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Abstract: The dynamics of highly populated biological systems is often described in terms of
ordinary differential equations. The trajectory produced by these equations is continuous and
deterministic, and represents the limit behaviour as the system size tends to infinity. Because
most biological systems are discrete, stochastic and finite, important phenomena, as oscillations,
can be passed over by the limit behaviour. The computation of expected values on the associated
embedded Markov process allows one to average functions of interest without resorting to the
deterministic limit. In particular, one can average distances and angles with respect to a given
reference point. This leads to a description of the process in polar coordinates that determines
the dynamical system behaviour around the reference point.
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1. INTRODUCTION

The state of biological systems can be expressed naturally
by a vector of natural numbers, in which each component
of the vector represents the number of elements of a species
involved in the system. Depending on the kind of system
under consideration, this number of elements can refer to
molecules (biochemical system), individuals of a popula-
tion (ecology system), etc. The state of the system changes
when an event, such as a reaction, happens. Inferring the
exact occurrence time of events is in most cases impossible
or impractical, and hence it is usually assumed that they
happen at random. This implies that the system can be
modelled as a jump Markov process on the natural num-
bers, and more precisely as a density dependent Markov
process [4]. Because the exact analysis and simulation of
a large Markov process is computationally expensive, its
dynamics is often studied by considering the deterministic
limit. Such a deterministic limit describes the time evolu-
tion of the densities of the system populations when the
system size tends to infinity. The time evolution of the
densities is obtained as a solution of a set of Ordinary
Differential Equations (ODE) [5, 9]. This way, the time
evolution of a population density is represented by a con-
tinuous and deterministic trajectory.

The use of ODEs opens the possibility to take advan-
tage of the rich existing results for dynamical systems
described by differential equations [8]. Once the system
is studied as an ODE, a straightforward translation of the
obtained results to the original discrete stochastic system
is usually achieved. One would expect the deterministic
limit to be the average behaviour of the Markov process.
However, as pointed out in [3, 1, 13], the deterministic limit
might fail at capturing important system behaviours such
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as oscillations, commutations, stochastic resonance, etc.
Not surprisingly, the differences between the deterministic
limit and the Markov process increase as the system size
decreases. As in [13], instead of analysing the deterministic
limit and then interpreting the results in the Markov pro-
cess, we aim at obtaining relevant dynamical information
directly from the discrete Markov process. More precisely,
we aim at evaluating the average dynamical behaviour
of functions of interest on the values of the populations.
Instead of computing exactly such an average by means of
the Dynkin’s formula [14], we propose to approximate it by
considering the expected increase of the function yielded
by the associated embedded Markov process and the av-
erage frequency of events. As shown in the case studies,
this approach entails a straightforward and appropriate
approximation of the stochastic process. Special attention
is paid to the dynamical behaviour around fixed points. In
particular, by averaging the increase of the distance and
angle to a given fixed point, it is possible to express the
evolution in polar coordinates, what can easily uncover
oscillating behaviours that might be hidden or underesti-
mated by the deterministic limit. With respect to previous
works [10], the average speed of change of affine and
quadratic functions provided by the deterministic limit
and the Markov process is studied, the dynamics in the
vicinity of the fixed points is established and systems with
oscillating deterministic limit are considered.

The rest of the paper is organised as follows: Section 2
introduces the notation, formalizes the Markov process
and presents a running example. Section 3 shows how to
average the change rate of a given function by taking into
account the embedded Markov process. Such average is
used in Section 4 to estimate the dynamical behaviour of
the system around a given reference point. The two case
studies presented in Section 5, a prey-predator system and
the Brusselator, show that the deterministic limit tends to
underestimate the system oscillations. Section 6 concludes
the paper.



2. STOCHASTIC POPULATION MODELS

To define the dynamical system under study, we will use
the following parameters and notation:

• q ∈ N denotes the number of populations (or species).
• n ∈ N denotes the number of events (or reactions).
• X(t) ∈ Nq≥0 is the state of the system at time t (Xi(t)

denotes the number of elements of population i at
time t) 1 .

• ν ∈ Nq×n≥0 is the stoichiometry matrix, i.e., νji is the

change produced in population i by event j (νj will
denote the jth column of ν, i.e., stoichiometry vector
of reaction j, and νi will denote the ith row of ν).
• V ∈ R>0 is the size (or volume) of the system.
• Wj : Rq≥0×R>0 → R≥0 is the transition rate function,

i.e, Wj(X(t), V ) is the rate associated to event j for
population X(t) and system size V .

It is assumed that each transition rate functionWj(X(t), V )
is a differentiable nonnegative function that does not de-
pend on time (for readability we will use X rather than
X(t)). Further, following the notation in [13], it is assumed
that Wj(X, V ) satisfies the mass-action law: Wj(X, V ) =
V ·wj(X/V ) where wj(X/V ) is a nonnegative function of
real arguments on the system densities. This expression
of the mass-action law states that if the densities are
kept constant while the system size changes from V to
V ′, then the transition rates change by a factor V ′/V .
In the following, Wj(X(t), V ) is simplified to Wj(X) for
clarity, and densities will be expressed in lowercase, e.g.,
x = X/V .

The system is modelled as a jump Markov process in which
events are exponentially distributed with rates Wj(X).
The occurrence of an event j changes the system state
from X to X + νj . Given that all rates are exponentially
distributed, the next event time is also exponentially
distributed with rate R(X) =

∑n
j=1Wj(X), and the

probability that the next event is event j is Wj(X)/R(X).

Given a sample path of a jump Markov process, the
embedded process is the sequence of consecutive states
{X0,X1,X2, . . . ,Xk, . . .} of the path. From a sequence
{X0,X1,X2, . . . ,Xk, . . .}, sample paths of the Markov
process can be built by producing times for each event
with exponentially distributed random variables.

Deterministic limit: Let Fi(x) =
∑n
j=1 ν

j
iwj(x) be the vec-

tor field for species i, and assume that
∑n
j=1 |ν

j
i |wj(x) <

∞ and F is Lipschitz continuous, i.e., ∃M ≥ 0 such that
|F (x) − F (y)| ≤ M |x − y|. Then, the deterministic limit
behaviour of the system when V tends to infinity is given

by the following ODE [5, 9]:
dxi
dt

= Fi(x) =
∑n
j=1 ν

j
iwj(x).

This ODE can be scaled by V to obtain a deterministic
continuous trajectory for a system with size V :

dXi

dt
=

n∑
j=1

νjiWj(X) (1)

Example. Consider an epidemic system [13] consisting of
two species: susceptible and infected individuals; and five

1 Notation: Ai denotes the ith component of vector A.
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Fig. 1. (a) Trajectory in the phase space of the solution of
ODE (1); (b) Contagion rate according to ODE (1)
and one stochastic simulation.

events: birth, death of a susceptible individual, contagion,
recovery, and death of an infected individual. Let S = X1

and I = X2 be the number of susceptible and infected
individuals, and ab = W1, ads = W2, ac = W3, ar = W4

and adi = W5 be the transition rates of events birth, death
of a susceptible individual, contagion, recovery, and death
of an infected individual respectively. The parameters of
the system are: q = 2, n = 5, ν =

(
1 −1 −1 1 0
0 0 1 −1 −1

)
,

ab =
S + I

1 + (b·(S + I))/V
, ads = mS · S, ac = β · S · I

V
,

ar = r · I, adI = mI · I, V = 5 · 103, with b = 0.4,
β = 10, mS = 0.2, mI = 5, r = 3, and initial populations
S(0) = 4080 and I(0) = 500.

Assume we are interested in evaluating the evolution of the
contagion rate over time. Figure 1(a) shows the system
evolution in the phase space according to ODE (1), the
system reaches an equilibrium point at which both species,
and hence the contagion rate, keep constant. The dotted
line in Figure 1(b) is the time evolution of the contagion
rate according to this deterministic view, while the solid
line is the time evolution of the contagion rate according
to a single stochastic simulation of the Markov process.

Unlike the deterministic evolution, the stochastic simula-
tion exhibits undamped oscillations with approximately
constant frequency and amplitude. In fact, the spectral
analysis of the stochastic trajectory reveals a peak at fre-
quency 0.33. The following sections explore the deviation
induced by ODE (1) with respect to the Markov process
when estimating functions over the system trajectory.

3. AVERAGE DYNAMICAL BEHAVIOUR

The ODE (1) represents the limit trajectory of the pop-
ulations as the system size tends to infinity. Such a limit
provides valuable information about the system dynamics.
Nevertheless, as the limit is never attained in practice,
it must be used with caution when evaluating the time
evolution of functions of interest, as the contagion rate
in the previous section. We will show that affine functions
are appropriately evaluated by the ODE, but more general
functions, as quadratic functions, are not.

3.1 Affine functions

Let f : Rq≥0 → R be an affine function of the type

f(X) = AX + b (for clarity, we avoid the use of transpose



symbols). Let us first evaluate the change rate of f in the
deterministic continuous trajectory provided by ODE (1).
By the chain rule and (1), the total derivative of f(X) with
respect to time is:

df

dt
=

q∑
i=1

∂f

∂Xi

dXi

dt
=

q∑
i=1

∂f

∂Xi

( n∑
j=1

νjiWj(X)

)

=

q∑
i=1

Ai

( n∑
j=1

νjiWj(X)

)
= AνW (X)

(2)

where Ai is the ith element of vector A, and W (X) is a
vector whose jth element is Wj(X).

In order to estimate the speed of change of function f
according to the Markov process, we will consider the
expected increase of f produced by the occurrence of an
event, and the average frequency of events. At a given
state X, the expected 2 increase of function f after the
occurrence of an event is the weighted average of the
increases of f produced by the different events:

E[∆f(X)]=

n∑
j=1

Wj(X)

R(X)

(
f(X+νj)−f(X)

)
(3a)

=

n∑
j=1

Wj(X)

R(X)

(
A(X+νj)+b−(AX+b)

)
(3b)

where ∆ is the finite difference operator applied to the
values of the embedded process. Because at X the average
number of events per time unit, i.e, frequency, is R(X),
the average speed of change of f according to the Markov
process can be approximated as:

R(X)E[∆f(X)] =

n∑
j=1

Wj(X)
(
A(X + νj) + b− (AX + b)

)
=

n∑
j=1

Wj(X)
( q∑
i=1

Aiν
j
i

)
=

n∑
j=1

q∑
i=1

Aiν
j
iWj(X)=AνW (X)

(4)

This way, the affine function f is evaluated equally by
the ODE and the Markov process (see (2) and (4)).
Nevertheless, this is not the case for a more general
function f .

3.2 Quadratic functions

Let f be the product of two affine functions h(X) =
CX + u and g(X) = DX + v, i.e., f(X) = h(X)g(X) =
(CX)(DX)+CXv+DXu+uv. The sum CXv+DXu+uv
is an affine function and will be equally evaluated by
the ODE and the Markov process, thus, to simplify the
presentation we will assume that u = v = 0 and hence,
f(X) = (CX)(DX). By using (1), and given that f is a
product of functions, the derivative of f is:

d f

dt
=
d hg

dt
= h

dg

dt
+ g

dh

dt

= h

q∑
i=1

∂g

∂Xi

dXi

dt
+ g

q∑
i=1

∂h

∂Xi

dXi

dt

2 All the expected values are conditional on the current state. For
brevity, E[∆f(X)] denotes the expected increase of f , given X, of
the embedded Markov process after the occurrence of an event.

=

q∑
i=1

dXi

dt

(
h
∂g

∂Xi
+ g

∂h

∂Xi

)
=

q∑
i=1

n∑
j=1

νjiWj(X)(CXDi +DXCi)

= ((CX)D + (DX)C)

n∑
j=1

νjWj(X) (5)

As for affine functions, the average speed of change of
f can be approximated by the expected increase of the
Markov process, E[∆f(X)] = E[∆((CX)(DX))], times the
average number of events per time unit, R(X). By the
product rule of the finite difference operator 3 and given
that the vector of expected increases of populations is

E[∆X]=
n∑
j=1

νj
Wj(X)

R(X)
, the following equality is produced:

R(X)E[∆((CX)(DX))]

=R(X)E[(CX)∆(DX) + (DX)∆(CX)

+∆(CX)∆(DX)]

=R(X)(CX)DE[∆X]+R(X)(DX)CE[∆X]

+R(X)E[∆(CX)∆(DX)]

=(CX)D

n∑
j=1

νjWj(X) + (DX)C

n∑
j=1

νjWj(X)

+R(X)E[∆(CX)∆(DX)]

=((CX)D + (DX)C)

n∑
j=1

νjWj(X)

+R(X)E[∆(CX)∆(DX)]

(6)

From (5) and (6), the following equality showing the
different speeds of change resulting from the ODE (1) and
the Markov process is derived:

R(X)E[∆((CX)(DX))] =
d hg

dt
+R(X)E[∆(CX)∆(DX)]

Thus, f is, in general, evaluated differently by the ODE
that represents the deterministic limit and the Markov
process. Quadratic functions as f(X) = (CX)(DX) +
CXv+DXu+uv appear naturally when trying to estimate
the evolution of certain reaction rates (as the contagion
rate in the previous section), the product of populations
that could activate other events, or the squared distance
to a given point. For this last case, it can be shown that
the deterministic limit underestimates the speed of change
of the squared distance with respect to a point a with
coordinates (a1, . . . , aq). Let La(X) =

∑q
i=1(Xi − ai)

2,
then, the speed of change of La provided by ODE (1) is:

dLa
dt

=

q∑
i=1

∂La
∂Xi

dXi

dt
=

q∑
i=1

2(Xi−ai)
( n∑
j=1

νjiWj(X)
)

(7)

On the other hand, by the chain rule ∆(z2) = 2z∆z +
(∆z)2 and given that the expected increase of population

i is E[∆Xi]=
n∑
j=1

νji
Wj(X)

R(X)
, the speed of change of La

estimated by the Markov process is:
3 The product rule of the finite difference operator states: ∆(hg) =
h∆g + g∆h + ∆h∆g



R(X)E[∆La(X)] = R(X)E[∆

q∑
i=1

(Xi − ai)2]

= R(X)

q∑
i=1

E[∆(Xi − ai)2]

= R(X)

q∑
i=1

E[2(Xi − ai)∆Xi + (∆Xi)
2]

= R(X)

q∑
i=1

2(Xi − ai)E[∆Xi] +R(X)

q∑
i=1

E[(∆Xi)
2]

=

q∑
i=1

2(Xi − ai)
( n∑
j=1

νjiWj(X)
)

+R(X)

q∑
i=1

E[(∆Xi)
2]

(8)

From (7) and (8), the following equality is obtained:

R(X)E[∆La(X)] =
dLa
dt

+R(X)

q∑
i=1

E[(∆Xi)
2] (9)

hence, given that
∑q
i=1 E[(∆Xi)

2] ≥ 0, the Markov process
estimates that the system moves away faster from (or
approaches slower) point a as long as events happen,
i.e., as long as R(X) > 0. In particular, if a is a fixed

point it holds that dLa(a)
dt = 0, i.e., the effect of all the

events cancels out, and hence, the trajectory given by the
deterministic limit stays constant at a. However, according
to the Markov process events will keep on occurring if a is
not an extinction point, and hence, the system can move
away from a at an average speed of R(X)

∑q
i=1 E[(∆Xi)

2]
and describe a different trajectory.

Notice that as V increases and tends to infinity while
the concentrations are kept constant, the trajectory of
the Jump Markov process will converge to that of the
deterministic limit [5, 9]. Nevertheless, in many systems of
interest, the value of V cannot be taken as infinity and just
considering the deterministic limit can overlook important
properties of the system dynamics.

By reasoning in a similar way as in the above mathematical
developments, next section will make use of the expected
value of the embedded process to provide a different view
(polar instead of cartesian) of the system evolution. Such
a view is the result of estimating the distance and angle of
the state of the system to a given reference point.

4. BEHAVIOUR AROUND A REFERENCE POINT

The trajectory yielded by ODE (1) in the phase space at
a time τ is tangent to the weighted average of the column
vectors of ν according to their transition rates. In other
words, the future positions of the system are computed
according to the weighted average of the cartesian coordi-
nates of the vectors νj . An alternative way to study the
evolution of a process with size V is to compute the future
positions of the system according to the weighted average
of other, non cartesian, coordinate system.

As derived from equation (3a), the average speed of
change of a given function f , which can represent a
given coordinate in a coordinate system, according to the
Markov process is:
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Fig. 2. (a) Trajectory in the phase space of the solution of
ODE (11) for the epidemic system in Section 2; (b)
Contagion rate according to ODE (11).

R(X)E[(∆f(X)] = R(X)

n∑
j=1

Wj(X)

R(X)
(f(X + νj)− f(X))

=

n∑
j=1

Wj(X)f(X + νj)−R(X)f(X)

(10)

Next subsection uses (10) to propose an ODE that ex-
presses the system evolution in polar coordinates by cap-
turing the speed of change of the distance and angle with
respect to a given reference point. In the following, we will
focus on systems having two species, i.e., q = 2.

4.1 Averaging distances and angles

The speed of change of the distance, ρ, and angle, φ, of the
system state, X, with respect to a given point a = (ax, ay)
can be obtained by considering two functions, one for the
distance, fρ(X) =

√
(X − ax)2 + (Y − ay)2, and one for

the angle, fφ(X) = atan(Y −ay, X−ax), where (X,Y ) are
the cartesian coordinates of X, and atan(y, x) : R×R→ R
is the arctangent of a point with cartesian coordinates
(x, y) that takes into account the quadrant.

We will assume that the range of atan(y, x) is (−π, π]
and that atan(0, 0) = 0. In order to avoid discontinuities
in the angle when it is close to π, i.e, when the state
switches between the second and third quadrant, we will
not consider just the angle returned by atan, but the
overall angular distance run by the trajectory (this is
achieved by function g in (11)). Equation (10) can be
used to compute the average speed of change of fρ(X)
and fφ(X), what allows us to describe the time evolution
of the system in polar coordinates (ρ, φ) by means of the
following ODE:

dρ

dt
= R(X)E[∆fρ(X)]

=

n∑
j=1

Wj(X)fρ(X+νj)−R(X)fρ(X)

dφ

dt
= R(X)E[∆fφ(X)]

=

n∑
j=1

Wj(X)
(
fφ(X+νj) + g(X, νj , a)

)
−R(X)fφ(X)

(11)
where g(X, νj , a) is defined as:



g(X, νj , a) =


+2π if fφ(X)>π/2 and fφ(X+νj)<−π/2
−2π if fφ(X)<−π/2 and fφ(X+νj)>π/2

0 otherwise

The first(second) case of the above expresion avoids the
discontinuity of the angle returned by atan when the tra-
jectory moves from the second to the third quadrant(from
the third to the second quadrant). Since functions R(X),
Wj(X), fρ(X) and fφ(X) are defined on populations ex-
pressed in cartesian coordinates, it is necessary to trans-
form (ρ, φ) to cartesian coordinates to evaluate the right-
hand side of (11).

In contrast to the trajectory in Figure 1(a) for the epidemic
system, Figure 2(a) shows a limit cycle trajectory that
is produced by ODE (11). The initial state is (4080, 500)
and the reference point a is the fixed point (4000, 502).
Figure 2(b) is the time evolution of the contagion rate
evaluated on the trajectory produced by ODE (11), the
amplitude of this signal is 743 and the frequency 0.35
(recall that the spectral analysis of the stochastic simu-
lation found a peak at 0.33). Thus, ODE (11) uncovers
the stochastic oscillations shown in Figure 1(b) and is
consistent with the sustained oscillations reported in [13].

5. CASE STUDIES

This section presents the trajectories that the cartesian
ODE (1) and the polar ODE (11) yield for two case studies:
a prey-predator model and the Brusselator [6].

5.1 A predator-prey model

Let us consider a prey-predator model in which the number
of preys is denoted by X1 = X, and the number of
predators by X2 = Y . Let the stoichiometry matrix be
ν =

(
1 −1 0 0
0 0 1 −1

)
, and the transition rates be W1(X) =

αX, W2(X) = βXY/V , W3(X) = δXY/V , W4(X) = γY
where α = 10, β = 0.01, γ = 100, δ = 0.02 and V = 1.

The ODE (1) for this model are the well-known Lotka-

Volterra equations [2]:
dX

dt
= X(α− βY );

dY

dt
= −Y (γ −

δX). The non-extinction fixed point is (γ/δ, α/β). The
polar coordinates will take this fixed point as origin.

Let us use (8) to compute the average speed of change of
the squared distance, La(X) = (X − γ/δ)2 + (Y − α/β)2,
to the fixed point a =

(
γ/δ, α/β

)
at each point (X,Y ).

For the given system parameters, it holds:

R(X)

q∑
i=1

E[(∆Xi)
2] = R(X)

(
E[(∆X)2] + E[(∆Y )2]

)
= R(X)

(
n∑
j=1

(νj1)2
Wj(X)

R(X)
+

n∑
j=1

(νj2)2
Wj(X)

R(X)

)
=
(
(1 ·W1(X) + 1 ·W2(X)) + (1 ·W3(X) + 1 ·W4(X))

)
= αX + βXY/V + δXY/V + γY

and
q∑
i=1

2(Xi − ai)
( n∑
j=1

νjiWj(X)
)

= 2
(
X−γ

δ

)
(αX−βXY/V )

+ 2

(
Y−α

β

)
(δXY/V−γY )
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Fig. 3. Trajectories of ODE (1) and ODE (11) for a simple
predator-prey system.

Then, according to (8), the average speed of change of La
becomes:

R(X)E[∆La(X)] = 2
(
X − γ

δ

)
(αX − βXY/V )

+ 2

(
Y − α

β

)
(δXY/V − γY )

+ αX + βXY/V + δXY/V + γY

Let the initial populations of the system be (5300, 1000).
The isolines shown in Figure 3 correspond to the val-
ues of R(X)E[∆La(X)] divided by 106. It can be ob-
served that the system tends to move away from the
fixed point

(
γ
δ ,

α
β

)
= (5000, 1000) since all the values of

R(X)E[∆La(X)] around that point are positive.

The trajectory for the Lotka-Volterra equations, i.e.,
ODE (1), is the inner (solid) trajectory in Figure 3. The
trajectory given by ODE (11) during 0.6 time units is
the outer (dotted) trajectory. While the cartesian ODE
produces a closed trajectory whose amplitude depends
on the initial populations, the trajectory provided by the
polar ODE moves away from the fixed point, what is
consistent with the resonant stochastic amplification and
the tendency to extinction pointed out in [12] and [15].

5.2 The Brusselator

The Brusselator is a theoretical model proposed by Pri-
gogine and collaborators [7] for a type of autocatalytic
reaction. The model consists of four reactions: r1 : A→ X,
r2 : 2X +Y → 3Y , r3 : B+X → Y +D, r4 : X → E. The
net reaction is A+B → D+E and the intermediate species
are X and Y . As in previous works [11], the populations
of A and B will be kept constant to values a and b respec-
tively, and the focus will be on the evolution of X = X1

and Y = X2. Under this assumption the stoichiometry
matrix is ν =

(
1 1 −1 −1
0 −1 1 0

)
, and the transition rates

are W1(X) = a, W2(X) = X2Y/V 2, W3(X) = bX/V ,

W4(X) = X. The ODE (1) for this model is:
dX

dt
= a +

X2Y/V 2−bX/V −X;
dY

dt
= bX/V −X2Y/V 2 which has a

fixed point at (a,
b

a
V ). This fixed point becomes unstable

and ODE (1) exhibits a limit cycle when b > V + a2/V .



60 80 100 120 140
100

120

140

160

180

X

Y

 

 

Cart. ODE
Polar ODE

(a)

20 40 60 80 100
20

40

60

80

100

120

X

Y

 

 

Cart. ODE
Polar ODE

(b)

200 400 600 800 1000
200

400

600

800

1000

1200

X

Y

 

 

Cart. ODE
Polar ODE

(c)

Fig. 4. Phase space trajectories of the cartesian ODE (1) and polar ODE (11) for the Brusselator.

The trajectories in the phase space in Figure 4(a) cor-
respond to parameters a = 100, b = 150, V = 100,
X(0) = Y (0) = 100. It can be observed that while the
cartesian ODE (1) tends to the fixed point q = (100, 150),
the polar ODE (11), which takes q as reference point,
presents sustained oscillations that are also exhibited by
the jump Markov process.

Figure 4 shows the trajectories of two models with same
initial concentrations for all the species a = 1V , b = 2.5V ,
X(0) = Y (0) = 1V , and different system sizes, V = 30
and V = 300 for Figure 4(b) and Figure 4(c) respectively.
As expected, the cartesian ODE shows a limit cycle and
scales with V . Although the polar ODE also enters a limit
cycle for both sizes, it does not scale with V and gets closer
to the trajectory of the cartesian ODE for higher values
of V . In fact, in the limit V → ∞ the Markov process
will converge to the cartesian ODE [5, 9], and then, the
estimation of distances and angles will be the same both
by the cartesian ODE and the proposed polar ODE, what
results in the same system trajectory.

6. CONCLUSIONS

The time evolution of biological systems modelled by jump
Markov processes tends to a deterministic limit as the
system size tends to infinity. Such a deterministic limit is
obtained as a solution of a system of ordinary differential
equations (ODE), and hence, the obtained trajectory is
continuous and deterministic. Because real systems are
inherently discrete and stochastic, and their size is finite,
they never attain the mentioned limit. In fact, if only
the deterministic limit is used to analyze the system
dynamics, relevant features, as sustained oscillations, can
be overlooked.

An alternative approach to study the dynamics is to
consider directly the jump Markov process. The combined
use of the expected value of the associated embedded
Markov process and the transition rates can be employed
to estimate the average speed change of a function of
interest. This speed of change is, in general, different
to the speed of change provided by the deterministic
limit. Among the functions that can be estimated, we
have focused on the distance and angle with respect
to a given reference point. These two functions are the
basis to define an ODE in polar coordinates. Such an
ODE provides additional dynamical information and can
be straightforwardly used to infer the average system
behaviour around the reference point.
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