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a b s t r a c t

This paper focuses on the target marking control problem of timed continuous Petri nets
(TCPN), aiming to drive the system from an initial state to a desired final one. This problem
is similar to the set-point control problem in a general continuous-state system. In a
previous work, a simple and efficient ON/OFF controller was proposed for Choice-Free
nets, and it was proved to be minimum-time (Wang, 2010). However, for general TCPN
the ON/OFF controller may bring the system to ‘‘blocking’’ situations due to its ‘‘greedy’’
firing strategy, and the convergence to the final state is not ensured. In this work the
ON/OFF controller is extended to general TCPN by adding more ‘‘fair’’ strategies to solve
conflicts in the system: the ON/OFF+ controller is obtained by forcing proportional firings
of conflicting transitions. Nevertheless, such kind of controller might highly slow down the
systemwhen transitions have flows of different orders of magnitude, therefore a balancing
process is introduced, leading to the B-ON/OFF controller. A third approach introduced
here is the MPC-ON/OFF controller, a combination of Model Predictive Control (MPC) and
the ON/OFF strategy; it may achieve a smaller number of time steps for reaching the final
states, but usually requiresmore CPU time for computing the control laws. All the proposed
extensions are heuristicmethods for theminimum-time control and their convergences are
proved. Finally, an application example of a manufacturing cell is considered to illustrate
the methods. It is shown that by using the proposed controllers, reasonable numbers of
time steps for reaching the final state can be obtainedwith low computational complexity.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Petri Nets (PN) constitute a well known paradigm used for modeling, analysis, and synthesis of discrete event systems
(DES). Straightforwardly depicting sequences, concurrency, conflicts and synchronizations, it is widely applied in the
industry for the analysis of manufacturing, traffic, or software systems, for example [1–3]. Similarly to other modeling
formalisms for DES, it also suffers from the state explosion problem. To overcome it, a classical relaxation technique called
fluidization can be used.

Continuous PN (CPN) [4,5] are fluid approximations of classical discrete PN obtained by removing the integrality
constraints, which means that the firing count vectors (and consequently the markings) are no longer restricted to be in
the natural numbers but relaxed into the non-negative real numbers. An important advantage of this relaxation is that more
efficient algorithms are available for their analysis. A simple and interesting way to introduce time to CPN is to assume that
time is associated to transitions, obtaining timed CPN (TCPN).
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One of the important objectives in the control of CPN is to drive the system from an initial statem0 to a desired final state
mf , which is similar to the set-point control problem in a general continuous-state system. This desired state can be selected,
in a preliminarily planning stage [6], according to some optimality criteria, e.g., maximizing the flows. By considering the
CPN as a relaxation of discrete systems, the continuous state can be viewed as an approximation of the average state in its
original discrete system. Several approaches can be found in the literature for handling this control problem assuming that
all transitions are controllable, for example, in [7–12]. In [13], the control methods are first carried out in the continuous
model, after that they are applied back to control the original discrete one. Many of these works focus on infinite server
semantics, which has been proved to provide a better approximation of discrete systems for a broad class of nets [14], also
most probably in general. In the case of systems with uncontrollable transitions, the control problem may become much
more complex [15,16].

The time spent for reaching the final state, and the corresponding complexity for computing the control laws, are
naturally important in the control synthesis process. Minimum-time control is a classical class of problem that has
been widely studied (see, for example [17–20]). Nevertheless, several peculiarities of TCPN motivate the search for new
approaches: (1) the existence of a meaningful net structure, from which many behavioral properties can be derived for
a given initial marking; (2) control actions are asymmetrically bounded and the upper bounds depend on the state (the
marking); (3) the existence of minimum operator under infinite sever semantics. Some a few works can be found in the
literature dealing with this topic; for instance, [21] proposed a heuristic for minimum-time control of TCPN that drives the
system to the final state by following a piecewise-straight marking trajectory.

In this work, wewill consider the ON/OFF (also known as Bang–Bang) controller, a feedback controller that switches from
one extreme to the other at certain times (switching points). ON/OFF strategies frequently arise inminimum-time problems
and many classical results related to the minimum-time control of linear systems exist (see, for example, the previously
cited works, also [22,23]). However, we may not be able to apply them directly to our case because, as has been already
mentioned, TCPN under infinite server semantics is a piecewise linear system with non-negative states and dynamically
bounded control variables.

An ON/OFF controller has been proposed for Choice-Free (CF) (or structurally persistent) net systems in [24]. It is efficient
because the minimum-time state evolution is ensured; it also has very low computational complexity: only aminimal firing
count vector needs to be computed, and a simple linear programming problem (LPP) is solved at each time step. The essential
problem of this standard ON/OFF controller is that when there are conflicts, this ‘‘greedy’’ strategy of firing transitions may
bring the system to a ‘‘blocking’’ situation (see Example 3.1 for an example).

In this work, the ON/OFF control scheme is further investigated and three heuristic extensions are presented for general
net systems, ensuring that the final state is reached in finite time. Even if in this case the minimum-time is not guaranteed,
reasonable numbers of time steps are obtained. By forcing the conflicting transitions to fire proportionally to the given
firing count vector, we obtain the ON/OFF+ controller. With very low computational complexity, nevertheless a possible
drawback of this method is the following: the firing speeds of transitions in a conflict are determined by the ‘‘slower’’ ones,
and the overall systemmaybe highly sloweddown in some extreme cases. Therefore, the second extension, balancedON/OFF
(B-ON/OFF) controller is proposed; it tries to balance the ‘‘fast’’ and ‘‘slow’’ conflicting transitions before applying the pure
ON/OFF+ controller. These two extensions have been initially discussed in a previouswork [25]; in this paper a thirdmethod
is considered. It is a combination of Model Predictive Control (MPC) and ON/OFF strategy: solving the conflicts using MPC
and firing other transitions using the ON/OFF strategy; the asymptotic stability for this MPC-based approach is also proved.
The first two methods have very low computational complexity, while by using the MPC-ON/OFF controller we may reach
the final state faster (using larger time horizon), but with higher computational complexity. We want to stress that all the
extensions presented here are only heuristics for minimum-time control, and the optimal solution for the minimum-time
control is difficult to obtain when dealing with general net system structures, because of the non-linearity of the system
dynamics and of the state (marking) dependent constraints for the control variables.

This paper is organized as follows: Section 2 briefly recalls some basic concepts of CPN. In Section 3 the standard ON/OFF
controller is recalled and its main drawback is stated. Three ON/OFF strategy based extensions are proposed in Section 4.
Section 5 illustrates a manufacturing cell case study. Conclusions are given in Section 6.

2. Basic concepts and notations

2.1. Continuous petri nets

The reader is assumed to be familiar with the basic concepts of continuous Petri nets (see [4,5] for a gentle introduction).

Definition 2.1. A continuous PN system is a pair ⟨N ,m0⟩where N = ⟨P, T , Pre, Post⟩ is a net structure where:
• P and T are the sets of places and transitions respectively.
• Pre, Post ∈ N|P|×|T |

≥0 are the pre and post incidence matrices.
• m0 ∈ R|P|

≥0 is the initial marking (state).

Let pi, i = 1, . . . , |P| and tj, j = 1, . . . , |T | denote the places and transitions. In the incidence matrices, Pre[pi, tj] = w1
and Post[pi, tj] = w2 indicate the connections between places and transitions: if w1 > 0 there is an arc from pi to tj with
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w1 as the weight; ifw2 > 0 there is an arc from tj to p2 withw2 as the weight. For v ∈ P ∪ T , the sets of its input and output
nodes are denoted as •v and v•, respectively. These definitions can be naturally extended to a set of nodes. Each place can
contain a non-negative real number of tokens, its marking. The distribution of tokens in places is denoted by m and m[pi]
represents the marking of place pi. The enabling degree of a transition tj ∈ T is given by:

enab(tj,m) = min
pi∈•tj


m[pi]

Pre[pi, tj]


which represents themaximum amount inwhich tj can fire. Transition tj is called k-enabled atmarkingm, if enab(tj,m) = k,
being enabled if k > 0. An enabled transition tj can fire in any real amount α, with 0 < α ≤ enab(tj,m) leading to a new
statem′ = m+ α · C[·, tj]where C = Post − Pre is the token flow matrix and C[·, j] is its jth column.

Non negative left and right natural annullers of the token flow matrix C are called P-semiflows, denoted by y, and
T-semiflows, denoted by x, respectively. If ∃y > 0, y · C = 0, then the net is said to be conservative. If ∃x > 0, C · x = 0 it
is said to be consistent.

A PN system is bounded when every place is bounded, i.e., its token content is less than some bounds at every reachable
marking. It is live when every transition is live, i.e., it can ultimately fire from every reachablemarking. If for all p ∈ P, |p•| ≤
1 then N is called Choice-Free (CF). A CF net is structurally persistent in the sense that independently of the initial marking,
the net has no conflict. A net N is Equal-Conflict (EQ) if for any two transitions t1, t2, •t1 ∩ •t2 ≠ ∅ ⇒ Pre[·, t1] = Pre[·, t2].

Ifm is reachable fromm0 through a finite sequence σ , the state (or fundamental) equation is satisfied:m = m0 + C · σ,
where σ ∈ R|T |

≥0 is the firing count vector, i.e., σ[tj] is the cumulative amount of firings of tj in the sequence σ . The reachability
space of a given system ⟨N ,m0⟩, denoted by RS(N ,m0), is the set of all markings that are reachable by a finite firing
sequence. If the net system is consistent and every transition can be fired at least once, i.e., there exists no empty siphon at
m0, then any solution m > 0 of the state equation is reachable [26]. A firing count vector σ is said to be minimal if for any
T-semiflow x, ∥x∥ ⊈ ∥σ∥, where ∥ · ∥ stands for the support of a vector, i.e., the index of the elements different than zero.
One way to compute a minimal firing count vector σ that drives the system fromm0 to mf is by solving the LPP:

min 1T
· σ

s.t. mf = m0 + C · σ
σ ≥ 0.

(1)

In timed continuous PN (TCPN) the state equation has an explicit dependence on time: m(τ ) = m0 + C · σ(τ ), which
through time differentiation becomes ṁ(τ ) = C · σ̇(τ ). The derivative of the firing count f (τ ) = σ̇(τ ) is called the firing
flow. For the sake of clarity, τ will be omitted in the rest of the paper when there is no confusion.

Depending on how the flow is defined, many firing server semantics appear. The infinite (or variable speed) and the finite
(or constant speed) server semantics [4,5] are the most used ones, where a firing rate λj ∈ R>0, or denoted by λ[tj], is
associated to each transition tj. This work deals with infinite server semantics, for which the flow of a transition tj at marking
m is the product of its firing rate and its enabling degree:

f [tj] = λj · enab(tj,m) = λj · min
pi∈•tj


m[pi]

Pre[pi, tj]


. (2)

Due to the existence ofminimum operator, the dynamical system corresponds to a piecewise linear system and it induces
two strongly related concepts: (a) the set of places defining the enabling degree of transitions is known as configuration; (b)
the sub-state space, in which the configuration is identical, is known as region. More formally:

Definition 2.2. A configuration of a netN is a set of (p, t) arcs, one per transition, covering the set T of transitions. Associated
to a given configuration Ck is the following |T | × |P| configuration matrix:

Πk[t, p] =


1

Pre[p, t]
, if (p, t) ∈ Ck

0, otherwise.
(3)

In the case of a TCPN system under infinite server semantics, at a given markingm ∈ RS(N ,m0) the flow of a transition
tj, given by (2), is defined by the marking of an input place pi ∈ •tj, the one that gives the minimum. Let us notice that the
reachability set RS(N ,m0) of a TCPN system can be partitioned (except on the borders) according to the configurations and
inside each obtained convex region Ri(N ,m0) the system dynamic is linear.

2.2. Control problem

In this paperwe consider the net system to be subject to external control actions, andwe assume that the only admissible
control law consists in slowing down the (maximal) firing flow of transitions (defined for the uncontrolled systems) [5].
This means that transitions modeling machines, for example, cannot work faster than their nominal speeds. Under this
assumption, the controlled flow of a TCPN system is denoted as:

w(τ ) = f (τ )− u(τ ), with 0 ≤ u(τ ) ≤ f (τ ).
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The overall behavior of the system is ruled by:
ṁ(τ ) = C · (f (τ )− u(τ )) .

It is assumed that every transition is controllable (tj is uncontrollable if no control can be applied to it, i.e., u[tj] = 0). The
control problem addressed here is to design a control action u that drives the system from an initial markingm0 to a desired
final markingmf , trying to minimize the time spent on the trajectory.

In the sequel, we usually assume m0 > 0. This assumption is rather weak, since any practical system should fire any
transition. Moreover, it should be noticed that for TCPN under infinite server semantics, once a place is marked it will take
infinite time to be emptied (like the theoretical discharging of a capacitor in an electrical RC-circuit). Therefore, if there exist
places that must be emptied during the trajectory to mf , the final marking can only be reached at the limit, i.e., in infinite
time. Thus we also assumemf > 0, i.e., an interior point.

3. ON/OFF controller and its drawbacks

By sampling the continuous-time CPN system with a sampling periodΘ , we obtain the discrete-time CPN [8] given by:
mk+1 = mk + C ·wk ·Θ

0 ≤ wk ≤ fk. (4)
Heremk,wk and fk are the marking, controlled flow and uncontrolled flow at sampling instant k, i.e., at τ = k ·Θ .

It is proved in [8] that if the sampling period satisfies (5), the reachability spaces of discrete-time and continuous-time
CPN systems are the same, excepting at borders. In this paper, we assume that (5) is satisfied.

∀p ∈ P :

tj∈p•

λj ·Θ < 1. (5)

An ON/OFF controller is presented in [24] for CF nets, where every transition fires as fast as possible at any time step until
an upper bound, the minimal firing count vector σ, is reached. It is first proposed based on the discrete-time CPN model,
then extended to continuous-time CPN. Algorithm 1 synthesizes the ON/OFF controller.

Algorithm 1 ON/OFF controller
Input: ⟨N ,λ,m0⟩, mf , σ,Θ
Output:w0, w1,w2, . . .
1: k← 0

2: while
k−1
i=0

wi ·Θ ≠ σ do

3: Solve the following LPP:
max 1T

·wk
s.t. mk+1 = mk + C ·wk ·Θ

0 ≤ wk ·Θ ≤ σ −
k−1
i=0

wi ·Θ

wk[tj] ≤ λj · enab(tj,mk),∀tj ∈ T
mk+1 ≥ 0

(6)

4: Applywk : mk+1 ← mk + C ·wk ·Θ

5: k← k+ 1
6: end while
7: returnw0, w1,w2, . . .

The main advantage of the ON/OFF controller is its low computational complexity. Given a (minimal) firing count vector
(which can be computed in polynomial time), the control actions are obtained by solving a simple LPP at each time step.
It is proved that in the case of CF nets, using the minimum firing count vector, the ON/OFF controller drives the system
to its final state in minimum-time. Nevertheless, in the case of general nets the convergence to the final state may not be
ensured—in general non-CF nets, conflicts (|p•| > 1) may appear, thus firing faster one transition may reduce the firing
of another transition and the overall time for reaching mf may increase, being infinity in the extreme case. The following
example shows a live and bounded net system, in which by applying the ON/OFF strategy the final state cannot be reached.

Example 3.1. Assume we want to drive the system in Fig. 1 to final statemf = [0.5 0.5 0.5 0.5 0.2 0.4 1.4]T , the firing rate
of t3 is 10, while the firing rates of other transitions are all set to 1. σ = [0.8 1.3 0.5 0 1 0 0]T is a minimal firing count
vector driving the system fromm0 (shown in the figure) tomf . By using this setting and applying the ON/OFF controller,mf

cannot be reached and the systemwill be ‘‘blocked’’ in an intermediate markingm = [1 0 0.78 0.22 0 0 2]T . Notice that, this
‘‘blocking’’ situation is imposed by the controller. For instance, transition t7 is actually enabled atm, but the control law has
forbidden its firing because σ[t7] = 0.
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Fig. 1. A live and bounded CPN system that the ON/OFF controller brings to a ‘‘blocking’’ situation.

Onemay think that deadlock–freeness is a sufficient condition for applying the ON/OFF controller to a general net system.
But we should notice that, the control laws may forbid the firings of some transitions (like in Example 3.1, the firing of t7
is forbidden because σ[t7] = 0), bringing the system to ‘‘blocking’’ situations. Therefore, in order to apply the ON/OFF
controller we may need a tedious process after each time step to check if the system has been ‘‘blocked’’ and change to
other control laws when it occurs. For instance, in Example 3.1, after the system has been ‘‘blocked’’ in m we can change
to another control law σ ′ = [0 0.5 0.28 0 0.49 0 0.39]T and continue to apply the ON/OFF strategy, then the system could
converge tomf .

4. Extended ON/OFF based methods

Because the ON/OFF controller cannot be directly applied to general TCPN, three heuristic extensions are proposed:
ON/OFF+, B-ON/OFF and MPC-ON/OFF. In all the methods the convergence to the final state is always guaranteed, although
we may not obtain a minimum-time state evolution. The ON/OFF+ overcomes the problem of the standard ON/OFF
controller by forcing proportional firings of conflicting transitions; B-ON/OFF is proposed to handle those bad cases of
applying the ON/OFF+ controller; the MPC-ON/OFF controller has higher computational complexity, but may need less
time for reaching the final state.

4.1. ON/OFF+ controller

The problemof the ON/OFF controller arises from ‘‘an inappropriate’’ manner of solving the conflicts (e.g., in the systemof
Fig. 1, since λ3 ≫ λ2, t3 firesmuch faster than t2). Two transitions ta and tb are in a structural conflict relation if •ta∩•tb ≠ ∅.
Here, let us define the coupled conflict relation as its transitive closure.

In order to overcome this problem,we consider amore ‘‘fair’’ strategy to solve the conflicts: forcing the flows of transitions
that are in coupled conflict relation to be proportional to the given firing count vector. Meanwhile, for the rest of (persistent)
transitions the ON/OFF strategy is applied.

The modified ON/OFF controller is shown in Algorithm 2 and we will call it ON/OFF+ controller.
The procedure of the ON/OFF+ controller is similar to the one of the standard ON/OFF, except the last constraint of LPP

(7) in step 3 of Algorithm 2, which means that, at any time step k, if transitions ta and tb are in conflict, the following will be
forced: wk[ta]

wk[tb]
=

σ[ta]
σ[tb]

. Notice that, only transitions with positive values in the corresponding firing count vector should be
considered. In the following, it is assumed thatm0 > 0.

In order to prove the convergence, we first show that by using some reduction rules, the original system with the
ON/OFF+ controller is equivalent to a CF net system with a particular controller A, i.e., the same state trajectory can be
obtained. Then, we prove that controllerA drives the CF net system tomf , implying that the ON/OFF+ controller also drives
the original one tomf .

Reduction Rule. Given a net N = ⟨P, T , Pre, Post⟩, let Tj = {t1, t2, . . . , tn} ⊆ T be a set of transitions that are in coupled
conflict relation. These transitions fire proportionally according to a given firing count vector σ , i.e., for any ta, tb ∈ Tj, σ[ta], σ[tb]
> 0, if ta fires in an amount sa, simultaneously, tb fires in an amount sb, such that sa

sb
=

σ[ta]
σ[tb]

. Let σ̄ =


t∈Tj
σ[t],N be

transformed to N ′ = ⟨P, T ′, Pre′, Post ′⟩ in the following way:

(1) T ′ = T \ Tj
(2) Merge Tj to a new transition tj, T ′ = T ′ ∪ {tj}
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Algorithm 2 ON/OFF+ controller
Input: ⟨N ,λ,m0⟩, mf , σ,Θ
Output:w0, w1,w2, . . .
1: k← 0

2: while
k−1
i=0

wi ·Θ ≠ σ do

3: Solve the following LPP:
max 1T

·wk
s.t. mk+1 = mk + C ·wk ·Θ

0 ≤ wk ·Θ ≤ σ −
k−1
i=0

wi ·Θ

wk[tj] ≤ λj · enab(tj,mk),∀tj ∈ T
mk+1 ≥ 0
wk[ta] · σ[tb] = wk[tb] · σ[ta]
∀ta, tb, •ta ∩ •tb ≠ ∅ and σ[ta] > 0, σ[tb] > 0

(7)

4: Applywk : mk+1 ← mk + C ·wk ·Θ

5: k← k+ 1
6: end while
7: returnw0, w1, w2, . . .

(a) Original system. (b) Transformed system.

Fig. 2. Reduction rule: merging t1 and t2 .

(3) ∀p ∈ •Tj, Pre′[p, tj] =


t∈p• Pre[p, t] · σ[t]/σ̄
(4) ∀p ∈ Tj•, Post ′[p, tj] =


t∈•p Post[p, t] · σ[t]/σ̄ .

Example 4.1. Letm > 0 and σ[t1] > 0, σ[t2] > 0. Fig. 2 shows how to merge two conflicting transitions t1 and t2 to t1_2.

Proposition 4.2. Let S = ⟨N ,m0⟩, and S′ = ⟨N ′,m0⟩ be the transformed system from S by merging Tj = {t1, t2, . . . , tn} to
tj by using the reduction rule. If in S, the transitions in Tj fire proportionally according to a given firing count vector σ , and in S′,
transition tj fires in an amount equal to the sum of the firing amounts of transitions in Tj, then the same marking is reached in S
and S′.

Proof. It follows immediately by the definition of the reduction rule. �

For example, consider place p2 in Fig. 2, and let s1 = α · σ[t1], s2 = α · σ[t2], α > 0. If t1(s1)t2(s2) is fired in the original
system, the new marking of p2 is:

m1[p2] = m0[p2] − g2 · α · σ[t1] − g3 · α · σ[t2].

In the transformed system, if t1_2(s1 + s2) is fired, the new making of p2 is:

m′1[p2] = m0[p2] − (s1 + s2) ·
g2 · σ[t1] + g3 · σ[t2]

σ[t1] + σ[t2]

= m0[p2] − α · (σ[t1] + σ[t2]) ·
g2 · σ[t1] + g3 · σ[t2]

σ[t1] + σ[t2]
= m1[p2].

Similarly, markings of places p1 and p3 are also equal in both systems.
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Corollary 4.3. If mf > 0 is reachable in S by firing σ fromm0 > 0, then mf is reachable in S′ by firing σ ′, where:

σ ′[tj] =



t∈Tj

σ[t] if tj is obtained by merging a set of transitions Tj

σ[tj] otherwise.

Proposition 4.4. Let S = ⟨N ,λ,m0⟩ be a discrete-time TCPN system with m0 > 0 andΘ the sampling period. Let mf > 0 be
a reachable final marking, such that mf = m0 + C · σ . By applying the ON/ OFF+ controller, the system state converges tomf in
finite time.
Proof. LetS′ = ⟨N ′,λ′,m0⟩be the system transformed fromS bymerging all the conflicting transitions, using the reduction
rule (therefore S′ is CF).

Assume there exists a controller A applied to S′, with w ′k[tj] the controlled flow at each time step k, such that: (1) if tj
is obtained by merging a set of transitions Tj in a coupled conflict relation, we have w ′k[tj] =


t∈Tj

wk[t]; (2) otherwise
w ′k[tj] = wk[tj], where wk[tj] is the flow of transition tj in S that is controlled by using the ON/OFF+ controller. Then,
according to Proposition 4.2, the state trajectory of S′ obtained by applying controller A is the same as in S obtained by
applying the ON/OFF+ controller. Therefore it is equivalent to prove that by applying controller A to S′,mf is reached in
finite time.

This controller A always exists, because if the firing rate of tj in S′, λ′j , is large enough, case (1) can always be satisfied,
by using a positive control action uk[tj]. In particular, it is defined as:

uk[tj] = λ′j · enab(tj,mk)− xjk (8)

where xjk is obtained by solving the LPP (9):

xjk = max

td∈Tj

xdk

s.t. xak · σ[tb] = xbk · σ[ta], ∀ta, tb ∈ Tj
0 ≤ xdk ≤ λd · enab(td,mk), ∀td ∈ Tj
k

i=0

xdk ·Θ ≤ σ[td], ∀td ∈ Tj

(9)

where enab(td,mk), td ∈ Tj, is the enabling degree of td in the original system atmk.
For case (2) we simply use the ON/OFF strategy and the same firing rate as in S.
Finally, let us notice that S′ is a CF net, so for sure controller A can drive S′ to its final state in finite time [24], implying

that by applying the ON/OFF+ controller to S, the final state is also reached in finite time. �

Given a firing count vector σ, if transition tj is a persistent one (transitions that are not in a conflict relation) and the goal
is to minimize the time spent for firing σ[tj], the ON/OFF strategy is optimal. For the transitions in conflict, the ON/OFF+
controller gives a way to handle their firings, but in general, it is just a heuristic method for the minimum-time.

Example 4.5. Let us consider the net system in Fig. 3. Assume that the desired final state ismf = [3.6 0.4 4 1.6]T , the firing
rate for each transition is 1, and the sampling period Θ = 0.2. One minimal firing count vector to reach mf (in this case,
the unique one) is σ = [0.4 0 4 0]T . By applying the ON/OFF+ controller, at each time step the firing flow of t3 is forced to
be 10 times the flow of t1. For instance, at the first time step, [0.04 0 0.4 0]T is fired, reaching making [7.56 0.04 0.4 1.96]T ,
etc. In this way, mf is reached in 12 time steps. However, if t3 fires before t1,mf can be reached in only 10 time steps (that
is actually the minimum-time). In particular, at each of the first 9 time steps only t3 fires, i.e., [0 0 0.4 0]T is fired; at the last
time step, t1 and t3 fire, i.e., [0.4 0 0.4 0]T is fired.

Remark 4.6. The results of Proposition 4.4 can be naturally extended to continuous-time CPN by making the sampling
periodΘ tend to 0.

4.2. Balanced ON/OFF controller (B-ON/OFF)

We can apply the ON/OFF+ controller to any TCPN system and ensure the convergence to a final statemf > 0. Extremely
fast to compute, nevertheless a possible drawback of this method is the following: since a set of transitions in a coupled
conflict relation are forced to fire proportionally, the required number of time steps for firing σ is determined by the
‘‘slowest’’ ones. Therefore, in extreme cases, when some of these transitions have very small (uncontrolled) flows, thewhole
system may be slowed down.

Example 4.7. Let us consider the simple (sub-)system in Fig. 4, assuming that t1, t2 have the same firing rate equal to 1.
Moreover, they are forced by a given σ to fire in the same amounts. It is obvious that the flow of t2 is 100 times the flow of
t1, but if t1 and t2 should fire proportionally according to σ, then t2 is slowed down.
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Fig. 3. An EQ PN system withm0 = [8 0 0 2]T .

Fig. 4. Fast transitions may be slowed down.

To overcome extremely bad cases, we can fire first the ‘‘faster’’ transitions and block the ‘‘slower’’ ones for some time
periods, expecting that the flows (speeds) of the ‘‘slower’’ transitions are increased, i.e., we will try to balance the ‘‘faster’’
and ‘‘slower’’ transitions. After that, we simply apply the pure ON/OFF+ controller until the final state is reached.

We will first show how to classify the ‘‘slower’’ and ‘‘faster’’ transitions, and then present this balancing strategy.
Assume that the system is at marking m with w its controlled flow, and let σ be the firing count vector that should be

fired to reach mf . Then sj = ⌈
σ[tj]

w[tj]·Θ
⌉ can be viewed as an estimation of the number of steps that transition tj needs to fire,

assuming that tj fires with a constant speed equal tow[tj]. For two transitions ta and tb, if sa > sb, it is said that ta is ‘‘slower’’
than tb.

The estimation of the number of steps for tj at m0 is defined by:

s0j =


σ[tj]
λj · enab(tj,m0) ·Θ


. (10)

If enab(tj,m0) = 0 then s0j = ∞.
Let us consider again the system in Example 4.7 and let σ[t1] = σ[t2] = 10,Θ = 0.01. The initial estimation of the

number of time steps is: s01 =
10

1·0.01 = 1000, s02 =
10

100·0.01 = 10. So transition t1 is ‘‘slower’’ than transition t2.
Based on this initial estimation, we will partition any given set of transitions Tc that are in coupled conflict relation into

two subsets, the ‘‘faster’’ ones T1 and the ‘‘slower’’ ones T2, such that:
T1 ∩ T2 = ∅, T1 ∪ T2 = Tc
∀ta ∈ T1, tb ∈ T2, s0b/s

0
a > d

∀ta1, ta2 ∈ T1, s0a1/s
0
a2 ≤ d

(11)

where d ≥ 1 is a design parameter used to classify ‘‘slower’’ and ‘‘faster’’ transitions.
From (11), the estimations of the number of time steps of the transitions in T2 are at least d times as large as the ones

of transitions in T1. If we fire the transitions in T1 and T2 proportionally, transitions in T1 may be slowed down by the ones
in T2.

Notice that, if the value of d is too large, all the transitions are put into T1, then it is equivalent to applying the ON/OFF+
controller directly; if d is too small, most of the transitions are put into T2 and initially blocked. In the system shown in
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Example 4.7, we can choose, for example, d = 10. Then the conflicting transition set Tc = {t1, t2} is partitioned to T1 = {t2}
and T2 = {t1}.

Now let us consider that the system is at time step k with marking mk, and the firing count vector σ ′ has been fired, i.e.,
mk = m0 + C · σ ′. The remaining firing count vector that should be fired is σk = σ − σ ′ ≥ 0. The estimation of the number
of steps for transition tj ∈ Tc atmk is defined by:

skj =




σk[tj]
wk[tj] ·Θ


, if tj ∈ T1

σk[tj]
λj · enab(tj,mk) ·Θ


, if tj ∈ T2

where wk[tj] is the flow of transition tj when the ON/OFF+ strategy is applied. Because the transitions in T1 fire
proportionally, for any tj ∈ T1, the same estimation skj is obtained, denoted by hk. For any tb ∈ T2, let Dk

b = skb/h
k, which

reflects the difference of the estimations between tb and the faster transitions.
Let Tp be the set of persistent transitions, and T i

c, i = 1, 2, 3, . . . , l be the sets of transitions in coupled conflict. Algorithm
3 synthesizes the control method: for transitions in Tp, the ON/OFF strategy is always applied; for any T i

c = T i
1 ∪ T i

2, those
‘‘faster’’ transitions in T i

1 fire proportionally using the ON/OFF+ strategy; while every ‘‘slower’’ transition tb in T i
2 is blocked

until the following condition (C1) or (C2) is satisfied; then we move tb to T i
1 and start to fire it using the ON/OFF+ strategy.

(C1) Dk
b ≤ d

(C2) Dk
b ≥ Dk−1

b .

By blocking tb while firing other transitions, more tokens may arrive to the input places of tb, consequently increasing its
flow. Thus, tb may become more balanced with those ‘‘faster’’ transitions, i.e., Dk

b decreases. If D
k
b keeps decreasing, for sure

in finite time, we will have condition (C1) satisfied, implying that tb is already balanced with the ‘‘faster’’ transitions. If at
one moment, Dk

b cannot decrease any more, then condition (C2) is satisfied, i.e., transition tb cannot become more balanced
with the ‘‘faster’’ ones. Therefore, one of these conditions will be satisfied in finite time. After that, there is no need to block
tb and we should start to fire it.

Now we prove the convergence of this B-ON/OFF controller to the desired final state.

Proposition 4.8. Let ⟨N ,λ,m0⟩ be a TCPN system with m0 > 0. Let mf > 0 be a reachable final marking, such that
mf = m0 + C · σ . By applying the B-ON/OFF controller, the system state converges tomf in finite time.

Proof. For all the ‘‘slower’’ transitions, condition (C1) or (C2) will be satisfied in a finite number of steps, then the pure
ON/OFF+ strategy is applied. Therefore, we only need to prove that when the pure ON/OFF+ controller starts to be applied,
the system is in a statem > 0 andmf is reachable fromm.

Since the accumulative firing counts of transitions are upper bounded by σ, then we havem = m0 + C · σ ′, 0 ≤ σ ′ ≤ σ.
Becausem0 > 0, in a finite timem > 0. Since σ − σ ′ ≥ 0 andmf = m+ C · (σ − σ ′) > 0,mf is reachable fromm [27]. �

Remark 4.9. The B-ON/OFF controller is more computationally expensive than the ON/OFF+ controller, because an
estimation of the number of time steps has to be computed at each step. However, the B-ON/OFF strategy may significantly
decrease the time of reaching the final state if the flows of conflicting transitions are of different orders of magnitude. The
choice of design parameter d also influences the performance. In particular, if d is too large, the controller is not ‘‘sensitive’’ to
the difference between ‘‘faster’’ and ‘‘slower’’ transitions, thus it is similar to applying the ON/OFF+ strategy. Nevertheless,
this does not mean that d should always be as small as possible, because if the flows of conflicting transitions are similar, it
may make sense to apply the ON/OFF+ strategy.

4.3. MPC-ON/OFF controller

Both the ON/OFF+ and B-ON/OFF controllers solve the conflict based on the flows and the required firing counts in a
current time step, without a ‘‘careful looking at the future’’. In this section, we combine the ON/OFF strategy with Model
Predictive Control (MPC), obtaining the MPC-ON/OFF controller.

MPC has beenwidely applied in the industry for controlling complex dynamic systems. By solving a discrete-time optimal
control problem over a given time horizon, an optimal open-loop control input sequence is obtained and the first one is
applied. Then at the next time step, a new optimal control problem is solved. In [8], the MPC scheme is applied to the
control of TCPN, by solving the following optimization problem at each time step:

min J(mk,N)
s.t.:mk+j+1 = mk+j +Θ · C ·wk+j, j = 0, . . . ,N − 1 (12a)

G ·

wk+j
mk+j


≤ 0, j = 0, . . . ,N − 1 (12b)

wk+j ≥ 0, j = 0, . . . ,N − 1 (12c)
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Algorithm 3 B-ON/OFF Controller
Input: ⟨N ,λ,m0⟩, mf , σ,Θ , d , Tp, T i

c , i = 1, 2, 3..., l
Output:w0,w1,w2, . . .

1: Partition every T i
c into T i

1 and T i
2, i = 1, 2, ..., l

2: k← 0

3: while
k−1
i=0

wi ·Θ ≠ σ do

4: Obtainwk[tj] for any tj ∈ Tp : applying the ON/OFF strategy
5: for i = 1 to l do
6: For any tj ∈ T i

2: wk[tj] ← 0
7: Obtain wk[tj] for any tj ∈ T i

1 : applying the ON/OFF+ strategy
8: end for
9: Applywk : mk+1 ← mk + C ·wk ·Θ

10: σk+1 ← σ −
k

i=0
wi ·Θ

11: for i = 1 to l do
12: if T i

2 ≠ ∅ then
13: Computewk+1[ta], ta ∈ T i

1
14: hk+1

← σk+1[ta]/(wk+1[ta] ·Θ)
15: for each tb ∈ T i

2 do
16: sk+1b ← σk+1[tb]/(λb · enab(tb,mk+1) ·Θ)

17: Dk+1
b ← sk+1b /hk+1

18: if Dk+1
b ≤ d or Dk+1

b ≥ Dk
b then

19: T i
1 ← T i

1 ∪ {tb}
20: T i

2 ← T i
2 \ {tb}

21: end if
22: end for
23: end if
24: end for
25: k← k+ 1
26: end while
27: returnw0,w1,w2, . . .

where J(mk,N) may be a quadratic objective (cost) function in the form of (13), while G is a particular matrix deduced
from the net structure and (12b) gives the (upper bound) constraint on firing flows to guarantee the non-negativeness of
markings.

J(mk,N) = (mk+N −mf )
′
· Z · (mk+N −mf )

+

N−1
j=0

[(mk+j −mf )
′
· Q · (mk+j −mf )+ (wk+j −wf )

′
· R · (wk+j −wf )]. (13)

MPC is usually used for optimizing trajectories subject to certain constraints. In our problem, the aim is to reach mf
as soon as possible, i.e., minimizing the time. Although it is difficult to obtain a minimum-time control by using a MPC
approach, we will consider this method for transitions in conflicts while for the others we will keep the ON/OFF strategy. It
will be shown that we may obtain smaller number of time steps than those of the ON/OFF+ or B-ON/OFF controller, usually
with large time horizon and with higher computational complexity.

Let us denote by Tp the set of persistent transitions and Tc the set of transitions in any coupled conflict relation,
Tp ∩ Tc = ∅, Tp ∪ Tc = T . The MPC-ON/OFF controller is synthesized in Algorithm 4.

The problem that should be solved at each time step k is:

min J(mk,N)
s.t.:mk+j+1 = mk+j + C ·wk+j ·Θ, j = 0, . . . ,N − 1 (14a)

G ·

wk+j
mk+j


≤ 0, j = 0, . . . ,N − 1 (14b)

wk+j ≥ 0, j = 0, . . . ,N − 1 (14c)
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Algorithm 4MPC-ON/OFF controller
Input: ⟨N ,λ,m0⟩, mf , σ,Θ , Z , Q , R, Nϵ, ζ
Output: w0, w1, w2, . . .
1: k← 0
2: σk ← σ
3: while mk ≠ mf do
4: Solve problem (14)
5: Applywk : mk+1 ← mk + C ·wk ·Θ

6: σk+1 ← σk −wk ·Θ

7: k← k+ 1
8: end while
9: returnw0, w1,w2, . . .

N−1
j=0

wk+j ·Θ ≤ σk (14d)

mk+1 ≥ 1 · ϵ (14e)

1T
·wk ≥ ζ (14f)

where ϵ and ζ are sufficiently small positive numbers and σk is the remaining firing count vector that should be fired.
Constraint (14e) ensures that the system only evolves inside an interior region of the reachability space; in order to include
m0 and mf in that region, it should hold mf ≥ 1 · ϵ and m0 ≥ 1 · ϵ. Constraint (14f) forces a non-zero flow in the first
predictive step. For our specific problem, we use the following assumptions:

(1) m0,mf > 0.
(2) Z,Q ∈ R|P| ≥ 0 are positive definite matrices.
(3) R ∈ R|T |

≥0 is a diagonal matrix, such that if tj ∈ Tp,R[j, j] > 0, otherwise R[j, j] = 0.

We define the cost function as:

J(mk,N) = (mk+N −mf )
′
· Z · (mk+N −mf )+

N−1
j=0

[(mk+j −mf )
′
· Q · (mk+j −mf )] −w ′k · R ·wk. (15)

By means of the item −w ′k · R · wk in the cost function and choosing large values for R[j, j], tj ∈ Tp, we try to fire the
persistent transitions as fast as possible, similarly to applying the ON/OFF strategy. Now, we will prove that the asymptotic
stability holds.

Proposition 4.10. Let ⟨N ,λ,m0⟩ be a TCPN systemwithm0 > 0. Let mf > 0 be a reachable finalmarking, such that mf = m0+

C ·σ . Assume that the system is controlled by using the MPC-ON/OFF controller shown in Algorithm 4, and the weighting matrices
Z,Q ,R satisfy the assumptions. Then the closed-loop system is asymptotically stable.

Proof. We will define a quadratic Lyapunov function and prove that it is strictly decreasing.
Let V (mk) = 1T

· (σ −
k

i=0 wi · Θ), where wk is the controlled flow at time step k and Θ is the sampling period.
According to constraint (14d), the accumulative firing count is upper bounded by σ. Therefore, V (mk) ≥ 0 and V (mk) ≠ 0
until σ =

k
i=0 wi · Θ , i.e., until mk = mf . Now we need to prove that V (mk) is strictly decreasing, and it is equivalent

to prove that wk ≠ 0 until σ is reached. Considering the last constraint (14f), we only need to prove that problem (14) is
feasible until mf is reached.

Assume that the system is at time step k with marking mk ≠ mf , according to constraint (14e), we have mk > 0. Let us
denote by σ ′ the firing count vector that has been fired. It is clear that σ ′ ≤ σ, therefore, σ − σ ′ ≥ 0 and:

mf = mk + C · (σ − σ ′) > 0 (16)

so mf is reachable from mk [27]. Since the reachability space of CPN is a convex set [28], the states on the straight line
from mk to mf are reachable. Because mk ≥ 1 · ϵ > 0 (constraint (14e)), all the transitions are enabled at mk. There exists
α > 0,wk = α · (σ − σ ′) ≠ 0, such that in the next predictive step the system could reach a state mk+1 that is on the
straight path frommk tomf . Sincemk,mf ≥ 1 · ϵ, we havemk+1 ≥ 1 · ϵ. Then letwk = α · (σ−σ ′) ≠ 0, if ζ is small enough
(e.g., the epsilon machine) the problem (14) is feasible untilmf is reached. �

5. An application example

In this section, we illustrate the proposed methods by means of a flexible manufacturing system. The simulations are
performed by using MATLAB on a PC with Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz, 3.24 GB of RAM.
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a b

Fig. 5. (a) Logical layout of a manufacturing cell. (b) Its production process.

Fig. 6. The PN model of the manufacturing cell.

Let us consider the manufacturing cell shown in Fig. 5. It consists of three machines M1, M2, M2 and two robots R1,
R2. Two semi-products A and B are processed by M1 and M2, respectively, then they are assembled in M3 to get the final
product. Robot R1 moves the rawmaterials from the input buffer to M1 or moves the semi-product B fromM2 to M3; robot
R2moves the materials from the input buffer to M2 or moves the semi-product A fromM1 toM3. The logical layout and the
production process are demonstrated in Fig. 5(a) and (b).
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Table 1
The interpretation of the PN model in Fig. 6.

Place Interpretation Transition Interpretation

p1 M1 is loading t1 R1 starts to load M1
p2 M1 is working t2 R1 loading finishes
p3 semi-product A is ready t3 M1 finishes processing
p4 M3 is loading A t4 R2 starts to load A to M3
p5 M2 is loading t5 R2 loading A finishes
p6 M2 is working t6 R2 starts to load M2
p7 semi-product B is ready t7 R2 loading finishes
p8 M3 is loading B t8 M2 finishes processing
p9 A is waiting for assembling t9 R1 starts to load B to M3
p10 B is waiting for assembling t10 R1 loading B finishes
p11 M3 is working t11 combine A and B
p12 available slots for A t12 assembling finishes
p13 available slots for B
p14 M1 is available
p15 input raw materials
p16 R2 is idle
p17 M2 is available
p18 R1 is idle

The PN model of the described manufacturing cell is presented in Fig. 6. When machine M1 is available (p14 is marked)
and robot R1 is idle (p18 is marked), a part of raw material for semi-product A can be loaded to machine M1, changing to
loading state (p1). When the loading process finishes (t2 fires), M1 changes to working state (p2) and robot R1 is freed (p18
is marked). Transition t3 models the working process of machine M1, and when it finishes, the semi-product A is stored in
p3. If the slots for semi-product A in machine M3 (p12) is available and robot R2 is idle, the semi-product A can be loaded
frommachineM1 tomachineM3 thenwaits in p9. The behavior of M2 for processing semi-product B is modeled in a similar
way, but the robots are used in a different order. Finally, if both semi-products A (in p9) and B (in p10) are available, they are
assembled (rendez-vous) to the final product. The meaning of the places and transitions of the PN model is in Table 1.

We assume that each robot can only handle one piece of rawmaterials or semi-products andmachineM1, M2 can accept
maximally two pieces at the same time; machine M3 has 4 free slots for each type of semi-products; and it is assumed that
we initially have 5 pieces of raw materials. According to this setting, the initial statem0 of the system is described in Fig. 6.

Considering the system as timed, we assume that every transition tj has an average delay time, denoted by δ[tj]. In
particular, the loading time of raw materials to machine M1 and M2 are all equal to 0.1 time units, i.e., δ[t1] = δ[t2] =
δ[t6] = δ[t7] = 0.1; the loading operations of semi-products from machines M1 to M3 and M2 to M3 take 0.4 time units,
i.e., δ[t4] = δ[t5] = δ[t9] = δ[t10] = 0.4; the processing of machine M1 requires 0.5 time units, and for M2, it is 0.8 time
units, i.e., δ[t3] = 0.5, δ[t8] = 0.8; it takes 0.4 time units to combine the two semi-products, and 2 time units to process
them in machine M3, i.e., δ[t11] = 0.4, δ[t12] = 2. In the corresponding TCPN model under infinite sever semantics, time
delays are approximated by their mean values (λ[tj] = 1/δ[tj], tj ∈ T ), obtaining a deterministic approximation of the
discrete case [29].

Let us consider the target marking control problem of this system. In order to have a positive initial marking needed by
the control methods, we assume that all the emptied places in Fig. 6 have initial marking equal to 0.1. For a manufacturing
system, normally we want to maximize the throughput (flow) of the system. In particular, we can verify that this system
has a unique minimal T-semiflow equal to 1; therefore, it is equivalent to maximize the flow of any transition. By solving a
LPP proposed in [30] for an optimal steady-state control problem, the maximal flow isψ = 0.775. Withψ = 0.775, we can
compute a final marking statemf with the minimal Work In Process (WIP) cost, by solving the following LPP problem:

min l ·mf
s.t. mf = m0 + C · σ

C ·wf = 0

wf [t] = λ[t] ·
mf [pi]

Pre[pi, t]
− v[pi, t], ∀t ∈ T , pi ∈ •t

v[pi, t] ≥ 0
wf [tj] = ψ, ∀tj ∈ T
wf , σ,mf ≥ 0

(17)

where v[pi, t] are slack variables, wf is the controlled flow in final state mf and l is the cost vector due to immobilization
to maintain the production flow, e.g., due to the levels in stores. In this example, let us assume that we try to minimize
the storage, i.e., the number of tokens, in the buffer places, i.e., l[p3] = l[p7] = l[p9] = l[p10] = 1 and for other places
pi, let l[pi] = 0. By solving LPP (17), we obtain an optimal final state mf = [0.0775 0.3875 0.31 0.31 0.0775 0.62 0.31
0.31 0.31 0.31 1.55 2.13 2.13 1.315 0.0775 0.8125 1.083 0.8125]T , such that the maximal flow and minimal WIP cost are
achieved.
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Table 2
Qualitative characteristics of control methods (assuming m0 > 0,mf > 0). The following abbreviations are used:
min. (minimize), func. (function), suff. (sufficient conditions), quad. (quadratic) and poly. (polynomial).

Methods Subclass Computational issues Optimizing index Stability

MPC [8] All Poly. on |T |,N Quad. or linear func. Under suff.
App. min-time [21] All Nonlinear Heuristic Min. Time Yes
ON/OFF [24] CF Poly. on |T | Min. time Yes
ON-OFF+ All Poly. on |T | Heuristic Min. Time Yes
B-ON/OFF All Poly. on |T | Heuristic Min. Time Yes
MPC-ON/OFF All Poly. on |T |,N Heuristic Min. Time Yes

Table 3
Comparison of different control methods for reachingmf of the TCPN model in Fig. 6: time steps and CPU computing time.

Method Time steps CPU time (ms) Parameters

MPC(N = 1) 230 1713 Q = 1000 · I |P|,R = 0.1 · I |T |, Z = P , the solution of the unconstrained LQR [31]
MPC(N = 5) 223 21936 same as the above
App. min-time 335 37495 threshold = 0.001
ON/OFF+ 457 225 none
B-ON/OFF 209 324 d = 3
MPC-ON/OFF(N = 1) 220 2615 Z = 1000 · I |P|,Q = I |P|, R(j, j) = 1000,∀tj ∈ Tp, ϵ = ζ = 10−5

MPC-ON/OFF(N = 5) 218 72205 same as the above

* m0 = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 4 4 2 5 1 2 1]T ,mf = [0.0775 0.3875 0.31 0.31 0.0775 0.62 0.31 0.31 0.31 0.31 1.55 2.13 2.13
1.315 0.0775 0.8125 1.083 0.8125]T ,λ = [10 10 2 2.5 2.5 10 10 1.25 2.5 2.5 2.5 0.5]T , σ = [2.345 2.368 2.08 1.87 1.66 2.578 2.6 2.08
1.87 1.66 1.45 0]T ,Θ = 0.01.

The existence of several control methods for the target marking control problem of TCPNmakes difficult the selection of
the most appropriate technique for a given system. In order to have a good ‘‘guess’’, several properties may be taken into
account for selecting a proper control method, e.g., feasibility, closed-loop stability, robustness, computational complexity
(for the synthesis and during the execution). Table 2 shows qualitative characteristics of the already mentioned control
methods. Apart from themethods proposed in thiswork, the approachingminimal-time (app.min-time) controller proposed
in [21] and the MPC controller proposed in [8] are also included in the comparison.

The ON/OFF controller is particularly suitable for the minimum-time control of CF nets, while all the other methods
can be applied to general net systems. Except the MPC controller, the others are heuristic approaches with the objective
of reaching the desired final state in minimum-time; the MPC controller is usually used to optimize the state trajectory
by minimizing a quadratic or linear cost function. For the ON/OFF, ON/OFF+ and B-ON/OFF controller, in each step only a
LPP needs to be solved, therefore those methods have very low computational complexity. Nevertheless, for the MPC and
MPC-ON/OFF controller, the number of variables also depends on the time horizon N , being computationally expensive if
N is large. The approaching minimum-time controller also has high computational complexity, since non-linear problems
have to be solved when intermediate states are added to the trajectory for decreasing the duration of the evolution.

The system is not CF, so the standard ON/OFF controller may not be applicable. Table 3 compares the number of time
steps required for reachingmf by using the other described controlmethods, and the corresponding CPU time for computing
the control laws (in case that some free parameters exist, they are chosen for obtaining relatively smaller number of time
steps).

Table 3 shows that the B-ON/OFF gives the smallest number of time steps for reaching the final state and the computa-
tional complexity is also very low. Consider the ON/OFF+ controller: the flows of t4 and t9 are much smaller than the ones
of t1 and t6; those four transitions are in a coupled conflict, therefore if we fire them proportionally by using the ON/OFF+
strategy the result is not good, costing 457 time steps, more than the double of the B-ON/OFF controller, to reach mf . By
applying the MPC-ON/OFF controller, even with a very small time horizon (N = 1), a reasonably small number of time
steps (220) are obtained and, in this case, the CPU time is not very high either; meanwhile, the number of time steps can
be decreased (only 0.9%) by using a larger time horizon (N = 5), but the CPU time increases significantly (about 28 times).
We can also apply the MPC controller, but the number of time steps here is larger than of the B-ON/OFF controller andMPC-
ON/OFF controller; similarly, if we use a larger time horizon, the computational cost increases significantly but the number
of times steps for reaching mf only decreases slightly. Therefore, it seems that the interest of using a large N is not high,
and we ‘‘guess’’ the importance of using a small time horizon for the MPC approaches. On the other hand, let us compare
the MPC controller with the MPC-ON/OFF controller, for example, with N = 1: the MPC-ON/OFF controller can decrease the
number of time steps of the MPC controller for more than 4%; meanwhile, with only about 1.5 times its computational cost.
The approaching minimum-time (app. min-time) controller does not work very well in this case: (1) 335 steps are needed.
One reason may be that in this approach, between each pair of adjacent states of the trajectory the firing speed is constant
and determined by the one with smaller flow; therefore, if one of the states has very small flow (in this case, the initial one),
the time spent for reaching mf could be large; (2) the required CPU time of the approaching minimum-time controller is
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also quite high, due to the non-linear problems that should be solved. Nevertheless, notice that we just show the results of
different methods for a particular example to provide an educated ‘‘guess’’, but nothing concluding.

Last but not least, it may be interesting to point out that in ‘‘slow’’ practical systems like logistics, chemical or
manufacturing systems, the operational time may be much larger than the computational time for the control laws
(considering the very low computational complexity of ON/OFF based methods; including the MPC-ON/OFF controller with
small time horizon); therefore, at each operation instantwe could compute the control laws by using several of themethods,
and then choose the best one to apply.

6. Conclusions

In this work, we present three heuristic methods, based on the ON/OFF strategy, for the minimum-time control of TCPN.
It is proved that all of them can drive a general TCPN system to a desired final state in finite time. An initial comparison is
carried out among the described control methods, including the proposed controllers and two others from the literature.
Finally, the control laws are applied to a manufacturing cell. The advantage of these ON/OFF based controllers is their low
computational complexity, while reasonable numbers of time steps for reaching the final states can be obtained.

The standard ON/OFF controller is the most suitable choice for a CF net system, ensuring low computational complexity
andminimum-time. For non-CF nets, some characteristics of the systemmay be helpful in choosing an appropriate method.
In particular, if the flows of conflicting transitions are very different, the B-ON/OFF controller may obtain a smaller number
of time steps than the ON/OFF+ controller; the approaching minimum-time controller may not be a good choice if there
are some places with very small markings or many borders of regions should be crossed from m0 to mf , in those cases the
ON/OFF based methods usually can achieve better results.

As a future work, we plan to enhance the comparison of the different existing controllers and for this aim, certain
benchmarks with systems of different net structures, markings, firing rates are desirable. On the other hand, the comparison
should be performed not only with the continuous net systems, but also for the underlying discrete ones. Since all the
transitions are assumed to be controllable in the presentwork, a clear extension is to consider partially controllable systems.
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