exists, it may be a reachable deadlock
or a spurious marking of the discrete net system (a killing spurious marking). In other words, system (3) only provides a
sufficient condition for DF of discrete PN systems (semidecision).

5.2. Characterization of homothetic deadlock-freeness of discrete systems

Because (3) is a linear system, the absence of real solutions in (3) for a givenm0 guarantees the absence of real solutions
in an analogous system for k · m0. Hence, if (3) has not real solutions, then the system is homothetically DF. Therefore, the
continuous net system ⟨N ,m0⟩C is deadlock-free (Proposition 21). For example, system (3) obtained for the PN in Fig. 7(b)
has no solution in the real domain. Consequently, ⟨N ,m0⟩D is homothetically DF, and ⟨N ,m0⟩C is also DF as continuous.

As already said, if the inequalities system (in the example, system (3)) has a solution m, it may be a spurious marking.
Therefore, two questions may appear:
• do there exist net subclasses for which no spurious deadlock can appear? (otherwise stated, for which ones the inequal-

ities system, system (3) in the example, provides a necessary and sufficient condition?)
• if spurious deadlocks can appear, how to try to remove them?

For the first question (addressed in Section 5.3), live and bounded equal conflict net systems are shown not to have
spurious deadlocks, in contrast to other net system subclasses. For the second question (Section 5.4), techniques to remove
spurious deadlocks in the discrete system by means of the addition of implicit places can be used. A more classical one is
recalled in the Appendix.
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Fig. 8. A (DS)*SP system with a spurious deadlock ([15], p. 54).

5.3. About the existence of spurious deadlocks in PN system subclasses

The objective of this section is to study the existence of spurious deadlocks in some net system subclasses, what is highly
related to deadlock-freeness and liveness preservation. First, it is stated that live and bounded equal conflict net systems [14]
do not have spurious deadlocks, and consequently the technique in Section 5.1 does not report spurious deadlocks (i.e., it
gives a necessary and sufficient condition). Since equal conflict nets are a superclass of choice-free, weighted-T-systems
and marked graphs, the results obtained for equal conflict also hold for these subclasses. Equal Conflict nets are defined as
follows.

Definition 28. Equal Conflict (EQ) is a subclass of PN in which conflicts are equal, i.e., for all t, t ′ ∈ T , •t ∩
•t ′ ≠ ∅ ⇒

Pre[P, t] = Pre[P, t ′].

Let us recall two classical results for EQ systems. The first one, Theorem 30 in [14], gives a necessary and sufficient
condition for boundedness and liveness in discrete EQ systems. From this theorem, Proposition 29 can be directly obtained,
which states necessary structural conditions for boundedness and liveness of a discrete EQ system. In the following results,
SEQS denotes the set of equal conflict setswhich can be computed from the net structure.

Proposition 29. An EQ system ⟨N ,m0⟩D is live and bounded ⇒ N is consistent, conservative, and rank(C) = |SEQS| − 1.

The second result gives a necessary and sufficient condition for boundedness and lim-liveness of a continuous EQ system,
considering the structure of the net and its initial marking.

Theorem 30 (Theorem 11 in [5]). An EQ system ⟨N ,m0⟩C is lim-live and bounded ⇔ N is consistent, conservative, rank(C) =

|SEQS| − 1, and the support of every p-semiflow is marked at m0, i.e., @ y ≥ 0 s.t. y · C = 0, y · m0 = 0.

From the two previous results, the following implication is straightforwardly obtained.

Proposition 30. An EQ system ⟨N ,m0⟩D is live and bounded ⇒ ⟨N ,m0⟩C is lim-live and bounded.

Proof. Given ⟨N ,m0⟩D which is live and bounded, thenN is consistent, conservative, rank(C) = |SEQS|−1 (Proposition 30).
Moreover, because the discrete system is live, the support of every p-semiflow of N is marked at m0 (otherwise, some
places will never be marked, and some transitions will never be fired). Given that N is consistent, conservative, rank(C) =

|SEQS| − 1 and every p-semiflow is marked atm0, then ⟨N ,m0⟩C is lim-live and bounded (Theorem 30). �

A direct implication of Proposition 30 is the absence of killing spurious solutions in the state equation in R+. Hence,
the technique presented in Section 5 provides not only a sufficient but also necessary condition for deadlock-freeness.
Alternatively, liveness preservation (considering finite firing sequences) can also be deduced frommonotonicity of liveness
in bounded discrete EQ systems (Theorem 15 in [14]): because it is monotonically live, then it is also homothetically live.
Hence, it is live when fluidified (Theorem 24).

However, when more general subclasses of net systems are considered, the state equation can contain some killing
spurious solutions. It is the case of the following two examples, shown in Figs. 8 and 9.

The PN example in Fig. 8 is deadlock-free as discrete. However, it has a killing spurious solution which becomes
(lim-)reachable in the fluidified net system. The system belongs to (DS)*SP [16], a subclass of PN systems which models
intricate cooperation relations.
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Fig. 9. Without the dotted place u1 and the related arcs, it is a deadlock-free S3PR discrete system. It deadlocks as continuous, reaching md =

(0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1), which was a spurious deadlock of the state equation ([17], p. 111).

Considering the initial marking depicted in the figure, the infinite firing sequence σd =
1
2 t111

1
2 t121

1
4 t111

1
4 t121

1
8 t111

1
8 t121 . . . can be fired, which converges to a markingmd in whichmd[p112] = md[p122] = md[b12] = 1, and the other places
are empty [15]. Notice that this marking is a deadlock (i.e., a killing spuriousmarking in the discrete system which becomes
lim-reachable in the continuous one).

Other example of not preserving deadlock-freeness, even with finite sequences, is presented in Fig. 9 [17]. Without the
dotted part, it models a system in which two sequential processes Pr1 and Pr2 share resources r1, r2 and r3. It belongs to the
subclass S3PR [18], characterized by the competition of processes. The PN system is live as discrete from the initial marking
m0, wherem0[r1] = m0[r2] = m0[r3] = m0[q0] = m0[p0] = 1 and all the other places are empty.

However, when the system is fluidified, it can reach a deadlock: when the sequence σd =
1
2 s1

1
2 t1

1
2 s2

1
2 t2

1
2 s3

1
2 t3

1
2 s1

1
2 t1

1
2

s2 1
2 t2

1
2 s3

1
2 t3 is fired, a deadlock marking md is reached, where md[r3] = md[q3] = md[p3] = 1, and the marking of all the

other places is 0. Notice thatmd is a killing spuriousmarking in the discrete system, which can be reached by the continuous
system with a finite firing sequence. A method to remove this kind of killing spurious solutions is presented in the next
section.

5.4. Removing spurious deadlocks

As previously explained, a spurious marking in the discrete system is a solution of the state equation (see system of
equations (3) in Section 5.1 for an example) which is not reachable in ⟨N ,m0⟩D. However, due to the relaxation, it can
become reachable by the continuous system ⟨N ,m0⟩C , either by considering an infinite or a finite firing sequence.

A technique developed for removing spurious solutions which are due to the emptying of an initially marked trap is
considered in [9] for discrete PN systems (applied to continuous PN systems in [4]). This kind of spurious solutions, which
could be reached in the continuous system by firing an infinite firing sequence, are removed by adding some places which
are implicit in the discrete model. Let us recall that a place p′ is implicit if its removal does not modify the set of fireable
sequences (hence, reachable markings). In other words, p′ is never the only place that prevents the firing of a transition ([9]
for discrete; [4] for continuous).

Let θ be a trap which is marked atm0. Ifm, a solution of the state equation does not mark θ , thenm is a spuriousmarking
in the discrete system. The technique consists in using a trap generator [19], what allows the checking of implicit places in
polynomial time (a sufficient condition). Then, a monitor implicit place is added to the system such that it adds an invariant
(a p-semiflow) to the net, that forces the trap to remain marked. The technique is recalled in the Appendix and applied to
an example.

Here, we propose another technique to remove the spurious solutions which can be reached by firing even a finite firing
sequence in the corresponding continuous PN system. This technique removes the spurious solutions by preventing certain
siphons from being emptied, with the addition of some places which are implicit in the discrete model. An important
difference with respect to the previous technique is that some of the deadlock markings that now can be removed may
be reachable by the original discrete system if it was not deadlock-free. Consequently, this technique should be applied to
remove solutions that we know that are spurious.

The first step is to identify the existence of a siphon that is initially marked but it is emptied in a markingmd (which is a
solution of the state equation). It can be characterized by a set of linear inequations, which consists in a siphon generator [19]
and the expression that an initially marked siphon becomes empty.
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Fig. 10. (a) Logical layout of a manufacturing system, and (b) its production cycles.

Let us define PreΣ and PostΣ as |P| × |T | sized matrices such that:

• PreΣ [p, t] = |t•| if Pre[p, t] > 0, PreΣ [p, t] = 0 otherwise
• PostΣ [p, t] = 1 if Post[p, t] > 0, PostΣ [p, t] = 0 otherwise.

Equations {yT · CΣ ≥ 0, y ≥ 0} where CΣ = PostΣ − PreΣ define a generator of siphons (Σ is a siphon iff ∃y ≥ 0 such
that Σ = ∥y∥, yT · CΣ ≥ 0, analogous to the generator of traps [19,9]). Hence, given md a solution of the state equation
reported as a deadlock, we can check in polynomial time if a minimal siphon marked at m0 is unmarked at md and report
which is such siphon.

Proposition 31. Given md ∈ R|P|

≥0 (md = m0 + C · σ , md, σ ≥ 0), if

• yT · CΣ ≥ 0, y ≥ 0, {siphon generator}
• yT · m0 ≥ 1, {initially marked siphon}
• yT · m = 0, {siphon empty at md}

has solution, then a siphon Σ marked at m0 is emptied at md.

Once a siphon which has been emptied is identified, it can be forced to remain marked by the addition of a place which
is implicit in the discrete model.

Let us illustrate this idea with an example. Consider again the S3PR system in Fig. 9, which reaches the continuous
deadlock md, where md[r3] = md[q3] = md[p3] = 1, and md[qi] = md[pi] = md[ri] = 0 ∀i ∈ {0, 1, 2, 4}. This deadlock
occurs due to the fact that siphon Σ1 = {q1, q4, p1, p4, r1, r2} has been emptied (notice that once a siphon is emptied, it is
never marked again).

The technique presented here adds a monitor place to prevent this siphon from being emptied. In order to keep Σ1
marked in the continuous net system, the following inequality should be forced:m[q1] +m[q4] +m[p1] +m[p4] +m[r1] +

m[r2] ≥ 1. It can be forced by the addition of a slack variable u1, i.e., a cutting implicit place, to force the following invariant
relation: m[q1] + m[q4] + m[p1] + m[p4] + m[r1] + m[r2] − m[u1] = 1. Since m[u1] ≥ 0, siphon Σ1 will remain marked.
Place u1 is shown in the dotted part in Fig. 9; it has s4 and t4 as input transitions and s3 and t3 as output transitions and its
initial marking can be calculated from the invariant:m0[u1] = m0[q1]+m0[q4]+m0[p1]+m0[p4]+m0[r1]+m0[r2]−1 =

0 + 0 + 0 + 0 + 1 + 1 − 1 = 1.
Observe that the added place u1 is implicit in the discrete PN system and makes the system deadlock-free as continuous.

6. An example. A model of a flexible manufacturing system

In this section, we apply some of the results already presented in the previous sections to an example. Let us consider a
flexible manufacturing system (see Fig. 10) composed of two production lines with three machines M1, M2 and M3. The PN
which models the system and its initial statem0 are depicted in Fig. 11.

Parts of type A are processed in machine M1 and then in machine M2, with intermediate products stored in buffers B_1A
and B_2A. Parts of type B are first processed in M2 and then in M1, with intermediate products stored in buffers B_1B and
B_2B. Finally, machine M3 assembles part A and part B, obtaining the final product, which is stored in buffer B_3 until its
removal. Places Max_B_1A and Max_B_1B initially have only one token, so there can be at most one part of type A and one
part of type B either in B_1A and B_1B, or being processed by M1 and M2. Parts A and B are moved in pallets all along the
process, and there are 20 pallets of type A and 15 pallets of type B. Place Max_B_3 has initially one token, so only one final
product can be stored in the buffer B_3 until its removal.

Typical competition and cooperation relations that often appear inmanufacturing systems are introduced bymeans of the
movement of parts inside the system. For instance, machine M1 and machine M2 are shared for processing parts A and B;
therefore, these activities are in mutual exclusion (mutex). Final products can be assembled only when both intermediate
produces of types A and B are available (i.e., buffer B_2A and B_2B are not empty) (rendez-vous).
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Fig. 11. The PN system that models the manufacturing system described in Fig. 10.

Some of the properties characterized in the previous sections can be checked in this example. Notice that checking these
properties with the enumeration of the state space of the discrete PN system would be more expensive than checking the
properties in the continuous system. For this initial marking, the state space of ⟨N ,m0⟩D has 15,455 reachable markings.

According to Section 4, given that the PN systemhas no empty siphons atm0, boundedness (resp. B-fairness) is equivalent
to structurally boundedness (resp. structurally B-fairness). In this case, because ∃ y > 0 s.t. yT ·C = 0, the net is conservative;
hence it is structurally bounded. The continuous system is bounded for every m0 ∈ R|P|

≥0. In structurally bounded nets,
structural B-fairness is equivalent to consistency and existence of a unique T-semiflow [7]. In this case, the net is consistent
and has a unique T-semiflow (it is x = 1 > 0, s.t. C · x = 0). Consequently, it is B-fair as continuous for everym0 ∈ R|P|

≥0.
Let us now consider the method presented in Section 5 to check homothetic deadlock-freeness. The system (1) can be

written as follows:

m = m0 + C · σ,
m ≥ 0, σ ≥ 0,
m[p2] = m[p4] = m[p8] = 0,m[p10] = m[p16] = 0, (for t2, t4, t6, t8, t11)
m[p1] = 0 ∨ m[p5] = 0 ∨ m[p17] = 0, (for t1)
m[p3] = 0 ∨ m[p6] = 0, (for t3)
m[p7] = 0 ∨ m[p6] = 0 ∨ m[p18] = 0, (for t5)
m[p5] = 0 ∨ m[p9] = 0, (for t7)
m[p11] = 0 ∨ m[p12] = 0 ∨ m[p13] = 0, (for t9)
m[p14] = 0 ∨ m[p15] = 0 (for t10)

(4)

As observed in Section 5.1, the system (4) contains some ‘‘complex conditions’’ due to the ‘‘∨’’ connective. However, since
the PN system is structurally bounded, it may be simplified and rewritten as a system of linear inequalities. In order to do
that, the structural bound of every place has to be computed.

Now, let us consider, for example, the condition of disabling transition t3. The SB of places p3 and p6 is 1. Hence, in the
discrete modelm[p3] = 0∨m[p6] = 0 ⇔ m[p3]+m[p6] ≤ 1. This rule can be applied to the term corresponding to t when
∀pi ∈

•t , SB(pi) ≤ Pre[pi, t].
A similar reduction rule can be applied when there are |

•t| − 1 input places of t that satisfy the following: SB(pi)
≤ Pre[pi, t], pi ∈

•t , which is true for t1. For this initial marking, SB(p5) = SB(p17) = 1, while SB(p1) = 20. Therefore,
m[p1] = 0 ∨ m[p5] = 0 ∨ m[p17] = 0 ⇔ m[p1] + (m[p5] + m[p17]) · 20 ≤ 40.

If more than one input place of t does not fulfill SB(pi) ≤ Pre[pi, t], pi ∈
•t , a pre-transformation is needed. Consider the

term m[p11] = 0 ∨ m[p12] = 0 ∨ m[p13] = 0, which corresponds to transition t9. The structural bounds of p11, p12 and p13
are SB(p11) = 20, SB(p12) = 15 and SB(p13) = 1. Consequently, the rule used for t1 is not directly applicable to t9, and the
pre-transformation depicted in Fig. 12, analogous to the transformation shown in Fig. 7(b), needs to be applied first. Then,
the term corresponding to t9 is written as:m[p12] + (m[p13]+m[p20]) ·15 ≤ 30, and the inequalitym[p11]+m[p19] ·20 ≤ 20
is also added (due to the transition t12).
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Fig. 12. Transformation related to t9 in Fig. 11.

The linear system obtained after the transformation of the non-linear one (4) is as follows:

m = m0 + C · σ,
m ≥ 0, σ ≥ 0,
m[p2] = m[p4] = m[p8] = 0,m[p10] = m[p16] = 0, (for t2, t4, t6, t8, t11)
m[p1] + (m[p5] + m[p17]) · 20 ≤ 40, (for t1)
m[p3] + m[p6] ≤ 1, (for t3)
m[p7] + (m[p6] + m[p18]) · 15 ≤ 30, (for t5)
m[p5] + m[p9] ≤ 1, (for t7)
m[p12] + (m[p13] + m[p20]) · 15 ≤ 30, (for t9)
m[p11] + m[p19] · 20 ≤ 20, (added, for t12)
m[p14] + m[p15] ≤ 1 (for t10)

(5)

There does not exist a feasible solution for (5), consequently the discrete net system is homothetically deadlock-free;
thus it is also DF as continuous.

Let us notice that the PN system is conservative, consistent and it has a unique T-semiflow; therefore (lim-)DF is
equivalent to (lim-)liveness [20]. It is consistent and lim-live; hence it is lim-reversible [5].

7. Conclusions

In this paper, the fluidization of autonomous Petri net systems has been considered. The preservation of basic properties
such as boundedness, B-fairness, deadlock-freeness, liveness, and reversibility has been studied: if one of those properties,
Π , has a homothetic behavior in a discrete PN system ⟨N ,m0⟩D, Π will be preserved when the system is fluidified
(i.e., in ⟨N ,m0⟩C ). Two basic kind of properties (or facts) are used to achieve these results: that every real number can be
approximated by a rational one; and the properties of homothecy and monotonicity of firing sequences in the continuous
PN systems.

When boundedness or B-fairness are considered, homothetic ΠS is equivalent to ΠS of the continuous system, and also
equivalent to lim-ΠS . Moreover, under some general conditions (every transition is fireable at least once) it is also equivalent
to structural ΠS . However, when deadlock-freeness, liveness or reversibility, are considered, homothetic ΠL of the discrete
system impliesΠL in the continuous, but it does not imply lim-ΠL. In contrast, lim-ΠL implies homotheticΠL in the discrete
system (see Fig. 5).

Some techniques are recalled from the discrete PN system analysis and adapted to study homothetic deadlock-freeness
and (lim-)deadlock-freeness preservation. Moreover, the preservation of (lim-)liveness for some subclasses has been
studied, as well as some subclasses for which, in general, deadlock-freeness or liveness is not preserved by fluidization.
Finally, ‘‘dual’’ in some sense to a well-known technique to remove spurious solutions, a new one has been introduced with
the same purpose, but requiring a priori knowledge of non-reachability of the marking being investigated.

Appendix. Removing deadlock spurious markings reachable in which a marked trap is emptied

In this Appendix, a technique to remove spurious solutions is recalled from [9] and applied to an example to obtain
liveness and lim-liveness preservation of the system by fluidization. It consists on the identification of those spurious
solutions which empty a trap, and the addition of implicit places to remove them.

An example with this type of spurious deadlocks is the PN in Fig. A.1 (without considering the dotted part) with initial
markingm0 = (2, 2, 0). This PN system is live as discrete. However, when considered as continuous, it may reach a spurious
deadlock md = (0, 4, 0) (see the reachability graph of the net system in Fig. A.1(b), where the shaded markings correspond
to spurious solutions). It is done by firing the infinite sequence σ = 1t11t31t31t2 1

2 t1
1
2 t3

1
2 t3

1
2 t2

1
4 t1

1
4 t3

1
4 t3

1
4 t2 . . .. Therefore,

the trap Θ1 = {p1, p3} is emptied, but it was initially marked (m0[p1] + m0[p3] = 2).
The existence of a trap that is initially marked but can be emptied in the limit can be characterized with a set of linear

inequations, which consists in a trap generator and the expression that an initiallymarked trap becomes empty. Let us define
PreΘ and PostΘ as |P| × |T | sized matrices such that:
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Fig. A.1. (a) Without the dotted part, PN system that deadlocks with an infinite firing sequence as continuous, and (b), its reachability graph as discrete,
where the shaded markings correspond to spurious solutions, all isolated deadlocks.

• PreΘ [p, t] = 1 if Pre[p, t] > 0, PreΘ [p, t] = 0 otherwise
• PostΘ [p, t] = |

•t| if Post[p, t] > 0, PostΘ [p, t] = 0 otherwise.

Equations {yT · CΘ ≥ 0, y ≥ 0} where CΘ = PostΘ − PreΘ define a generator of traps (Θ is a trap iff ∃ y ≥ 0 such that
Θ = ∥y∥, yT · CΘ ≥ 0) [19,9]. Hence, givenm a solution of the state equation, we can check in polynomial time a sufficient
condition for being spurious.

Proposition 32. Givenm ∈ N|P| (m = m0 + C · σ, m, σ ≥ 0), if

• yT · CΘ ≥ 0, y ≥ 0, {trap generator}
• yT · m0 ≥ 1, {initially marked trap}
• yT · m = 0, {trap empty at m}

has solution, then m is a spurious solution in the discrete PN system.

First proposed for discrete PN [9], the technique presented in [9,4] removes this kind of spurious deadlocks by adding
some implicit places in the discrete model. Let us consider the trap Θ1 = {p1, p3} in the net in Fig. A.1(a). Since it is initially
marked, in the discretemodel its markingmust satisfym[p1]+m[p3] ≥ 1. Considering the token conservation low obtained
from the P-semiflow,m[p1] + m[p2] + m[p3] = 4, it leads tom[p2] ≤ 3. This last inequality can be forced by adding a slack
variable to the system, i.e., a cutting implicit place p′

2 (shown in Fig. A.1(a)), such thatm[p2]+m[p′

2] = 3. The initial marking
of p′

2 can be simply set as m0[p′

2] = 3 − m0[p2] = 1. By adding p′

2, the spurious deadlock marking md = (0, 4, 0), in which
trapΘ1 = {p1, p3} is empty, is removed. Similarly, by adding p′

1, p
′

3, the spuriousmarkingswhich empty trapsΘ2 = {p2, p3}
and Θ3 = {p1, p2} are also removed.

It is interesting to remark that, by removing spurious deadlocks (in fact, any spuriousmarking), the approximation of the
performance of the discrete net system, provided by the timed relaxation, is also improved. This is true even if the deadlock
is not reached in the timed continuous model. In any case, removing spurious solutions represents an improvement of the
fluidization, being specially important when those solutions are deadlocks or non-live steady states.
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