
Original Article

Proc IMechE Part O:
J Risk and Reliability
227(6) 614–628
� IMechE 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1748006X13492284
pio.sagepub.com

Quantification and compensation of
the impact of faults in system
throughput

Ricardo J Rodrı́guez1, Jorge Júlvez2 and José Merseguer2

Abstract
Performability relates the performance (throughput) and reliability of software systems whose normal behaviour may
degrade owing to the existence of faults. These systems, naturally modelled as discrete event systems using shared
resources, can incorporate fault-tolerant techniques to mitigate such a degradation. In this article, compositional fault-
tolerant models based on Petri nets, which make its sensitive performability analysis easier, are proposed. Besides, two
methods to compensate existence of faults are provided: an iterative algorithm to compute the number of extra
resources needed, and an integer-linear programming problem that minimises the cost of incrementing resources and/or
decrementing fault-tolerant activities. The applicability of the developed methods is shown on a Petri net that models a
secure database system.

Keywords
Performability, fault-tolerant techniques, Petri nets, integer-linear programming

Date received: 28 December 2012; accepted: 10 May 2013

Introduction

Performability1 evaluates the performance (throughput)
and the reliability of degradable systems, i.e. systems
whose provided services may suffer some degradation
owing to errors and failures. Normally, degradable sys-
tems include fault-tolerant (FT) techniques2,3 that pro-
vide mechanisms to deal with failures inside the system
and mitigate the consequences of faults. Some examples
of FT techniques are: switching system requests
between non-faulty components, adding watch-dogs for
checking liveness of system components, or software
exception handlers. A degradable system equipped with
a FT technique is called a FT system.

Many FT systems are complex systems using shared
resources that are compromised (i.e. they fail) by the
activation of faults. These systems can be naturally
modelled as discrete event systems (DES) where
resources are shared, also called discrete event systems
(RAS).4 In this article, we focus on FT systems using
shared resources modelled as Petri nets (PNs) – more
precisely, as process PNs.5 This kind of PN allows to
model different instances of a single process that use
shared resources (then competing among them) to com-
plete. An extension of process PNs called S4PR5 can be
used for modelling resource competition among struc-
turally different processes.

Many studies evaluate the performability of a FT
system through analytical models, usually represented
as Markov processes.6,7 These studies consider the FT
systems modelled ad-hoc, and they do not provide any
solution to mitigate the impact of activation of faults
into the FT system. An evaluation of performability
using PN-based models is presented in Sander and
Meyer8 and Bobbio.9 Stochastic activity networks
(SANs) are used in Sanders and Meyer,8 associating
reward rates directly with the markings of designated
places and reward impulses with the completion of
activities. Such an idea is extended for generalised sto-
chastic PNs (GSPNs) by Bobbio.9 Another work that
uses GSPN formalism is Raiteri et al.,10 where an
extension of fault tree analysis called repairable fault
trees (RFT) is presented. This extension allows the

1Facultad de Informática, Universidad Politécnica de Madrid, Madrid,

Spain
2Dpto. de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza,

Zaragoza, Spain

Corresponding author:

Ricardo J Rodrı́guez, Dpto. de Lenguajes y Sistemas Informáticos e

Ingenierı́a de Software, Universidad Politécnica de Madrid, Campus de

Montegancedo, Facultad de Informática, 28660 Boadilla del Monte

(Madrid), Spain.

Email: rjrodriguez@fi.upm.es

modelling and analysis of the repairing process by
means of GSPNs.

A more recent approach is given by Reussner
et al.,11 where a compositional approach is presented
using Markov chains as modelling formalism. Other
works12,13 in the literature study the impact of error
propagation on reliability, also focused on component-
based systems.

Resource optimisation and its usage have been
already studied for some class of PNs, namely wokflow
PNs (WF-nets)14 or variants.15–17 The work in Li et
al.14 performs reduction operations on the original WF-
net, having exponential complexity in the worst case. In
Wang and Zeng,15 a method based on the reachability
graph is presented. However, such a method can suffer
scalability problems if the workflow size is large. Hee
et al.16 give an algorithm to compute optimal resource
allocation in stochastic WF-nets. Such an algorithm
suffers as well from scalability problems because its
complexity depends on the number of resources. In
Chen et al.,17 a resource assignment Petri net (RAPN)
is presented, that allows to define how resources are
shared and assigned among different and concurrent
project activities. The computation of the execution
project time considers deterministic timing and, unlike
our approach, RAPN is not able to model activities
that utilise and release the same resource intermittently.

The contributions of this article are threefold: first,
we review the FT concepts2,3 and propose composi-
tional PN models for FT techniques; second, we pro-
pose an iterative algorithm to compute the number of
resources that mitigate the impact of activation of
faults; and third, we propose an integer linear program-
ming problem (ILPP) that minimises the cost of com-
pensation needed for maintaining a given throughput
in a FT system.

Running example

Let us consider a packet-routing algorithm inside a rou-
ter where packets arrive and after checking source and
destination of the packets, they are filtered following
some defined rules. Figure 1 depicts a PN modelling
such an algorithm. The PN marking represents the

number nP of packets (initial marking of the process-
idle place, p0), the number nT of threads attending the
incoming packets (initial marking of p2), and the num-
ber nS of filtering-threads (initial marking of p7). The
number nC denotes the capacity of the system. We con-
sider that this number is equal to the number nP of
packets, therefore place p00 becomes implicit and we
omit it for analysis. Packets arrive to the router follow-
ing an exponential distribution of mean d0 =5 millise-
conds (we use di as an abbreviation for d(Ti)). The
amount of time for checking packet headers (i.e. source,
destination) is represented by transition T2, which fol-
lows an exponential distribution of mean d2 =2 ms.
The algorithm’s decision is represented by the place p5
and its outgoing arcs: either transition t4 is fired (then
the packet must be discarded, which happens with a
probability of 0:75), or transition t5 is fired. In the latter
case, once some filtering-thread is available, it is used.
Such a use is represented by T7 and takes, on average,
d7 =1 ms to complete. Finally, T9 represents the final
step of the algorithm, that consists in routing the packet
(acknowledgement) properly to its destination (source)
and takes, in terms of time, about 2 ms, i.e. d9 =2.

This running example will be used henceforward to
illustrate our approach. First, we will add to the PN
depicted in Figure 1, a FT technique, and will compute
the impact of faults in the system throughput. Then, we
will apply our developed methods to compensate the
throughput degradation.

The remainder of this article is as follows. ‘Preliminary
concepts’ introduces some basic concepts, such as FT
concepts and PN theory. Then, ‘Compositional PN mod-
els for fault tolerance’ presents the proposed composi-
tional PN models for FT techniques. ‘Analysis of PN-
based FT models’ analyses, in the first place, how conser-
vative components are modified when adding the pro-
posed PN models. It also presents the proposed iterative
algorithm to compute the number of resources that miti-
gate the impact of activation of faults, and the ILPP that
minimises the cost of compensation needed for maintain-
ing a given throughput in a FT system. ‘Case Study: a
secure database system’ shows a case study where both
algorithms are tested. Finally, ‘Conclusions’ summarises
our findings and main contributions of this article.

Preliminary concepts

This section introduces some basic concepts that are
needed to follow the rest of the article. First, the con-
cepts related to fault tolerance are introduced. Lastly, a
background on PNs and related concepts – such as
upper throughput bounds – are introduced.

Fault tolerance

Fault tolerance aims at failure avoidance carrying out
error detection and system recovery.2 Figure 2 depicts
the phases involved in a Fault-Tolerant (FT) technique.Figure 1. PN representation of a packet-routing algorithm.

Rodrı́guez et al. 615

Error detection tries to identify the presence of an
error in the system. It takes places either while the sys-
tem is providing its services (concurrent), or when ser-
vices are not being provided (preemptive). For instance,
hardware checking when the system boots up is a pre-
emptive error detection technique.

Recovery techniques are aimed at handling possible
errors and/or faults in the system and leading it to a
state without detected errors. Recovery techniques may
have two steps: an error handling (optional step), which
tries to eliminate the presence of an error in the system;
and fault handling (mandatory step), which tries to
avoid the reactivation of the detected fault.

There are three common techniques when dealing
with a detected error: rollback, when the system is con-
ducted to a previous saved state (i.e. prior to error
occurrence) without detected errors; rollforward, when
the system is conducted to a new state without detected
errors (in this case, later to error occurrence); and com-
pensation, when there is enough redundancy to mask
the error in the erroneous state.

Unlike rollback or rollforward that happen on
demand, compensation may happen on demand or sys-
tematically, independently of the presence (or absence)
of an error. For instance, an example of a compensa-
tion handling technique triggered on demand is an
exception handler mechanism. In this article, we con-
sider that error handling takes place on demand.

The fault handling techniques that can be carried out
to prevent faults from reacting again are: diagnosis,
which records the origin (cause) of the error, locating
where it happened and the type of error raised; isolation,
which excludes (in a logical or physical way) faulty com-
ponents from normal service delivery, so avoiding its
participation in service delivery; reconfiguration, which
reschedules service requests between non-failed compo-
nents; and reinitialisation, which reconfigures the faulty
system services by changing its configuration, stores this
new configuration and reinitialises such affected services.

PNs and throughput bounds

This section introduces some basic concepts regarding
to the class of PN we are considering in this article.

First, we define process PNs in the untimed framework.
Then, timed PN systems and upper throughput bounds
are defined. In the following, the reader is assumed to
be familiar with PNs (see Murata18 for a gentle
introduction).

Untimed PNs

Definition 1.

A PN18 (PN) is a 4–tuple N = hP,T,Pre,Posti,
where:

� P and T are disjoint non-empty sets of places and
transitions (jPj= n, jTj=m); and

� Pre (Post) are the pre-(post-)incidence non-negative
integer matrices of size jPj3jTj.

The pre- and post-set of a node v 2 P [T are respec-
tively defined as �v= fu 2 P [T j(u, v) 2 Fg and
v�= fu 2 P [T j(v,u) 2 Fg, where F � (P3T) [(T3P)
is the set of directed arcs. A PN is said to be self-loop
free if 8p 2 P, t 2 T t2�p implies t 62 p�. Ordinary nets
are PNs whose arcs have weight 1. The incidence matrix
of a PN is defined as C=Post�Pre.

A vectorm 2 Z
jPj
50 that assigns a non-negative integer

to each place is called marking vector or marking.

Definition 2.

A PN system, or marked PN S= hN ,m0i, is a PN N
with an initial marking m0.

A transition t 2 T is enabled at marking m if
m5Pre(� , t), where Pre(� , t) is the column of Pre cor-
responding to transition t. A transition t enabled at m
can fire yielding a new marking m0=m+C(� , t)
(reached marking). This is denoted by m!t m0. A
sequence of transitions s = ftigni=1 is a firing sequence
in S if there exists a sequence of markings such that
m0!

t1
m1!

t2
m2 . . .!tn mn. In this case, marking mn is said

to be reachable from m0 by firing s, and this is denoted
by m0!

s
mn. The firing count vectors 2 Z

jTj
50 of the fir-

able sequence s is a vector such that s(t) represents the
number of occurrences of t 2 T in s. If m0!

s
m, then

we can write in vector form m=m0 +Cs, which is
referred to as the linear (or fundamental) state equation
of the net.

The set of markings reachable from m0 in N is
denoted as RS(N ,m0) and is called the reachability set.

Two transitions t, t0 are said to be in structural con-
flict if they share, at least, one input place, i.e.
�t\�t0 6¼ ˘. Two transitions t, t0 are said to be in effec-
tive conflict for a marking m if they are in structural con-
flict and they are both enabled at m. Two transitions t,
t0 are in equal conflict if Pre(� , t)=Pre(� , t0) 6¼ 0,
where 0 is a vector with all entries equal to zero.

A transition t is live if it can be fired from every
reachable marking. A marked PN S is live when every

Figure 2. Phases involved on a FT technique (adapted from
Avizinis et al.2).

616 Proc IMechE Part O: J Risk and Reliability 227(6)

transition is live. In this article, we assume that Ss we
work with are live.

A p-semiflow is a non-negative integer vector y50

such that it is a left anuller of the net’s incidence matrix,
y> � C=0. In the sequel, we omit the transpose symbol
in the matrices and vectors for clarity. A p-semiflow
implies a token conservation law independent from any
firing of transitions. A t-semiflow is a non-negative inte-
ger vector x50 such that it is a right anuller of the net’s
incidence matrix, C � x=0. A support of a vector v is
defined as vk k= fijv(i) 6¼ 0g. A p-(or t-)semiflow v is
minimal when its support is not a proper superset of the
support of any other p-(or t-)semiflow, and the greatest
common divisor of its elements is one. A PN is said to
be conservative (consistent) if there exists a p-semiflow
(t-semiflow) that contains all places (transitions) in its
support.

A PN is said to be strongly connected if there is a
directed path joining any pair of nodes of the net struc-
ture. A state machine is a particular type of ordinary
PN where each transition has exactly one input arc and
exactly one output arc, that is, jt�j= j�tj=1, 8t 2 T.

In this article, we deal with PNs that model systems
where resources are shared. Examples of this kind of
system can be found in manufacturing, logistics, or
web services systems. In general, these systems repre-
sent real-life problems where some items are processed
and require the use of different resources (which are
shared) during its processing. These systems can be
naturally modelled in terms of process PNs, a subclass
of PN whose inner structure is a strongly connected
state machine. More formally:

Definition 3.5

A process PN (PPN) is a strongly connected self-loop
free PN N = hP,T,Pre,Posti where:

1. P=P0 [PS [PR is a partition such that
P0 = fp0g is the process-idle place, PS 6¼ ˘ is the
set of process-activity places and PR =
fr1, . . . , rng, n. 0 is the set of resources places;

2. the subnet N 0= hP0 [PS,T,Pre,Posti is a
strongly connected state machine, such that every
cycle contains p0;

3. for each r 2 PR, there exist a unique minimal p-
semiflow associated to r, yr 2 N

jPj, fulfilling:
yrk k \ PR = frg, yrk k \ PS 6¼ ˘, yrk k \ P0 =˘

and yr(r)=1. This establishes how each resource
is reused, that is, they cannot be created nor
destroyed;

4. PS =[r2PR
yrk kn rf gð Þ This implies that every place

p 2 PS belongs to the p-semiflow of at least one
resource.

Definition 3 implies that PPNs are conservative and
consistent. Intuitively, Definition 3 establishes a kind
of net where there is a process using different shared
resources, every place in the net is covered by some p-

semiflow and it uses some (at least one) resource, the
number of instances of each resource remains constant
and resources cannot change its type.

Let N = hP,T,Pre,Posti be a PPN. A vector
m0 2 Z

jPj
50 is called acceptable initial marking5 of N if:

(1) m0(p)51, p 2 P0; (2) m0(p)=0, 8p 2 PS; and (3)
m0(r)5yr(r), 8r 2 PR, where m0(r) is the capacity, i.e.
number of items, of the resource r, and yr is the unique
minimal p-semiflow associated to r.

Definition 4.
A process PN system, or marked process PN
S= hN ,m0i, is a process PN N with an acceptable ini-
tial marking m0.

Timed PNs

In order to be able to use PNs for systems performance
evaluation, the inclusion of the notion of time must be
considered. There are two ways of introducing the
notion of time in PNs, either in places or transitions.
Since transitions are representing the actions of a sys-
tem, which have associated some duration, we associate
such a duration to the firing delay of transitions.19

Besides, we consider that the firing delays of transitions
follow an exponential distribution function.

A PN model where a set of exponential rates is con-
sidered (one for each transition in the model) is called a
stochastic PN (SPN) model.20,21 These rates character-
ise the probability distribution function of the transi-
tion delay, which follow an exponential distribution
function and are obtained as the inverse of the mean.
These rates are considered to be marking-independent,
i.e. its values are constant.

In this article, we consider that the average service
time of a transition t can be zero, i.e. it fires in zero
units of time. These transitions are called immediate
transitions. Otherwise, transition t is a timed transition.
The exponential transitions are graphically represented
by a white box, while immediate transitions are black
boxes. It will be assumed that all transitions in conflict
are immediate. An immediate transition t in conflict
will fire with probability

r(t)P
t02A r(t0)

where A is the set of enabled immediate transitions in
conflict and r(t) 2 N. 0 is the routing rate associated to
transition t. The firing of immediate transitions con-
sumes no time. When a timed transition becomes
enabled, it fires following an exponential distribution
with mean d(t). More formally, we will consider the fol-
lowing timed PN classes.

Definition 5.

A SPN20 system is a pair hS, d, ri where
S= hP,T,Pre,Post,m0i is a PN system, d 2 R

jTj
50 is a

Rodrı́guez et al. 617

positive real function such that d(t) is the mean of the
exponential firing time distribution associated to transi-
tion t 2 T and r 2 N

jTj
. 0 is the vector of routing rates

associated to transitions.

Definition 6.

A stochastic marked graph (SMG) is a SPN whose
underlying PN is a marked graph.

Definition 7.

A stochastic process PN (SPPN) system is a SPN sys-
tem whose underlying PN is a process PN.

There exist different semantics for the firing of tran-
sitions, being infinite and finite server semantics the
most frequently used. Given that infinite server seman-
tics is more general (finite server semantics can be simu-
lated by adding self-loop places), we will assume that
the timed transitions work under infinite server
semantics.

The average marking vector, m, in an ergodic22 PN
system is defined as23

m(p) =
AS

lim
t!‘

1

t

ðt

0

m(p)udu ð1Þ

where m(p)u is the marking of place p at time u and the
notation =

AS
means equal almost surely.

Similarly, the steady-state throughput, X , in an ergo-
dic PN is defined as23

X (t) =
AS

lim
t!‘

s(t)t
t

ð2Þ

where s(t)t is the firing count of transition t at time t.
By definition, all the places of a SPPN are covered

by p-semiflows, and therefore it is structurally bounded.
In this work, we will assume that the SPPN under study
is a live and structurally bounded net with freely related
T-semiflows (i.e. a FRT-net).24 It is known that the
Markov process that describes the time evolution21 of
these nets is ergodic,24 i.e. when the observation period
tends to infinite, the estimated values of average mark-
ing and steady-state throughput tend to a certain value,
what implies the existence of the above limits.

The vector of visit ratios expresses the relative
throughput of transitions in the steady state. The visit
ratio v(t) of each transition t 2 T normalised for transi-
tion ti, v

ti(t), is expressed as

vti(t)=
X (t)
X (ti)

=G(ti) � X (t), 8t 2 T ð3Þ

where G(ti)=
1
X (ti) represents the average inter-firing

time of transition ti.
The visit ratios of two different transitions t, t0 in

equal conflict must be proportional to the correspond-
ing routing rate r(t), r(t0) defining the conflict resolution

condition r(t) � vti(t0)= r(t0) � vti(t). This condition can
be also written in vector form as

R � vti =0 ð4Þ

where R is a matrix containing as many rows as pairs of
transitions in equal conflict.

In FRT-nets, the vector of visit ratios v exclusively
depends on the structure of the net and on the routing
rates.24 The vector of visit ratios v normalised for tran-
sition ti, v

ti , can be calculated by solving the following
linear system of equations24

C

R

� �
� vti =0

vti(ti)=1

ð5Þ

Performance estimation. A lower bound for the average
inter-firing time of transition ti, Glb(ti), can be computed
by solving the following LP problem (LPP)24

G(ti)5Glb(ti)= maximum y � Pre �Dti

subject to y � C= 0

y �m0 =1
y50

ð6Þ

where G(ti) is the average interfiring time of transition ti
and Dti is the vector of average service demands of tran-
sitions, Dti(t)= d(t) � vti(t) (the vector of visit ratios vti is
normalised for transition ti) (In the sequel, we omit the
superindex ti in Dti for clarity).

As a side product of the solution of equation (6), y
represents the slowest p-semiflow of the system, thus
LPP equation (6) can also be seen as a search for the
most constraining p-semiflow. This p-semiflow will be
the one with highest ratio

y � Pre �D
y �m0

Therefore, an upper bound Y(ti) for the steady-state
throughput can be calculated as the inverse of the lower
bound for the average inter-firing time Glb(ti), that is

Y(ti)=
1

Glb(ti)

Let us recall that the vector of average service times
of transitions d does not depend on the marking.
Otherwise, LPP equation (6) could not be applied, basi-
cally because having a d depending on the marking will
lead to a non-linear programming problem.

Compositional PN models for fault
tolerance

In this section, we provide compositional PN-based
models for the FT techniques based on the basic con-
cepts of FT given in ‘Fault tolerance’. Recall that a FT

618 Proc IMechE Part O: J Risk and Reliability 227(6)

technique may involve both error detection – concur-
rent or preemptive – and recovery phases – divided in
error handling (rollback, rollforward or compensation)
and fault handling (diagnosis, isolation, reconfigura-
tion or reinitialisation).

Consider we have a system modelled with a PN in
which there is an activity (represented by a timed transi-
tion Tf) that is subject to fail. We called it a faulty tran-
sition, as it may lead to a fault. Before adding any FT
technique to the system, we apply a transformation rule
T R in the PN. This transformation rule allows us to
apply our approach in general case, and it is not modi-
fying the behaviour of the original PN model anyhow.

Figure 3 shows how this transformation rule T R
works: an immediate transition t(t0) and place �Tf(T

�
f)

are added just from(to) transition Tf, and all input(out-
put) places of transition Tf are accordingly connected
to transition t(t0).

Figure 4 depicts the interaction between a PN that
models the behaviour of a given system and a PN that
models a FT technique. A PN-based FT model is sub-
divided in Error Detection and Recovery sub-models.
Each sub-model, respectively, represents the phases
involved in a FT technique. In the sequel, we explain
each model and its interactions in detail.

PN error detection model

Figure 5(a) depicts the PN model for error detection.
The timed transition Tdetect represents how long the
error detection activity takes. Note that this transition
is abstracting the behaviour for detecting an error, so
that it may be refined into a more complex model rep-
resenting error detection in more detail (Detection phase
in Figure 5(a)). After error detection activity takes
place, the presence of an error is discriminated. When

an error arises (transition terr), then a token is put on
place pjeed. Otherwise, a token is put on place pjned.

The integration between the error detection model
and the system model is done through labelled places
pjsed, pjeed (a labelled place p is defined as pjlabel). We
have followed the compositional rules over the places
defined in Donatelli and Franceschinis25 and Bernardi
et al.26 to combine models using labelled places: pairs of
places with matching labels are superposed. Figure 5(a)
depicts the places pjsed, pjned added to the system model.
The origin of the incoming arc of place pjsed depends on
the type of error detection, and synchronises the execu-
tion of the error detection model with the system model:
when concurrent, the arc added is the dashed one; oth-
erwise (preemptive), the dotted arc is considered. Note
that the place pjned is synchronised with T�f (which is
added to the system by transformation rule T R).

This simple model allows us to represent the most
common error detection techniques, e.g. to validate
input data, or intermediate data generated and reused
during faulty transition (it can be concurrently done),
and to validate output after faulty transition execution
(preemptive).

PN recovery model

The recovery phase involves two steps, a first (optional)
step of error handling (rollback, rollforward or com-
pensation) and a second one of fault handling tech-
nique (diagnosis, isolation, reconfiguration or
reinitialisation).

Following the definitions given in Avizienis et al.,2

we have grouped the fault handling techniques in two
groups: diagnosis and reinitialisation techniques; and
isolation and reconfiguration. This decision is based on
the abstracted behaviour of these techniques, as we
explain henceforward. We have composed models that

(a) Original model (b) Transformed model

Figure 3. Transformation rule T R of a transition tf subject to
fail (faulty transition).

Figure 4. Integration between a PN-based system model and a
PN-based FT technique.

(a) Error Detection model

(b) Places p|sed, p|ned added to the system model

Figure 5. N-based model of error detection and faulty activity
inside the system.

Rodrı́guez et al. 619

represent valid combinations of the recovery phase as it
is shown in Table 1. This classification is made based
on how the techniques work. For instance, we believe
that a rollforward technnique cannot be combined with
reconfiguration or reinitialisation, because reconfigura-
tion switches the request to spare components, while
reinitialisation updates and records a new system con-
figuration. Thus, we consider that to move to a future
correct state after recovering is unmeaning.

Figure 6(a) shows the PN model of diagnosis and
reinitialisation FT recovery techniques. Place pjeed is
superposed with the one of Error Detection model, and
place pjT�

f
is superposed with place T�f in the system

model. A token in place pjeed indicates that an error has
been detected. Once transition trm is fired, a (optional)
compensation activity may take place (Compensation
phase). Then, recovery activity takes place (abstracted
in Recovery phase). As in the previous model of error
detection, we have represented compensation and
recovery phases as a single timed transitions (Tc and
Trec, respectively). These transitions may be refined into
more complex models representing compensation and
recovery activities in more detail.

Finally, the token flow is redirected through place
pjrtn. The superposition of this place depends on the

error handling technique used: it will be a place that
becomes eventually marked after the faulty transition
Tf is fired (rollforward), or which was eventually
marked before its firing (rollback). In both cases and to
keep conservativeness of the model, place pjrtn must
belong to the p-semiflow associated to the resource r
(we called it faulty resource), being r the inner resource
used by faulty activity. Although a transition Tf can
represent an activity where several resources are being
used, for the sake of simplicity in this article we assume
that the fault is caused by the use of the inner resource
(i.e. the last one acquired). Otherwise, note that after
the recovering phase other resources acquired after the
faulty resource should be released to keep
conservativeness.

The difference between diagnosis and reinitialisation
techniques can be established by the duration of the
recovery phase. For instance, when the diagnosis tech-
nique is considered, the recovery phase will have a
much lower duration than when reinitialisation is taken
into account owing to the actions that are performed.

Figure 6(b) shows the PN model of isolation and
reconfiguration FT recovery techniques. This case is
identical to the previous until the (optional) compensa-
tion phase. After the compensation phase takes place,
the type of the fault is discriminated2 as intermittent
(that is, the fault is transient) or solid (i.e. the faults
whose activation is reproducible). When the fault is
intermittent, as proposed in Avizienis,2 normal execu-
tion can keep going on and token is returned to place
pjrtn (as before, the superposed place depends on the
type of error detection). On the contrary, when a solid
fault is detected, the faulty resource is excluded from
normal service delivery – as indicated by both isolation
and reconfiguration techniques – and the token is
moved to the place pjsafe. We assume that place pjsafe is
superposed with the place previous to acquire the faulty
resource r, i.e. pjsafe = �tacq, where tacq is the transition
where the faulty resource r is acquired.

In the case of isolation and reconfiguration, the
recovery phase is called the maintenance phase, because
it involves the participation of an external agent.2 We
have modelled the maintenance phase as a single transi-
tion TMTTR that represents the mean time to repair
(MTTR) spent on fixing the faulty resource. As in the
previous case, this model can be refined to a more com-
plex maintenance model. Anyhow, after the mainte-
nance phase takes place, the fixed resource is returned
to place pjir, which is superposed to the resource place
pr.

As in the previous techniques, the difference between
isolation and reconfiguration technique can be estab-
lished by the duration of the maintenance phase. For
instance, when an isolation technique is considered, the
maintenance phase will have a much greater duration
than when reconfiguration is taken into account.

Finally, note that most of the FT techniques can be
modelled with the proposed models. For instance, a
watchdog can be modelled as a reconfiguration FT

Table 1. Valid combinations of error handling and fault handling
techniques.

Rollforward
(and compensation)�

Rollbackward
(and compensation)�

Diagnosis = =
Isolation = =
Reconfiguration X =
Reinitialisation X =

The symbol � means optional.

(a) Diagnosis & reinitialisation

(b) Isolation & reconfiguration

Figure 6. PN-based models of recovery model: (a) and (b)
isolation and reconfiguration.

620 Proc IMechE Part O: J Risk and Reliability 227(6)

technique with concurrent error detection and rollfor-
ward (or rollback), and a checkpointing and rollback
can be modelled as a reinitialisation FT technique.
Unfortunately, other FT techniques, such as n-version
programming or combined proactive-reactive tech-
niques27 cannot be adapted to the proposed model and
some tweaks must be done. We aim to extend these
models to cover all FT techniques as a future work.

Recall the PN of the running example depicted in
Figure 1. Suppose that the filtering activity may fail,
i.e. the faulty transition is T7. The router manufacturer
is interested in adding a watchdog (recall it can be
modelled as a reconfiguration FT technique) into the
algorithm such that the threads that fail (they are
hanged) are discarded, and they are cleaned with a
fixed internal timer. In this case, the error detection
model is concurrent, as the failure can be detected dur-
ing normal operation; and the error handling technique
used is rollback: when an error is detected, the packet
is filtered by another thread, when available.

The resulting PN, after adding the FT technique
described above, is depicted in Figure 7. We assume
that the detection activity takes, on average,
ddetect =0:5 ms, and the recovery activity takes, on
average, dMTTR =2 s. Let us suppose a probability of
raising an error of 0:2, resulting the 5% of the times in
a solid fault. This PN will be used in the next section
for sensitive performability analysis.

Analysis of PN-based FT models

This section introduces, in the first place, how the con-
servative components (i.e. the p-semiflows) are modi-
fied when FT models are added to a PPN. Then, we
perform a sensitive analysis on upper throughput
bound of the PPN system with respect to the failure
probabilities. Lastly, we propose an optimisation tech-
nique that tries to compensate the throughput degrada-
tion produced by the existence of faults.

Conservative components

Let us analyse how minimal p-semiflows are modified.
The addition of the proposed FT models transforms
each p-semiflow yr associated to a resource r that makes
use of the faulty transition tf (i.e. yrk k \ f

�tf, t
�
f g 6¼ ˘)

into two p-semiflows y0r, y
00
r , y
0
r 6¼ y00r such that

yrk k � y0r
�� ��, yrk k � y00rk k. This transformation is

owing to the fact that FT models consume/produce
tokens from/to the original p-semiflows. These
p-semiflows cover all places added by the FT technique,
thus the net remains conservative.

For instance, the minimal initial p-semiflows of
the net in Figure 1 are: y1 = fp0, p1, p3, p4, p5, p6jsafe,
p8jrtn, p9, p10, p11g, y2 = fp2, p3, p4, p5, p6jsafe, p8jrtn, p9,
p10, p11g and y3 = fp7jir, p8jrtn, p9g. The minimal
p-semiflows of the PN in Figure 1 that contain places

Figure 7. PN representation of the packet-routing algorithm depicted in Figure 1 extended with a FT technique.

Rodrı́guez et al. 621

from/to transition T7 (p8jrtn and p9, respectively) are
y1,y2 and y3. Thus, the new p-semiflows of the PN in
Figure 7 are the ones showed in Table 2.

Note that these new p-semiflows violate the third
property of definition of PPN (see ‘Preliminary con-
cepts’), given that there exist more than a single minimal
p-semiflow containing the same resource, e.g. y02 and y002
contain the resource place p2 on its support. Nevertheless,
in the new net system it still holds that each minimal
p-semiflow contains only one initially marked place.

Sensitive analysis of upper throughput bounds

As we have seen in the previous section, the p-semiflows
of the PPN change once some of the proposal FT mod-
els are added. Recall that an upper throughput bound
Y of a PPN system is related to the slowest p-semiflow
y, that is

Y=
y �m0

y � Pre �D

Given that in the considered nets all the components
of minimal p-semiflows are equal to 1 and the only ini-
tially marked places are resource places, i.e.
8p 2 yrk knfrg,m0(p)=0, the previous equation can be
written as

Y=
m0(r)

yr � Pre �D

where yr is minimal. Let us assume that after adding
some FT techniques, there are n minimal p-semiflows,
y1, . . . , yn that are modified. Thus, the throughput
bound of the new net system is

Y0=minimum Y,minimumn
i=1

m0(ri)

yi � Pre �D

� �
ð7Þ

where yi is a minimal p-semiflow, i.e.
8p 2 yk k, y(p)=1.

Recall the running example of the previous section.
Suppose an initial marking of nP=10, nT=2 and
nS=2. The slowest p-semiflow is, with this configura-
tion and before adding the FT technique (Figure 1),
y= fp2, p3, p4, p5, p6jsafe, p8jrtn, p9, p10, p11g; and the
upper throughput bound is Y=0:470588. After add-
ing the proposed FT technique, the equation

m0(ri)

yi � Pre �D

related to p-semiflows that change are

y01 !
m0(p0)

d0 � v0 + d2 � v2 + d7 � v7 + d9 � v9

y001 !
m0(p0)

d0 � v0 + d2 � v2 + ddetect � vdetect+ d9 � v9

y02 !
m0(p2)

d2 � v2 + d7 � v7 + d9 � v9

y002 !
m0(p0)

d2 � v2 + ddetect � vdetect+ d9 � v9

y03 !
m0(p2)

d7 � v7 + dMTTR � vMTTR

y003 !
m0(p0)

ddetect � vdetect+ dMTTR � vMTTR

ð8Þ

Note that as error detection is concurrent, there is
no p-semiflow containing both faulty transition and
error detection transition at the same time. Otherwise,
the faulty transition appears in conjunction with error
detection transition in all p-semiflows generated.
Besides, in the case of concurrent error detection, the
number of minimal p-semiflows to be checked can be
simplified, taking only the generated one that it is
max(ddetect, dTf

). Thus, the p-semiflows of interest here
are: y01, y

0
2 and y03 (as d7 . ddetect). The throughputs of

these p-semiflows are, respectively, Y1 =1:073825,
Y2 =0:463768 and Y3 =0:304762.

Therefore, the new slowest p-semiflow is y03, and the
new upper throughput bound is Y0=Y3 =0:304762.
That is, with the described configuration, the addition
of an isolation FT technique causes a degradation of
35:23% to the upper throughput bound of the system.

We have performed a sensitive analysis of Y1,Y2

and Y3 with respect to the probability of errors
re, re 2 ½0 . . . 1�, taking steps of 0:01. The results are
plotted in Figure 8(a). The solid line is Y, the upper
throughput bound of the original system. The dotted
line is Y1, while dot–dashed is Y2 and dashed line is
Y3.

The findings show that Y2 is a bit lower than the
original upper throughput bound for low probabilities
of error. This holds until the probability of error
reaches a value near to 0:14. From that point, Y3

becomes the new upper throughput bound, which
besides exponentially decreases. It is remarkable that
y03, i.e. the p-semiflow associated to Y3, is even faster
than the others for low probabilities of error
(re \ 0:06). Lastly, when the probability of error
reaches a value near to 0:8, the throughput of all mini-
mal p-semiflows quickly decreases and tends to zero.

Resource assignment

This section introduces an iterative strategy that com-
putes the number of resources needed to maintain a
given upper throughput bound in a degradable system
where our proposed FT models are added.

Table 2. New p-semiflows of the PN in Figure 7.

y01 = y1 [f
�T7, T�7 , p1

4g
y001 = y1 [fp1jsed, p

1
2, p1

3, p1jeed, p
1
4g

y02 = y2 [f
�T7, T�7 , p1

4g
y002 = y2 [fp1jsed, p

1
2, p1

3, p1jeed, p
1
4g

y03 = y3 [f
�T7, T�7 , p1

4, p1
5g

y003 = y3 [fp1jsed, p
1
2, p1

3, p1jeed, p
1
4, p1

5g

622 Proc IMechE Part O: J Risk and Reliability 227(6)

Such a strategy is presented in Algorithm 1. As input,
it needs the description of the PN model with the FT tech-
niques added to it with the initial marking and the vector
of service times of transitions, hN ,m0, di; the upper
throughput bound Y before adding the FT techniques;
and the set YFT of minimal p-semiflows that are modified
after adding the FT techniques. As output, it returns the
initial marking m00 such that the upper throughput bound
Y0 of the FT system is greater than or equal toY.

Algorithm 1. An iterative algorithm to compute initial
marking needed to maintain a certain upper through-
put bound with a probability of error.

Input: hN ,m0, di, Y, YFT

Output:m00
1. m00 =m0

2. for eachyi 2 YFTdo

3. m00(ri)=maximum(m0(ri), yi � Pre �Dð Þ �Yd e)
4. end for each

Algorithm 1 works as follows. It iterates in the con-
tent of the set YFT of minimal p-semiflows that have
been modified when adding a proposed FT model. For
each minimal p-semiflow yi 2 YFT, the value of the ini-
tial marking for associated resource ri is computed as

the maximum of the previous initial marking of the
resource (i.e. m0(ri)) or the yi � Pre �Dð Þ �Yd e. The lat-
ter equation comes from solving

Y=
m0(ri)

yi � Pre �D

The ceiling is needed because m00(ri) 2 N.
Let us apply Algorithm 1 in the running example.

The previous upper throughput bound is
Y=0:470588, and the set of minimal p-semiflows that
are modified after adding isolation FT is
YFT= fy01, y02, y03g. For a given initial marking
m0(p0)=10,m0(p2)=2,m0(p7)=2, Algorithm 1
returns as solution: m00(p0)=m0(p0)=10,
m00(p2)=3,m00(p7)=4. That is, it needs another
thread and two more filtering-threads to compensate
20% of errors (and 5% of them deriving in solid faults)
using reconfiguration as FT technique.

We have plotted in Figure 8(b) the initial marking
needed to support the given throughput of
Y=0:470588 varying the probability of error
re, re 2 ½0 . . . 1�, taking steps of 0:01. The dotted line is
the initial number of tokens of p0 (packets, nP), the
solid line corresponds to the initial number of tokens of
p2 (threads, nT) and the dashed line is the initial num-
ber of tokens of p7 (filtering-threads, nS). The results

Figure 8. Results of (a) throughput values and (b) initial marking with respect to probability of error.

Rodrı́guez et al. 623

show that the number of packets and threads remain
more or less equal, i.e. there is no need to increment
too many units to be able to maintain the given
throughput, even with a high probability of errors.
However, the number of filtering-threads needed
increases rapidly with respect to the probability of
error.

Minimising cost of compensating throughput
degradation

In this section, we present an ILPP that minimises the
cost of compensating throughput degradation caused
by the presence of errors.

We are able to compute the initial marking needed
to maintain a given throughput with the previous
Algorithm 1. However, the increment of items of
resources can have a cost in real systems and we may
not be able to increment as much as is desired. Recall
that equation

m0(ri)

yi � Pre �D

relates not only the number of items of resources
(m0(ri)), but also activity timings and error (and solid
faults) probabilities (D). If we consider a given error
probability re and solid faults probability rs, a compen-
sation may be done in two ways: either the number of
resources in the system can be incremented, or the tim-
ing of FT activities (detection, compensation and
recovery phases) can be decremented. Both ways can
have some cost associated.

Let us assume that FT phases are abstracted in a
single-timed transition, i.e. a FT technique j adds to the
system three-timed transition: Tj

detect (detection phase),
Tj
c (compensation phase) and Tj

rec/T
j
MTTR (recovery/

maintenance phase). Let cri the cost of an increment of
one unit of the resource ri, and cdj the cost of a decre-
ment of one unit of time of detection phase of FT tech-
nique j, while ccj (c

rm
j) is the cost of a decrement of one

unit of time of compensation(recovery/maintenance)
phase.

We can build an ILPP to compute the minimum cost
that guarantees a compensation of the throughput sys-
tem after adding a number m of FT techniques as

minimum
Xn
i=1

cri � ai +
Xm
j=1

cdj � bd
j + ccj � bc

j + crmj � brm
j

� � !
subject to

m0(ri)+ai5Y � yi � Pre �D0

d0(Tj
detect)= d(Tj

detect)� bd
j

d0(Tj
c)= d(Tj

c)� bc
j

d0(Tj
rec)= d(Tj

rec)� brm
j

d0(t)5dmin(t), 8t 2 T

ai,b
d
j ,b

c
j ,b

rm
j 50,ai 2 N, 8i 2 ½1 . . . n�, 8j 2 ½1 . . .m�

ð9Þ

where n p-semiflows have been modified by the addi-
tion of m FT techniques to the original system;
D0(t)= d0(t) � v(t), 8t 2 T; and dmin(t) is a lower bound
for the service time of transition t (that is, we impose a
minimum service time for transitions). The new number
of resources and firing of transitions will be given by
the values of ai,b

d
j ,b

c
j ,b

rm
j , respectively.

This ILPP is applied to the case study in the next
section.

Case study: a secure database system

This section introduces a case study to test our
approach. We have considered the design of a secure
database system (SDBS) deployed as a web service that
stores confidential data and keeps traceability of all
operations made over the data. Examples of this kind
of system are a medical insurance company (that keeps
customer’s medical data), or a bank company (that
keeps customer’s balance accounts).

The UML-sequence diagram in Figure 9 models
how a SDBS works when a user requests an operation
on its stored data (for instance, a bank customer asks
for all operations made on its bank accounts). When a
new request arrives at the system (attended by WS-
Requester), it asks for a security token that is provided
by WS-SecurityToken. Once it is provided, the request
is accordingly encrypted and set to WS-Policyservice,
where it is validated, decrypted and transmitted to WS-
Coordinator. Finally, WS-Coordinator unpacks the
request and sends it to the WS-Application, which
accesses the database through WS-DBApplication ser-
vice via a secure intranet. An acknowledgement is sent
back through the system to the origin of the request,
reporting the results to the user. Note that the result
also needs a security token to be securely transmitted
back to the user.

Figure 10 depicts the PN corresponding to the beha-
viour of the SDBS system described in Figure 9. The
transformation from UML to PN is documented
inDistefano et al.,28 and can be carried out by several
tools, such as ArgoPN, ArgoPerformance28 or
ArgoSPE.29 Each resource is represented by a dark grey
place in the PN: p2 (WS-Requester), p5
(WS-Policyservice), p13 (WS-SecurityToken), p24
(WS-Coordinator), p29 (WS-Application) and p32
(WS-DBApplication); while user’s requests are repre-
sented by the process-idle place p0 (depicted in light
grey). As the running example, we consider that there is
a place p00 with the same initial marking that p0, thus it
becomes implicit and it is not considered for the analy-
sis (indeed, we omitted it in Figure 10). Table 3(a) sum-
marises the activity times of the transitions in the PN
depicted in Figure 10 and the corresponding methods in
UML-Sequence Diagram depicted in Figure 9. Owing
to the state explosion problem the computation of the
number of states with this configuration using different
tools (e.g. PeabraiN30 or GreatSPN31) has not been

624 Proc IMechE Part O: J Risk and Reliability 227(6)

possible in a reasonable time in a Intel Pentium IV 3:6
GHz with 3 GiB RAM DDR2 533 MHz host machine.

The acquire (release) of a resource is represented by
an immediate transition with an input (output) arc. For
example, transition t2 represents the reception of the
request by the WS-Requester service, while t7 represents
the release of such a resource.

Consider that the transition that represents an
operation on data after reading the DB, T31, may
fail with a probability of 0:15. We decide to add a reini-
tialisation FT technique FT1, without the compensa-
tion phase and with a concurrent error detection that
takes, on average, d(T1

detect)=0:5ms. The recovery

time, i.e. the time needed for reconfiguring DB
service takes, on average, d(T1

rec)=20ms. Lastly, place
p36 (the one before faulty transition T31) is labelled as
p36jrtn.

The upper throughput bound of the system is,
before adding the FT technique, Y=1:481481, and it
is associated to the minimal p-semiflow of p32, i.e. WS-
DBApplication. When adding the FT technique
described, the minimal p-semiflows that are modified
correspond to the ones that use T31, i.e. yp0 , yp2 , yp29
and yp32 , and the upper throughput bound decreases
near to a 133:98%, that is, Y0=0:633147 and it is
related as well to WS-DBApplication.

Figure 9. SDBS request customer’s data scenario.

Rodrı́guez et al. 625

Let us apply now Algorithm 1 to compute the initial
marking needed to compensate the throughput degra-
dation. The minimal p-semiflows under study here are
y0p0 = yp0 [f

�T31,T
�
31, p

1
4g, y0p2 = yp2 [f

�T31,T
�
31, p

1
4g,

y0p29 =yp29 [f
�T31,T

�
31,p

1
4g,y0p31 =yp31 [f

�T31,T
�
31,p

1
4g

(the other p-semiflows y00p0 ,y
00
p2
,y00p29 ,y

00
p31

are not of

interest due to ddetect\ =d31). The computation of
value of y1pi �Pre �D is, respectively, 41:9520,41:6557,
10:3965,9:3594. Thus, the solution of Algorithm 1 is
m00(p0)=100,m00(p2)=50,m00(p29)=11,m00(p31)=10.
That is, the number of WS-Application (p29) and WS-
DBApplication (p31) must be incremented to 11 and 10
units, respectively, to maintain the given throughput of
Y=1:481481 and a probability of error of 0:15. If
resources are incremented as it is given by the solution
of this algorithm, the new upper throughput bound has
a value of Y0=1:567476.

Let us consider that the addition of new resources
has some associated cost, more precisely, the cost of
adding new instances of any host service is $350 each
(for instance, because new licenses for deploying more
virtual servers must be purchased). In the case of the
recovery method, it can be improved having a cost, on
average, of $250/ms, and the minimum required time
for recovering is 5ms (i.e. dmin(Trec)=5ms).

With this configuration, we apply now the proposal
ILPP (9) for computing the minimal cost that compen-
sates a probability of error of 0:15. The result of apply-
ing ILPP (9) is that four more resources of WS-
Application (p29), five more resources of WS-
DBApplication (p32) and recovery time must be decre-
mented in 2ms. The cost associated to these actions is
$3650. After applying these changes, the upper
throughput bound is Y00=1:500441, which represents
an improvement near to 1:28% of the previous upper
throughput bound Y.

Note that as the number of resources and the timing
must be natural numbers, we will always obtain an
upper throughput bound in the FT system where results
of ILPP (9) are applied (slightly) better than in the orig-
inal system model.

In summary, the solution of Algorithm 1 has an
associated cost of $3850, because 11 more resources
must be added, while the solution giving by minimising
cost through ILPP (9) costs $3650.

Figure 10. PN of the SDBS. Resource places are depicted in dark grey, while process-idle place in light grey.

Table 3. Experiments parameters.
(a) Activity times.

Transition Method Value(s)

T0 newAccess() 0:2 ms
T2, T8, T10, T49 $delayNet 2:5 ms
T13, T16, T19, T23, $intranetLag 0:2 ms
T36, T41, T46

T26, T29, T32, T34 $secIntraLag 0:5 ms
T4, T43 initProcessing() 1 ms
T5, T44 unpack&validate() 0:1 ms
T6, T45 generateToken() 0:5 ms
T9, T48 sign&encrypt() 0:8 ms
T12 initialise() 0:3 ms
T15, T22, T52 validate() 0:3 ms
T18, T54 decrypt() 1 ms
T28, T33 DBread() 0:2 ms
T30 checkParams() 0:6 ms
T31 doOperation() 0:2 ms
T39 parseOutputFormat() 0:3 ms
T40 pack() 0:1 ms
T55 display() 1:5 ms

(b) Initial number of resources.

Place Meaning Value(s)

p0 No. users 100
p2 No. request capacity 50
p5 No. security hosts 25
p13 No. policy hosts 10
p24 No. coordinator hosts 10
p29 No. application hosts 6
p32 No. DB hosts 4

626 Proc IMechE Part O: J Risk and Reliability 227(6)

Conclusions

Software systems are usually subject to faults that may
lead to the existence of error and failures. Normally,
FT techniques are incorporated to these systems (then
called FT systems) to mitigate the impact of activations
of faults. FT systems can be naturally modelled as dis-
crete event systems where sharing resources are used.

In this article, first we have provided compositional
models for FT techniques that allow us to make per-
formability (i.e. performance under failure conditions)
analysis easier when FT parameters change. Thus, these
FT models can be useful for evaluating different FT
approaches in the same system model. Second, we have
presented an iterative algorithm that computes the ini-
tial marking needed to maintain a given upper through-
put bound in a system model within our proposed FT
models. Third, we present an ILPP that minimises the
cost of compensating throughput degradation caused
by the presence of faults and errors. The use of linear
programming techniques guarantees its efficiency and
scalability to large models. Both algorithms are applied
to a process PN modelling a secure database system.

This article provides upper throughput bounds,
which are usually closer to the real system through-
put.24,32 As future work, we aim at analysing lower
throughput bounds following the same methodology.
The lower throughput bounds would enhance the
throughput analysis under failure, as an interval for the
throughput would be provided.

Declaration of conflicting interests

The author declares that there is no conflict of interest.

Funding

This work was partially supported by CICYT – FEDER
project DPI2010-20413, by ARTEMIS Joint
Undertaking nSafeCer under grant agreement no.
295373 and from National funding. Authors belong to
the Group of Discrete Event Systems Engineering
(GISED), partially co-financed by the Aragonese
Government (Ref. T27) and the European Social Fund.

References

1. Meyer JF. Closed-form solutions of performability.

IEEE Trans Comput 1982; 31(7): 648–657.
2. Avizienis A, Laprie JC, Randell B and Landwehr C.

Basic concepts and taxonomy of dependable and secure

computing. IEEE Trans Dependable and Secure Comput-

ing 2004; 1(1): 11–33.
3. Avizienis A. Toward systematic design of fault-tolerant

systems. Computer 1997; 30(4): 51–58.
4. Colom J. The resource allocation problem in flexible

manufacturing systems. In: van der Aalst W and Best E

(eds) Applications and theory of Petri nets. Vol. 2679 of

LNCS. Berlin/Heidelberg: Springer, 2003, pp.23–35.
5. Tricas F. Deadlock analysis, prevention and avoidance in

sequential resource allocation systems. Dpto. de Informática

e IngenierÍa de Sistemas, Universidad de Zaragoza. Avail-

able from: http://webdiis.unizar.es/ftricas/Articulos/Fer-

nandoTricasFinal.pdf.gz (2003). (Accessed 28 December

2012).
6. Gobseva-Popstojanova K and Trivedi KS. Architecture-

based approach to reliability assessment of software sys-

tems. Perform Eval 2001; 45(2–3): 179–204.
7. Gokhale SS, Wong WE, Horgan JR and Trivedi KS. An

analytical approach to architecture-based software per-

formance and reliability prediction. Perform Eval 2004;

58(4): 391–412.
8. Sanders WH and Meyer JF. A unified approach for spe-

cifying measures of performance, dependability, and per-

formability. Dependable computing and fault-tolerant

systems: dependable computing for critical applications

1991; 4: 215–237.
9. Bobbio A. Petri nets generating Markov reward models

for performance/reliability analysis of degradable sys-

tems. In: Potier D and Puigjaner B (eds) Proceedings of

the 4th international conference on modeling techniques

and tools for computer performance evaluation, 1989, 14–

16 September 1988, Palma, Balearic Islands (Spain),

pp.353–365. New York, NY, USA: Plenum Press.
10. Raiteri DC, Franceschinis G, Iacono M and Vittorini V.

Repairable fault tree for the automatic evaluation of

repair policies. In: International conference on dependable

systems and networks. Florence (Italy), 28 June - 1 July

2004, Washington, DC, USA. IEEE, p. 659–668.
11. Reussner RH, Schmidt HW and Poernomo IH. Reliabil-

ity prediction for component-based software architec-

tures. J Syst Softw 2003; 66(3): 241–252.
12. Abdelmoez W, Nassar DM, Shereshevsky M, et al. Error

propagation in software architectures. In: Proceedings of

the 10th international symposium on software metrics. Chi-

cago, IL, USA, 14-16 September 2004, Washington, DC,

USA, IEEE. pp.384–393.
13. Cortellessa V and Grassi V. A Modeling approach to

analyze the impact of error propagation on reliability of

component-based systems. In: Schmidt H, Crnkovic I,

Heineman G and Stafford J (eds) Proceedings of the

10th international conference on component-based

software engineering, vol. 4608 of Lecture Notes in

Computer Science. Berlin/Heidelberg: Springer, 2007,

pp.140–156.
14. Li J, Fan Y and Zhou M. Performance modeling and

analysis of workflow. IEEE T Syst Man Cy A 2004;

34(2): 229–242.
15. Wang H and Zeng Q. Modeling and analysis for work-

flow constrained by resources and nondetermined time:

an approach based on Petri Nets. IEEE T Syst Man Cy

A 2008; 38(4): 802–817.

16. Hee KV, Reijers H, Verbeek E and Zerguini L. On the

optimal allocation of resources in stochastic workflow

nets. In: Djemame K and Kara M (eds) Proceedings of

the 7th UK performance engineering workshop. Univer-

sity of Leeds, Leeds, 18–19 July 2001, Print Services Uni-

versity of Leeds. pp.23–34.
17. Chen YL, Hsu PY and Chang YB. A Petri net approach

to support resource assignment in project management.

IEEE T Syst Man Cy A 2008; 38(3): 564–574.
18. Murata T. Petri nets: properties, analysis and applica-

tions. Proc IEEE 1989; 77: 541–580.
19. Ramchandani C. Analysis of asynchronous concurrent sys-

tems by Petri nets. Department of Electrical Engineering,

Rodrı́guez et al. 627

Massachusetts Institute of Technology, Cambridge, MA,
USA, 1974.

20. Florin G and Natkin S. Les réseaux de Petri stochastiques.
Technique et Science Informatique 1985; 4: 143–160.

21. Ajmone Marsan M, Balbo G, Conte G, Donatelli S and
Franceschinis G. Modelling with generalized stochastic

Petri nets. Wiley Series in Parallel Computing. John
Wiley and Sons, 1995.

22. Ross SM. Stochastic processes. Wiley series in mathemat-
ical statistics. Probability and mathematical statistics.
Wiley, 1983.

23. Florin G and Natkin S. Necessary and sufficient ergodi-
city condition for open synchronized queueing networks.
IEEE T Software Eng 1989; 15(4): 367–380.

24. Campos J and Silva M. Structural techniques and perfor-
mance bounds of stochastic Petri net models. Lecture

Notes in Computer Science 1992; 609: 352–391.

25. Donatelli S and Franceschinis G. The PSR methodology:
integrating hardware and software models. In: Proceedings
of the 17th international conference of application and theory

of Petri nets (ICATPN), Osaka (Japan), 24–28 June 1996,
Berlin, Heidelberg, Springer-Verlang. pp.133–152.

26. Bernardi S, Donatelli S and Horváth A. Implementing
compositionality for stochastic Petri nets. J Software

Tools Technol Trans 2001; 3: 417–430.
27. Sousa P, Bessani AN, Correia M, et al. Highly available

intrusion-tolerant services with proactive-reactive

recovery. IEEE Trans Parallel Distributed Sys 2010;
21(4): 452–465.

28. Distefano S, Scarpa M and Puliafito A. From UML to
Petri nets: the PCM-based methodology. IEEE Trans

Software Engng 2011; 37(1): 65–79.
29. Gómez-Martı́nez E and Merseguer J. ArgoSPE: model-

based software performance engineering. In: Interna-
tional conference of application and theory of Petri nets,
Turku (Finland), 26–30 June 2006, Berlin/Heidelberg,
Springer-Verlang. pp.401–410.

30. Rodrı́guez RJ, Júlvez J and Merseguer J. PeabraiN: A
PIPE extension for performance estimation and resource
optimisation. In: Proceedings of the 12th international

conference on application of concurrency to system designs

(ACSD). Hamburg (Germany), 25–29 June 2012,
Washington, DC, USA, IEEE Computer Science. IEEE,
2012, pp.142–147.

31. Baarir S, Beccuti M, Cerotti D, et al. The GreatSPN tool:
recent enhancements. SIGMETRICS Perform Eval Rev

2009; 36(4): 4–9.
32. Rodrı́guez RJ and Júlvez J. Accurate performance esti-

mation for stochastic marked graphs by bottleneck
regrowing. In: Proceedings of the 7th European perfor-

mance engineering workshop (EPEW), vol. 6342 of LNCS,
University Residential Center of Bertinoro (Italy), 23–24
September 2010, Springer-Verlang Springer, 2010,
pp.175–190.

628 Proc IMechE Part O: J Risk and Reliability 227(6)

