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System parameters and deterministic limit. This work focuses on biolog-
ical systems modelled as density dependent Markov processes[2]. The dynamics
of such systems is often studied by considering the deterministic limit, which is
obtained as the solution of a set of Ordinary Differential Equations (ODEs)[1].
The deterministic limit might not capture important system behaviours such as
oscillations[2]. The method presented here averages the distances and angles of
a number of stochastic simulations to easily detect oscillating behaviours.

System parameters: a) s ∈ N and n ∈ N are the number of species and events;
c) X(t) ∈ N

q
≥0 is the state of the system at time t (Xi(t) denotes the number of

elements of species i at time t); d) ν ∈ N
q×n
≥0 is the stoichiometry matrix, i.e., νji

is the change produced in species i by event j; e) V ∈ R>0 is the system size; f)
Wj : Rq

≥0 × R>0 → R≥0 is the transition rate function, i.e, Wj(X(t), V ) is the

rate associated to event j for population X(t) and system size V (for conciseness,
we will use X rather than X(t), and Wj(X) rather than Wj(X(t), V )).

The system is modelled as a jump Markov process in which events are ex-
ponentially distributed with rates Wj(X). The occurrence of an event j changes
the system state from X to X+ νj . Functions Wj(X) are assumed to be differ-
entiable, nonnegative, time independent and to satisfy the mass-action law[2].

Deterministic limit: Under some conditions[1] on Wj(X), the deterministic

limit behaviour is given by the following set of ODEs: dXi

dt =
∑n

j=1 ν
j
iWj(X).

Method. Consider the trajectories obtained for two stochatic simulations. When
computing the mean populations, one averages the cartesian coordinates of the
populations in the phase space. Nevertheless, other coordinate systems, e.g.,
polar coordinates if s = 2, can be considered. Figure 1(a) shows the result of
averaging the cartesian and polar coordinates of two states.

Let us describe how to average the polar coordinates of a number of stochas-
tic simulations (for systems with s > 2, hyperspherical coordinates can be used).
Assume that M stochastic simulations have been performed, and the trajecto-
ries have been resampled at same sampling times. Let (X0

q , Y
0
q ), (X

1
q , Y

1
q ), . . .,

be the cartesian coordinates of simulation q ∈ {1 . . .M} at the sampling times.
Let the origin of the polar coordinate system be the reference point a with
cartesian coordinates (ax, ay). Each (Xk

q , Y
k
q ) can be transformed to polar co-

ordinates (ρkq , θ
k
q ) with origin at a by using: ρkq =

√

(Xk
q − ax)2 + (Y k

q − ay)2,

θkq = atan(Y k
q −ay, X

k
q−ax) where atan(y, x) : R×R → R is the arctangent of

a point with cartesian coordinates (x, y) that takes into account the quadrant.
We will assume that the range of atan(y, x) is (−π, π] and that atan(0, 0) = 0.
This straightforwad transformation to polar coordinates poses a problem when
averaging θ: if at step k, θki is positive and close to π while θkj is negative and
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Fig. 1. (a) Average cartesian (C) and polar (P ) coordinates of U and W with respect
to a; (b) Average cartesian and polar trajectories.

close to −π, the mean of will be close to 0 what is not a useful average. To over-
come this problem, we define a new value φk

q to account for the overall angular

distance run by the trajectory. Let us define φ0
q = θ0q , and for each k ≥ 0, let

us express φk
q as φk

q = zkq 2π + hk
q , with zkq ∈ Z and −π < hk

q ≤ π, i.e, zkq is

the number of completed loops and hk
q is the angular distance run on the cur-

rent loop. The value of zkq is positive(negative) if the angular distance was run

anticlockwise(clockwise). Then, for k > 0, φk
q can be computed as follows:

φk
q =











z
(k−1)
q 2π + θkq + 2π if h

(k−1)
q > π

2 and θkq < −π
2

z
(k−1)
q 2π + θkq − 2π if h

(k−1)
q < −π

2 and θkq > π
2

z
(k−1)
q 2π + θkq otherwise

The first(second) case of the expresion account for the discontinuity of the an-
gle returned by atan when the trajectory moves from the second to the third(from
the third to the second) quadrant. An average trajectory in polar coordinates is
obtained as the mean of ρkq and φk

q over all simulations.

Results.Consider the following system[2]: s = 2; n = 5; ν =
(

1 −1 −1 1 0
0 0 1 −1 −1

)

;

V = 5 · 103; W1 = X1+X2

1+(0.4·(X1+X2))/V
, W2 = 0.2 ·X1, W3 = 10 ·X1 ·X2/V , W4 =

3 ·X2 and W5 = 5 ·X2 with initial populations X1(0) = 4080 and X2(0) = 500.
The system has a unique non extinction fixed point a = (4000, 502) which is
taken as origin of the polar coordinate system. Figure 1(b) shows the average
trajectories of 5000 simulations. The trajectory tending to a is the average of
the cartesian coordinates, while the trajectory tending to a steady oscillation
is the average of the polar coordinates. The interpretetation is that simulation
trajectories tend to loop around the fixed point at an average distance of 170.
Thus, while the cartesian mean informs about the trajectory of the center of
mass of the simulations, the polar mean informs about the average circular
motion what uncovers the undamped oscillations reported in[2].
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